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Abstract—Multi-band and multi-tier network densification is
being considered as the most promising solution to overcome the
capacity crunch problem of cellular networks. In this direction,
small cells (SCs) are being deployed within the macro cell (MC)
coverage, to off-load some of the users associated with the MCs.
This deployment scenario raises several problems. Among oth-
ers, signalling overhead and mobility management will become
critical considerations. Frequent handovers (HOs) in ultra dense
SC deployments could lead to a dramatic increase in signalling
overhead. This suggests a paradigm shift towards a signalling
conscious cellular architecture with smart mobility management.
In this regards, the control/data separation architecture (CDSA)
with dual connectivity is being considered for the future radio
access. Considering the CDSA as the radio access network
(RAN) architecture, we quantify the reduction in HO signalling
w.r.t. the conventional approach. We develop analytical models
which compare the signalling generated during various HO
scenarios in the CDSA and conventionally deployed networks.
New parameters are introduced which can with optimum value
significantly reduce the HO signalling load. The derived model
includes HO success and HO failure scenarios along with specific
derivations for continuous and non-continuous mobility users.
Numerical results show promising CDSA gains in terms of saving
in HO signalling overhead.

Index Terms—Cellular networks; control data separation ar-
chitecture; dual connectivity handover; signalling load; radio
access networks.

I. INTRODUCTION

User mobility has been the raison d’etre of wireless cellular
systems. Studies project that by 2021, global mobile traffic
will increase sevenfold [1] as compared with 2016. This
mobile traffic can be analysed to gain deep insights into
human behavior, transportation, networking etc. [2]. At the
same time, this trend highlights the need for making mobility
management in future cellular networks even more resource
efficient and seamless than ever before. In addition, multi-band
and multi-tier networks consisting of cells of varying sizes on
conventional sub 6 GHz and above 20 GHz bands, referred
to as mmWaves (mmW) henceforth, are being perceived as
the panacea for the looming capacity crunch. Particularly
mmW small cells are being considered [3],[4] essential for
future ultra dense multi-tier multi-band networks vis-a-vis 5G
and beyond. This is because harnessing the abundant and
short range mmW spectrum has strong potential to solve
the two long-standing and intertwined problems in cellular
networks: spectrum scarcity and interference. However, it
is worth noticing that while advent of ultra dense mobile

networks may solve these two problems, it creates a new
challenging problem i.e., how to manage user mobility in such
a dense network consisting of cells of varying sizes on a wide
range of frequency bands with entirely different propagation
characteristics. The following challenges define the breadth
and depth of this impending problem.

Mobility management in the current networks requires pe-
riodic signalling to support HO preparation, execution and
completion phases. This conventional approach may not be
suitable in ultra-dense networks because HO rates and the
associated signalling overhead will become unacceptably high
[5], [6]. In the long term evolution, HO failure rate is targeted
below 5 percent [7]. However, recent third generation part-
nership project study [5] shows that adding only ten small
cells per macro can push the HO failure rate to as high
as 60 percent, indicating the breakdown of current mobility
management mechanism in ultra dense networks. Given the
much smaller average cell size and thus small user sojourn
time, the time to complete a HO must be reduced significantly
from the current LTE target of 65 ms [8], [9]. New agile HO
signalling procedures are also needed to meet the ambitious
low latency requirements of the 5G system.

According to [10], the range of mmW based cells is 100-200
m. With ultra-dense mmW based SC deployments, mobility
management becomes complex because HOs will happen
frequently even for slow mobility users. In the conventional
RAN architecture, the HO procedure includes transferring
all channels (i.e., control and data) from one base station
to another with a significant core-network signalling load
[11]. For instance, the results reported in [12], [13], [14]
indicate high signalling overhead and call drop rates when
the conventional HO mechanisms are applied in dense SC
deployment scenarios. To solve this problem, a futuristic radio
access network architecture with a logical separation between
control plane and data plane has been proposed in research
community [15].

In CDSA, MCs are chosen to be control base stations. These
control base stations provide basic connectivity and control
signalling needed for services as evident in Fig. 2. Under the
umbrella of control base station, high speed and on demand
data services are provided through SCs which are termed as
data base stations. As illustrated in Fig. 2, all user equipments
(UEs) are connected to control base station and only active
UEs are connected to both control base station and data base
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Fig. 1. Signalling messages exchanged with in a typical S1 handover scenario
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Fig. 2. Schematic of control data plane separated Architecture

station via a dual connection [14], [16], [15]. This type of
coverage and connection offers simple and secure HO because
in this case radio resource control (RRC) connection is main-
tained by the CBS. In this way, UEs are connected to a CBS
with large coverage area. The HO trigger takes place when
UE moves towards the edge of serving CBS. As the signal
strength/quality of the serving CBS lowers and the neighboring
CBS signal strength/quality and coverage becomes greater than
the sum of the signal strength/quality of the serving CBS and a
hysteresis (defined by the network), the HO event is triggered.
The UE sends measurement report to the serving CBS. After
reading the measurement report, the serving CBS decides if
HO trigger is necessary or not. If HO is needed, serving CBS
sends HO request to the target (neighbor) CBS and once HO
request is acknowledged, the serving CBS sends HO trigger
command to the UE to continue moving towards destination

CBS. The procedure of HO trigger and decision is aligned
with 3GPP standard [17]. Intra CBS HOs are transparent to
the core network (CN), because DBSs are under the coverage
of CBS all the time. Similar architecture configuration has
been proposed in [18], for heterogeneous wireless networks.
These configurations reduces mobility signalling, facilitate HO
in control-user plane split scenarios [19], [20] and reduces the
associated overhead.

There has been existing research work on other areas of
HetNets such as energy efficiency [21], [22], [23], [24] etc.
However, according to authors’ knowledge very little work has
been done on reducing mobility signalling in HetNets. Most
of the existing work in the literature for HO modeling has
been done considering general HO scenario in macro cells or
HetNets with conventional architecture. This paper provides a
model for HO failure in CDSA. To the best of our knowledge,
this is the first scheme that models HO failure under a CDSA
configuration. In addition, we have also included parameter
setting in terms of shared coverage area to minimize signalling
and reduce HO failure as part of modeling. Therefore, the
importance of this work is twofold. 1) It proposes a HO model
for CDSA in HetNets 2) It proposes an analytical model for
active mobility signalling generated during HO for CDSA in
HetNets.

The work presented in [25] focuses on optimization of HO
procedure in HetNets by incorporating context information
such as user speed, channel gains and traffic load in the
cells. This work proposes a Markov chain-based framework
to model the HO process for the mobile user and derives
an optimal context-dependent HO criterion. This work clearly
demonstrates that context-awareness can indeed improve the
HO process and significantly increase the performance of
mobile UEs in HetNets. In contrast to [25], this study aims to
address the question of how much signalling is generated in



case of HOs for CDSA based HetNets. On the other hand, the
works presented in [26] does provide HO analysis for CDSA
based HetNets. This work provides first tractable mobility
aware model for a two-tier downlink cellular network with
ultra-dense small cells and Control plane / User plane split
architecture. The work performs in depth HO analysis and
sheds light on HO costs in terms of number of HOs taking
place per unit length. However, widely differing from the
scope of our study, [26] does not compare quantitatively how
much amount of signalling load is generated in case of HO
success and HO failure in CDSA for HetNets. The work
in [27] focuses on HO problem in two tier networks which
arises in HetNets due to network densification. The solution
to the problem is specified in terms of HO skipping based on
velocity of the user, so that connection can be maintained for
longer duration without causing any connection interruption.
HO cost is defined based on the delay incurred on account of
HO interruption which takes place during a HO. Even though
[27] considers two tier HetNet model, unlike our study it does
not consider a CDSA architecture specifically. In addition, it
does not take into account for the mobility signalling load
considerations.

According to Nokia Siemens networks, in current network
deployments signalling is growing 50 percent faster than
data traffic [28]. Previously published works [14], [29], [30],
[31] on mobility signalling claims that mobility signalling
is reduced as long as UE’s mobility is within the coverage
area of CBS. As a result signalling channel is not changed
and mobility signalling is reduced. However, this is not the
case when the UE moves from one CBS to another CBS.
Other studies [32], [33], [34] analyse the dual connectivity
and HO failure rate of the CDSA using simulations, without
providing a concrete analytical framework. In order to evaluate
the HO signalling cost, [35] and [36] propose HO management
schemes and evaluate the signalling cost for femtocells. How-
ever, these analysis assume that the HO is successful for 100
percent of the time which is not the case in real networks.

In order to assess the mobility and signalling reduction
benefits of CDSA, it requires a framework that quantifies the
mobility-related signalling load. A first attempt towards this
framework is reported in [11]. While this framework provides
the foundation, it misses out two important facts.

1. It does not consider HO failures scenario. 2. It does not
take into account quality of service (QoS) requirements such
as HO time, shared coverage factor and HO duration related
parameters which are essential for QoS requirements of time
sensitive applications in ultra-dense HetNets.

Keeping the above limitations of [11] in mind, we make the
following contributions in this paper.

1) We propose an analytical model which provides proba-
bility of HO failure signalling, probability of HO success
signalling and probability of no HO signalling.

2) We propose an analytical model to quantify the mobility
signalling generated in the core network for the case
of HO success, and HO failure in both CDSA and
conventional network.

3) The analytical model quantifies the expected mobility
CN signalling generated: when either a non-continuous

mobility or continuous mobility scenario takes place.

4) HO related parameters such as mobility time duration
(Tg), time taken for a HO completion (T,) and coverage
factor (c) are introduced. These parameters when config-
ured appropriately can reduce HO related CN signalling.
Also, for a given topology these parameters can decide
the success or failure of a HO.

5) Finally, this work informs the reader whether multi-
tier multi band SCs ought to be deployed using current
HetNets format or CDSA approach. The results confirm
that for ultra-dense HetNets deployment CDSA ought to
be used.

The remainder of the paper is organized as follows. In
Section II we discuss the system model and assumptions,
Section III presents the signalling probability model. The
expected CN mobility signalling model is presented in Section
IV. A special scenario for the case of continuous mobility
signalling is presented in Section V. We present numerical
results in Section VI followed by conclusion, in Section VII
respectively.

II. SYSTEM MODEL AND ASSUMPTIONS

The analytical model for reducing HO signalling in this
paper focuses only on the RRC related CN mobility signalling
exchange which takes place during the HO procedure (active
mode) in a cellular system. Fig. 1 indicates the amount of
signalling exchange which is generated during a typical S1 HO
scenario [37]. The actual sequence of HO messages are shown
in Table I. It is evident that compared to RAN side majority of
the mobility signalling messages are being exchanged with the
CN as shown in the shaded region in Fig. 1. In the CDSA the
CN signalling remains unchanged as long as UE mobility is
within the same CBS because intra CBS HOs are transparent
to the CN, as described in Introduction section and shown in
Fig. 2.

The model is applicable for both intra-frequency and inter-
frequency HO scenarios. In the CDSA network, the CBS and
DBS are usually deployed in separate frequency bands to
avoid inter-layer interference. Although this may complicate
the UE radio frequency (RF) design, a separate frequency
deployment is being considered in the new radio guidelines
of the 3GPP [38]. In this direction HOs within the footprint
of the same CBS require changing the DBS only, hence they
are considered intra-frequency HOs. On the other hand, inter-
CBS HOs, i.e., HOs between two different CBSs, require
changing both the CBS and DBS, i.e., a two-link HO. Such
a scenario may involve intra-frequency and inter-frequency
HOs. Consequently, a longer or shorter measurement gap
may be required depending upon the cell deployment density.
According to Mahbas et al [39], using smaller values of
measurement gap, better system performance can be achieved
in case of dense cell density and higher values of measurement
gap in case of sparse cell density. This issue can be solved by
limiting the number of CBSs / DBSs that are being monitored
by the UE, e.g., the UE monitors the top-n cells per cell
categorization to ensure that data transmission is balanced
against the accurate measurement cycle. However, modeling



TABLE I
HO MESSAGES
Number | Description
1 RRC Connection Reconfiguration
2 RRC Measurement Report
3 HO Decision
4 S1 Handover Required
5 S10 forward Relocation Request
6 S11 Create Bearer Request/Response
7 S1 handover request
8 Admission Control
9 S1 Handover Request Acknowledge
10 S10 Forward Relocation Response
11 S11 Create Bearer Request/Response
12 S1 Handover Command
13 RRC Connection Reconfiguration
14 Random Access Preamble
15 Random Access Response (UL Allocation + TA)
16 RRC Connection Reconfiguration Complete
17 S1 Handover Notify
18 Data Transfer in Target
19 S10 Forward Relocation Complete/ACK
for control base station

20 S1 UE Context Release Command

this specific scenario is beyond the scope of this paper, and
can be goal of future work.

In order to derive the analytical model for mobility sig-
nalling in case of CDSA. The following assumptions are made.

o The user remains in the system upon HO success or HO
failure. In case of HO failure UE will remain connected
to the CBS but will require RRC re-establishment with
the DBS.

« Different amount of signalling is generated in CN in case
of HO failure and HO success. Specifically, a HO failure
event generates more signalling than a HO success event
as shown in Fig. 4.

o A user can remain within the same CBS and not perform
an inter-CBS HO with probability P,,,. It can perform an
inter-CBS HO from one CBS to another CBS. Inter CBS
HO can be successful with probability P, or it could be
a failure with probability Py.

e An LTE system with equal number of low and high
mobility distributed users are considered. The term sector
is used with the same meanings as a cell.

o HO failure is considered on account of too late HO. These
assumptions are valid for CDSA in ultra-dense networks,
as with densification more HO failures may take place
because of too late scenario if HO parameters are not
tuned accordingly.

o HO failure can take place due to various other reasons
other than too late HO, such as transport network re-
liability i.e., S1 interface is down, poor RF conditions,
radio link failure and partial HO etc. Analytical model
for HO failure due to reasons other than too late HO can
be derived accordingly. For the case of HO failure caused
by poor RF conditions, radio link failure is triggered
when the downlink signal to interference noise ratio
(SINR) is below a certain threshold (Qout = - 8 dB) and

stays below 6 dB for at least 1 sec [40]. Using this
approach, probability of SINR greater than the threshold
can be computed. If SINR threshold is less than the
threshold for a given time, it will be a HO failure and
vice versa. Similarly, HO failure caused by partial HO
can be characterized by calculating the probability that
whether all bearers get transferred completely or not. By
computing the probability of all bearers transferred or not,
we can compute probability of HO success or HO failure
respectively. For a more detailed discussion on possible
HO failure scenario, reader is referred to [40].

o Regardless of the HO failure reasons all factors contribute
to the same amount of CN signalling load.

« For the evaluation and comparison purposes the modeling
approach proposed in Sections III to V can be adapted
to model the conventional network mobility signalling in
order to assess the CDSA gains as proposed in [11].

III. SIGNALLING PROBABILITY MODEL

In order to evaluate the CN signalling load as a result of
HO, the probabilities of failure (P), success (P;) and no HO
(P,,0) needs to be modelled. To compute these values, we need
to model the HO procedure between two CBS in terms of a
timing diagram as shown in Fig. 3. From the timing diagram
in Fig. 3 the abbreviations for various terms used and defined
are provided in Table II.

A. System Model

Consider a CDSA cellular network where the CBSs are
modelled as a Poisson Point Process (PPP) with density pq
, while DBSs are modelled as another PPP with density ps ,
where py > p;.

Assume a session duration A\ with probability density func-
tion (pdf) fs(\) and mean E[A]. The CBS residence time is
modelled as a random variable §; with pdf fz,(f1) and mean
E[0¢], while the DBS cell residence time is modelled as a
random variable 05 with pdf fzo(f2) and mean E[6].

Fig. 3 provides a timing diagram that illustrates the defini-
tion of all the parameters. Without loss of generalization, we
follow [11] and assume that users move at random directions
with a random velocity. Under this assumption, E[#;] can be
approximated by the ratio between the number of UEs in a
CBS and the number of UEs leaving a CBS per unit time
[41]. According to [41]

Bl0,] = Number of UEs in' a CBS 0
Number of UEs leaving a CBS

Following derivations in [41], E[#;] can be approximated

as:

Tl'*Sl

Elen] = E[v]L;

2

where, the symbols S; in equation (2) indicates area of the
CBS and L, represents length of the perimeter of CBS as given
in Table II. As we are considering a PPP model, according to
[42]



TABLE 11
SYMBOL AND ACRONYMS DESCRIPTION

Symbol | Description
Sy Normalized CN mobility signalling load on account of
HO failure
S Normalized CN mobility signalling load on account of
HO success
A Session Duration
Ay Residual Session Duration
[ Cell residence time
0, Residual Cell residence time
Qi Residual Cell residence time of control base station i
0,2 Residual Cell residence time of data base station
Ta Mobility time duration during which HO takes place
Ta,, Residual Mobility time duration during which HO
takes place
Ty Time taken for handover completion
1 Cell density of control base station
P2 Cell density of data base station
v Average velocity
Ly Length of perimeter of the control base station
S1 Area of control base station
c Coverage factor
LTE Long Term Evolution
mmW | Millimeter Waves
MME | Mobility Management Entity
3G PP | Third Generation Partnership Project
MME | Mobility Management Entity
CN Core network
HO Handover
RRC | Radio Resource Control
BS Base Station
CDSA | Control Data Separation Architecture
CcP Control Plane
DP Data Plane
CBS | Control Base Station
DBS | Data Base Station
TA Time Alignment
UE User Equipment
SC Small Cell
S =~ )
P1
and
4
Ly=— 4)

Vo,

Substituting (3) and (4) into (2). Equation (2) can be re-written
as

4E[v]\/p,

Similarly, the expected cell residence time for DBS can be
listed as

(@YD)
1

Macro cell CBS k

((I))

Macro cell CBS j

(1)
1

Macro cell CBS i

...............................................

-
a

P Ty,

Fig. 3. Timing diagram of handover model parameters

B. Mobility Time Duration (T;)

If a user is in moving state, on account of mobility it
eventually moves from one CBS to another CBS. In order
for a user to perform a HO successfully the HO must be
completed within a required time duration. Otherwise, UE may
move out of coverage of the serving CBS and HO failure
occurs. As the user approaches the edge of CBS, it starts
receiving signal coverage from a neighboring CBS. Ideally,
the HO ought to take place when a user is receiving signal
from both neighboring and serving CBS, while it is moving in
the direction of the neighboring CBS. This duration while UE
is moving in the direction of neighboring CBS and receiving
coverage from both serving and neighboring CBS is termed
as mobility time duration and abbreviated as T.

In order to define T, mathematically. We proceed as fol-
lows; a UE stays in a cell for a given time equal to average cell
residence time (6). Ty is a function of average cell residence
time. Cell residence time is dependent upon cell density and
user velocity. Therefore, in order to derive a relation between
mean cell residence time and mobility time duration (HO
duration), we model it as:

Ty=E[f]*cx1073 (7)

Where T, is the HO time duration (HO time) in the above
equation. HO time depends upon the coverage parameter c. For
larger shared coverage area, HO duration is longer because it
takes longer for a user to traverse the intercell coverage area
and for small coverage area it is shorter accordingly. Therefore,
the coverage parameter c ranges between 0.1 and 0.9. The
coverage factor ¢ is dimensionless in our model. As mobility
time duration is taken in milliseconds, whereas cell residence
time is in seconds (depending upon the cell radius) therefore
a factor of 1/1000 is added for conversion.

C. Time Taken For a Handover Completion (Tp)

The HO procedure starts from the instant measurement
report is sent by the UE to the source CBS, and concludes



HANDOVER SUCCESS

. (cg») ((ngn)
UE

Soyrce | Destination

HANDOVER FAILURE

@ ga)) (([ g})

Source

Destination

Execution
Phase

Completion
Phase

Preparation
D e

Execution
Phase

Completion
Phase

Re-
Establishment

Fig. 4. Comparison of Handover Success and Handover Failure Procedures

once UE receives RRC connection reconfiguration message
from the target CBS. The HO procedure consists of three
phases: preparation, execution and completion phase as shown
in Fig. 4. For a successful HO all three phases need to be
completed successfully. The time taken to complete all the
phases of HO successfully is termed as T},. In [43], authors
have studied the HO failure rate and delay of the HO as well.
Their result include overall HO duration which is around 83-
95 ms. HOs can take place sooner than this duration as well.
In order to compute the effect of signalling load in case of
both HO success and failure scenario we use the value of T,
as 100 ms, an upper bound to meet the HO delay requirements
in this work.

D. Probability of Handover Failure

For the CDSA system model, it is known that CN signalling
is generated in inter CBS HOs only [15]. Expressed differently
all the DBS HOs do not generate CN signalling as long as the
CBS anchor point remains the same. The definition of Py is
equivalent to the UE attempting to change the serving CBS,
while doing so it is not successful. With reference to Fig. 3, Py
is equivalent to the probability that T, occurs beyond residual
mobility time duration Ty,,.. The session started when UE was
associated with CBS; and failed to finish and drops the session
when the UE tries to attempt a HO in order to associate with
CBS;, where j > iand T, > Ty,,. Considering Fig. 3, we can
write Py as:

Py

= Prob.(T, > Ty, ) * Prob.(A > 61,,) 8)

where Prob.( ) means probability of an event and 6 ,, is the
residual cell residence time of a CBS. The probability that
session duration () is greater than the residual cell residence
time, it is computed as:

Prob.(A > 01,,) =1— Prob.(A < 04,,)

When session duration is less than residual cell residence time
is computed as:

Prob.(\ < 01, ) :/ ofgl’r(x) /uof,\(y) dy dx  (9)
r= Y=

Prob.(A > 601,.) =1— /: fo., () /io M) dy dx

(10)
Similarly, Tg4,, is the residual mobility time duration during
which HO takes place as shown in Fig. 3. The probability that
time taken for an inter-CBS HO completion (T)) is greater
than residual mobility time duration is computed as:

Prob.(Ty, > Tq,r ) =1— Prob.(T, < Ty, )

When time taken for HO completion is less than residual
mobility time duration, it is computed as:

) dv dz
(11)

Prob.(T, < Tq,r ) = / Jra.( / fr,(

z=

Prob.(Ty, > Tq,r ) =1— /

z=0

Fra, ) [ frafo) v ds

o (12)
Plugging the values from equations (12) and (10) in equation
(8), we get probability of failure as:

Pr=(01- deT( ) f:rp( v) dv dz) * (

1—/ for (2 /fA ) dy d)

E. Probability of Handover Success

13)

The definition of P, is equivalent to the UE attempting
to change the serving CBS, and it is successful in doing so.
With reference to Fig. 3, P, is equivalent to the probability
that T, instant occurs before Tg4,, duration. In other words,
the session started when UE was associated with CBS; and
finished successfully in the next CBS when the UE tried to
attempt a HO in order to associate with CBS; , where j > i
and T, < Tg,,. Considering Fig. 3, we can write P, as:

P, = Prob.(T, < Ty,r ) * Prob.(A > 61,1) (14)

Plugging values from equations (10) and (11) into equation
(13), we get:

P =( de,( ) pr( ) dv dz) * (

1—/ for.(z /fA ) dy dx)

15)



FE. Probability of No Handover

The definition of P,, is the probability that the UE does
not attempt to change the serving CBS. With reference to Fig.
3, P,., is equivalent to the probability that the session started
when UE was associated with CBS; and finished successfully
in the same CBS and UE did not try to attempt a HO in order
to associate with CBS; , where j > i. Considering Fig. 3, we
can write P,,, as:

P, = Prob.(A < 6y1,7) (16)

Plugging value from equation (9) into equation (16), it
becomes:

Pao= [ fo@ [ Alwde  an
=0 y=0
The probabilities of HO failure, HO success and no HO
signalling considering general distributions are shown in equa-
tions (13), (15) and (17) respectively. In order to have closed
form expression for these probabilities we consider exponen-
tial distribution as follows.

G. Exponential Distribution for Session Duration, Mobility
time duration and Cell Residence Time

The expressions for Py, P,, and Ps; computed earlier in
equations (13), (15) and (17) are given for general distri-
bution. In order to have a closed form solution, we con-
sider the scenario where the session duration, cell residence
time and mobility time duration are exponentially distributed.
Exponential distribution has been considered in this paper
as it represents the worst-case scenario from signalling load
perspective. The model(s) in [11] show that the HO-related
signalling load is memoryless under exponential distribution
and the signalling probability is independent of the previous
case. A HO success or failure at one CBS does not mean it will
result in HO upon the next consecutive CBS. Consequently, we
consider the exponential distribution to model the worst-case
scenario in both the CDSA and the conventional architecture
and to evaluate the upper bound of the signalling load that
corresponds to insights into the worst case scenario.

According to [11] when session duration and the cell
residence time are exponentially distributed, the residual ses-
sion duration and the residual cell residence time are also
exponentially distributed such that

Fa(E) = P (8) = Eﬁ]” (18)
fo.(0) = fo,. (0 = 5] (19)

The mobility time duration is derived from cell residence
time. Therefore, if cell residence time is considered exponen-
tial. Hence, probability density function (pdf) of mobility time
duration is given as:

de(Ji) =

Similarly, using Lemma 1 in [11] the pdf of residual
mobility time duration in case of exponential distribution is
given as:

e BElT4]

de.r(t) = de(t) = E[Td]

Substituting (18), (19) and (20) into equations (13), (15)
and (17) respectively. After mathematical simplification, we
get Py, Py and P,,,, closed form expressions to be as follows:

(20)

- EIT) AENE[0]\/p
P =g+ ey S aEpEn \},31 ) @n

_ E[Td”. } 4FE [N E[v] \/ﬁl
b= em)) * Graemen s, @

Pro = (23)

7+ 4E[\E[v]\/p,

The closed form expressions for Py and P, indicate that
they depend upon cell density, user velocity, session duration,
mobility time duration and time taken for a HO completion.
Mobility time duration in turn depends upon cell residence
time and cell coverage factor. Therefore, from a design per-
spective larger value of coverage factor and high cell residence
time result in better values of successful HO probability. This
insight can help cellular network designers to plan better ultra-
dense networks which can result in more successful HOs and
less amount of mobility signalling compared to conventional
networks.

IV. MOBILITY SIGNALLING MODEL

The total CN mobility signalling load generated during a
HO depends upon a number of factors such as :

o UE speed and mobility

o BS density

o Session duration

o Transport network reliability (stability)
o Coverage factor

o Miscellaneous

The user(s) is assumed to be RRC connected and active in
the network. We model the HO scenario and CN signalling
generated as a result of probability of HO failure, success
and no HO signalling using Markov chain as shown in Fig.
5. In the CDSA approach shown in Fig.2, each inter-CDSA
HO success or HO failure generates CN signalling, we will
denote this CN signalling as S;,;, while intra-CBS HOs i.e.,
DBSs do not generate CN signalling. The coefficients «, 3
and ~ in Fig. 5 are HO coefficients. In a cellular network, the
probability to HO from one cell to another is not the same for
all the sectors. This difference is on account of various factors
described above. These HO coefficient values represent the
difference in probabilities for HO coefficients from one cell
to another cell. Using [11] we can model the CN signalling
on amount of HO success, failure and no HO as shown in Fig.
5.

where,



Fig. 5. Markov chain modeling of no-handover, handover failure and handover success related core-network mobility signaling

e P; = Probability that signalling is generated as a result
of HO failure

o P, = Probability that signalling is generated as a result
of HO success

e P,, = Probability that HO attempt will not be made

e S;,; = CN mobility signalling load generated on account
of i handover failure(s) and j handover success(s)

The goal is to find out the average or expected amount
of mobility CN signalling which is generated in case of HO
success(s) and HO failure(s) including how no HO attempts
will influence the aggregate signalling. From Fig. 5 it is clear
that user will always generate mobility signalling starting from
state Sp,o and will not stay in that state.

The expected value of RRC CN mobility signalling load
E[S;,;] generated by a UE in the CDSA can be calculated as:

E[Sij]=> Y Si,j*Prob.(S;,;) (24)

i=0 j=0

The Prob. (S;,;) can be calculated by solving the Markov
chain shown in the Fig. 5. Since the amount of signalling
generated by the user(s) movement increases with time, a
transition from CN signalling state CS;,; to CS,,,, has zero
probability when i,j > m,n. Based on this Markov chain,
Prob.(S;,;) can be formulated as:

P(So,g) ,fOTi:O,j:O
Prob.(S: ;) = (IZEDII;}V :i((ioao) , for ’L i O,j: =0
aopoy * P 050 ) yfori=0,7>0
%*P(&m) fori>0,7>0

(25)
From the Markov chain in Fig. 5 the values of HO coefficients
«, 3 and v are such that the following conditions are true.

BiPs+a1Pr=1,fori=0,7=0
B1Ps + i1 P+ Yiso Poo =1, for i >0,j =0
Bj+1Ps + a1 Py +70,j Pho =1, for i=0,5 >0
Bj+1Ps + i1 Py +7i,j Pno =1, for i >0,5 >0

For a cellular network the values of «, (3 and y are arranged
in the following order :

a1 2 Qa2 Q3204 2 ... 20
B12>2022>20P32>0s2>... 2P
7150 < 7250 < V350 < V4,0 < oo < Va0
Y0,1 <702 < 70,3 <7004 < oo <045
Y151 <7251 S 351 S Y451 S e S Vi
V1,2 < 72,2 S V3,2 S Va2 S < Va2

Similarly,
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Lemma 1: For exponential distribution of cell residence time
and session duration. The values of «, 8 and -y are :

] =y =3 =04 =,...,0; =1
Br=0=p03=0s=,....0; =1
Y150 = V250 = V3,0 = V450 =5 -+, Vir0 = 1
Y051 = Y052 = Y053 = V054 =5 -+, V0,5 = 1
Y11 = V251 = VY351 = Y4yl =y eeey Visg = 1

Proof: Preliminary: Given the session duration and the CBS
residence time are exponentially distributed, the residual ses-
sion duration and the residual CBS residence time will also be
exponentially distributed [11]. Consequently, the probability
of not generating signalling is memoryless and independent
of the state i.e., independent of the state whether signalling
has been generated previously or not.

This 1mphes that Pno = ’yl,()PnO = ’727()Pn0... = 'Yi,()Pno
resulting in 1,0 = 7Y2,0... = Vi,0 = 1. Similarly, for other
Y0; = 7i,; = 1. Since at any given state, o; Py + 3, Ps +
YijPno = 1. When v; ; = 1 for all states, then the term
a; Py + (3;P, remains the same in all the states. As the
residual session duration and the residual cell residence time
have exactly the same distribution as the session duration and
the cell residence time, respectively, a; Py and ;P remain
constant in all states. This condition can only be satisfied when
Oél:OéQ:...:Oéizlandﬁlzﬂgz...:ﬁjzl.

As the probabilities of the signalling states in Markov chain
for Fig. 5 are shown in equation (25). These probabilities
depend on state Sg,g i.e., P(Sg,0). Once we compute the
probability of this state, we can compute probabilities for other
states as well. For a Markov chain we know that.

iiPTOb.(Si,j) =1

i=0 j=0

Using Fig. 5 we can sum up all the signalling states such
that:

Prob.(So.) + Y Prob.(Si) + Y Prob.(So.;)
i=1 j=1

+ iiPmb(Sm)zl

i=1 j=1

After simplifying the equation above, we can write the
Prob.(Sg,q) = P(So,0) as:

1
1> Prob.(Sio) + > ey Prob.(So,5)

+ i iP’I"Ob.(Si,j )

i=1 j=1

P(S0.0)

(26)

After mathematical procedures and solving (26). We get

OO T PPy + P} + P2 + Pr(1—Po,) + Pu(1- Py

27)

Now the probability P(Sg,0) is computed in equation (27).
After plugging it in equation (24). We can find the expected
CN mobility signalling.

E[Si,;] = S0,0%Prob.(So,0) + Y Siso ¥Prob.(Siz ) +

=1
> 80,5 #Prob.(So,; )+ Y > SiyjxProb.(Si,;)  (28)
j=1 i=1 j=1

where ,
So,() = [O * Sf] + [0 * Sé]

Siso= [i % Sf] + [0 5]
Soyj = [0 S¢] + [j * S5]
Siyj = [i % S| + [ * 5]

After plugging the values from equations (25) and (27)
in equation (28) and mathematical simplification results in
expected signalling. The expected signalling as a result of HO
failures and HO success can be computed as:

Pi(1—P,o)  (Pr—Puo+1)(1—Pp)
E[Si,;]=( ! P2 ! P2 +
(1_Pno)2 Ps(l_Pno)
Ps_Pno+1 l_Pno 1_Pno2
( A= Pro) B Paol’y pisoa) @9)

P? P.P;

Equation (29) can be used to quantify the RRC CN mobility
signalling load for a mobile user. The expected signalling load
can be computed by substituting the values of Py, P, and P, .

V. CONTINUOUS MOBILITY SIGNALLING MODEL

During a mobility HO scenario, one of the two cases
can happen. Either the HO is successful or the HO is not
successful. User remains in the system even in case of HO
failure. For the case of continuous mobility, user generates
mobility signalling as a result of HO success and HO failures
while the session duration is continuous. It is assumed that
the user remains RRC connected with the CBS in the system
even in case of HO failure and gets connected back to DBS
through RRC connection re-establishment. As the session is
continuous, the probability of no HO signalling is zero in this
case. The probability of failure and probability of success are
complement of each other in this case. The Markov chain for
this special scenario is shown in Fig. 7. Looking at the 2D
Markov chain in Fig. 7. It can be inferred.

e P; = Probability that CN mobility signalling will be
generated as a result of HO failure



Fig. 6. Markov Chain representing continuous handover success and failure
signalling scenarios

e P, = Probability that CN mobility signalling will be
generated as a result of HO success in case of continuous
mobility

o CS;,;= Aggregate CN mobility signalling load on ac-
count of i HO failures and j HO successes in case of
continuous mobility

The goal is to find out the average or expected amount
of CN signalling which is generated in case of continuous
mobility as a result of continuous HO success and failures
respectively. This probability P(CS;,;) can be calculated by
solving Markov chain shown in Fig. 7. Since the amount of
signalling generated by the users movement (HO failures and
success) increase with time, a transition from CN signalling
state CS,,,,, to CS;,; has zero probability when m, n > 1, j.

Based on this model, Prob (CS;,;) can be formulated as:

P(CS(M)) 1=0,7=0
Prob.(C8i,; ) = 4 “LrP(C%00) 120,57 =0
Bi P P(CSoy0) 1=0,7>0

(i +j)aiP}ﬂngP(CSg,o ), ©>0, 7>0

(30)

In Lemma 1 of section IV it is already shown, for exponen-

tial cell residence and session duration the values of « and /3
are:

bi=0=0s=0s=,...,=0;=1

a1l =g =Q3 =Qq =,...,=q; =1

A. Computation of Continuous mobility Probability of Success
(P h)

The probability of failure in case of continuous mobility is
the same as computed in section III equation (21) earlier for
non-continuous scenario.

ElT,)
E[Ta, ] + E[T)]

AEVER]p,
T+ 4E[NE[v]\/p,

Considering a continuous mobility scenario. The probability
of success is the complement of probability of failure. If HO

Pr=( ) *

10

Fig. 7. Markov Chain representing continuous handover success and failure
signalling scenarios

failure will not take place then it will be probability of success.
The probability of HO success is given as:

Ph =1- Pf

The probability of HO success is computed as:

E[Ty]

( 4AENEW] /5,
E[Td;r} + E[TP]

T+ 4ENER] /B,

P,=1- ) * ( )

€29

B. Handover Signalling for Continuous Mobility Users

In case of continuous mobility scenario large number of
HOs take place. When we consider, there are a lot of HOs
successes and failures happening consistently and users have
a high mobility. It requires us to compute another expression
for CN signalling generated as a result of continuous HOs
scenario. Let the number of HO failures is denoted by i and
number of HO successes is denoted by j. The expected CN
signalling is given as.

E[CS;;]1=> Y CS8;,;*Prob.(CS;,;)

i=0 j=0

(32)

where ,
CS(),Q = [O * Sf} + [0 * Sg}

CSio=[i % Sy] + [0 5]
CSo,j=[0%S¢] + [ * 54
OSi,j = [Z * Sf] + [j * Sg]

To compute the expected signalling in case of continuous
mobility, we need to find out the probability of state CSg,g i.e.,
P(CSy,0). Looking at Fig. 7 and we know that for a Markov
chain:

[ olNe o}

3> Prob.(CSi,;) =1

i=0 j=0

Expanding the expression using Fig. 7

Prob.(CSo.0) + »_Prob.(CSie) +»_ Prob.(CSo.;)

i=1 j=1

+ iiPT’Ob(CS“j) =1
i=1 j=1

Resolving the mathematical expression to compute the value
of CS0,0

1
P(CSp0) =
(CSo0) =17 Yooy Prob.(CSi) + Y52, Prob.(CSo,;)

+ iiPTOb.(CSi,j )

i=1 j=1

(33)



Simplifying the mathematical procedures of equation above.
The probability of state CSy,o is given as:

PhPf
Phpf + P2 +P2 + Pf + P,

P(CSo,0) = (34)
Now in order to compute the expected mobility signalling in
case of continuous mobility we plug values from equation (34)
into equation (32) and solve :

E[CS;,;] = CSp,0%Prob.(CSo0 ) + Y CSi0xProb.(CSiy)
i=1

+ Z CSo,; *Prob.(CSo,; ) + Z Z CS,;,; #Prob.(CS;,;)
j=1 i=1 j=1

After solving the CN mobility signalling for continuous mo-
bility users in case of HO successes and failures turns out to
be:

P Pr+1 1
E(CS.s) = (5 + D Phpfwa(cso,o)
Py, (Ph + 1)

The CN signalling for high mobility users depends upon Py
and Pj,. After substituting in (35) the values of P;, P} and
P(CSp,0) from equations (21), (31) and (34) respectively,
mobility signalling for continuous mobility users can be eval-
uated.

After comparing the two analytical equations (29) and (35)
respectively (normal and continuous mobility) it is evident
that in case of continuous mobility scenario the probability
of no HO is zero (P,, = 0). If we substitute the value of
P,, = 0 in normal mobility expected signalling equation, the
two equations apparently become equal. Even though the two
equations look equal for P,,, = 0, it is not true mathematically
as the values of Py, P, and P, are different including the values
of S; ; and CS; ;. We perform the analysis of the normal and
continuous mobility scenario in subsection C of Section VI.

VI
A. Probability of handover signalling and coverage factor

NUMERICAL RESULTS

This subsection evaluates the probability of signalling in
case of HO success, failure and no HO versus velocity for
different values of coverage factor. The evaluation is based
on exponential distribution for session duration, cell residence
time and mobility time duration. The evaluation is based
on normalized densities w.r.t the CBS density. The value of
¢ influences overall mobility signalling. As in Fig. 9 , for
low value of c, probability of failure signalling is high and
decreases with increase in coverage factor. For low values
of ¢, the HO boundary shrinks resulting in smaller values
of Ty as a result probability of failure signalling increases
whereas for high value of c, the HO boundary region is
suitable for HO success, therefore the probability of HO
success signalling increases with coverage factor as shown in
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Fig. 9. Probability of HO failure vs mean velocity for different values of
coverage factor. E[A] = 5 mins and E[p] = 10

Fig. 10 . Also worthy to note, for reasonable coverage factor
values, at very low speeds, probability of success increases
with gradual increase in speed. However with increase in
mobility at higher speeds, probability of failure increase while
probability of success starts to decrease as evident in Fig.
10 The probability of no HO signalling is the same for all
coverage factor values and does not depend on the value of ¢
but changes with velocity and cell density. In order to observe
P,,, for different cell densities, the value of P, is shown
in Fig. 8. Probability of no HO signalling has highest value
for CDSA and it decreases with increase in cell density for
conventional architecture. Probability of failure is lowest for
CDSA versus conventional architecture while probability of
success starts low for CDSA but with increase in mean velocity
it is higher than conventional architecture as shown in Fig. 11
and Fig. 12 respectively for a value of ¢ = 0.5.

B. Signalling in CDSA versus Conventional networks

In this subsection we evaluate how much expected CN mo-
bility signalling is generated in case of CDSA versus conven-
tional networks as proposed in analytical model of section IV.
We consider exponential distribution for session duration, cell
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Fig. 11. Probability of HO failure vs mean velocity for different values of
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residence and mobility duration time. The evaluation is based
on normalized densities w.r.t CBS density. In addition the RRC
signalling load (in terms of expected value) is normalized
with S ( more specifically Sy for HO failures and S, for
HO success). Fig. 13 shows the normalized expected mobility
signalling load vs. mean velocity for coverage factor ¢ = 0.1
while Fig. 14 provides this information for coverage factor
value of 0.6. With low values of coverage factor there is a high
probability of HO failure and increase CN mobility signalling
load, even at slow speeds. Fig. 13 indicates CDSA generates
{31,54,72,87}*S times less signalling load compared to
conventional network with different cell densities. For a high
coverage factor expected mobility signalling load reduces.
With increase in medium and high mobility speeds, probability
of failure increase, so expected mobility signalling is supposed
to increase with increase in mobility. Fig. 14 shows that
CDSA results in {5,9,12,14}*S times less signalling load
vs conventional networks even at high velocity and coverage
factor respectively. CDSA is a clear winner for generating
less mobility signalling load. These plots suggests that CDSA
performs equally better at greater mobility and high speed
scenarios. This proves our initial hypothesis that in case of
ultra dense networks CDSA deployment is beneficial whereas
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Fig. 12. Probability of HO success vs mean velocity for different values of
cell density. E[A] = 5 mins and ¢ = 0.5
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Fig. 13. Normalized expected signalling load vs mean velocity for ¢ = 0.1
and E[A] = 5 mins

conventional networks results in excessive mobility signalling
load.

In CDSA a continuous and reliable coverage layer is provided
by CBS, where the large footprint ensures robust connectivity
and mobility. Whereas the data plane is supported by flexible,
adaptive, high capacity and energy efficient DBSs, that provide
data transmission along with the necessary signalling as shown
in Fig. 2 in Section I. Whereas in conventional network,
network remains on all the time and signalling and data
connectivity operations are controlled by the eNodeB alone.
Every single HO generates CN signalling which adds load on
the network elements and increases delay. In case of CDSA
for any HO between DBS to DBS is transparent to the CN
and does not generate any CN signalling. This saves a lot of
capacity and resources of the CN. The only time when CN
mobility signalling is generated in CDSA is when a HO takes
place between CBS to CBS.

C. Continuous Mobility versus Non-Continuous Mobility

In this subsection we compare the expected non-continuous
CN mobility signalling versus continuous CN mobility sig-
nalling as derived analytically in sections IV and V. Fig. 15
indicates non-continuous and continuous mobility signalling
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for ¢ = 0.1 and ¢ = 0.5 respectively. In both scenarios,
continuous mobility signalling is much higher compared to
non-continuous mobility at low speeds. For non-continuous
mobility, as velocity increases probability of no HO signalling
approaches zero.

From the numerical comparison of expected normal and
continuous mobility signalling in the Fig. 15 it is evident that
continuous mobility signalling provides the upper bound for
expected signalling generated as a result of HO. P,,,, is zero at
all the times for continuous scenario. For normal scenario, at
low speeds P,,, is not equal to zero. However, with increase
in velocity P,,, starts approaching zero. This is evident from
expected signalling generated at high velocities is the same
both in case of normal and continuous mobility scenarios.
This confirms in order to compute upper limit for mobility
signalling in any case, continuous mobility scenario can be
used.

D. Quantification of Handover Failure Signaling

A typical HO procedure consists of three phases preparation,
execution and completion phases [9]. In this study for the
current system model, the user gets connected back to the
system through RRC connection re-establishment in case of
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Fig. 16. Expected mobility signalling comparison of handover failure and
success for ¢ = 0.1. E[p] = 10 indicating how handover failure results in
more mobility signalling

HO failure. It must be kept in mind, HO failure can take
place at either of the preparation, execution and completion
phase(s). In case when a HO failure takes place. Then UE
has to go through connection re-establishment procedure
once again in order to get connected with a DBS. Numerical
computation of HO signalling considering each message
and processing at different nodes is computed in [35], [36],
[44] and [45]. In order to approximate, how much additional
signalling is generated in case of HO failure. Consider, if
HO failure takes place during HO completion phase, then
RRC re-establishment will take place to keep the user in
the system after HO failure. This procedure results in more
signalling messages compared to HO success alone as shown
in Fig. 4. HO failure signalling is normalized with Sy and
HO success signalling is normalized with S,. The total HO
signalling (failure and success signalling) normalized by S is
given as follows:

S=587+5; (36)
Looking at Fig. 4, we can write S¢ in terms of S;
Sy =8:+0.25%85,
Sy =125%S8s
With reference to Fig. 4, therefore total signalling is:
S =1.25x%S5,+ 5,
S =225%85; (37)

This indicates that HO failure signalling load has differ-
ent quantitative evaluation than HO success signalling load.
Differences in HO failure signalling load depend upon the
scenario(s) considered. Fig. 16 provides information about
increase in expected signalling load for different S values for
a coverage factor ¢ = 0.1. It shows that for the given scenario
considered, HO failure signalling load results in almost 1.6
times more normalized expected signalling load.



VII. CONCLUSION

In this work, we developed an analytical model to quantify
the expected mobility signalling load generated in cellular net-
works as a result of HO success and HO failures. Closed form
expressions were developed for probability of HO failure, HO
success and no HO signalling. We also identified the analytical
evaluation of overall CN mobility signalling load for various
HO scenarios. The analytical framework presented was used
to assess the advantage of CDSA over conventional network
architecture using exponential cell residence time, exponential
session duration time and exponential mobility time duration
respectively. Analytical evaluation is presented for continuous
and non-continuous mobility scenarios. We introduced new
mobility parameter(s) which affect mobility signalling. With
proper settings it can help in reducing mobility signalling
load in ultra-dense networks. Results indicate that coverage
factor,velocity directly affect the mobility signalling load.
From the results , it is clear that CDSA is a clear winner
when it comes to ultra dense HetNet deployment.
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