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Abstract— Micro-electromagnetic actuators have been used
in many fields and industries for systems such as microfluidic
systems, positioning stages, and robotic manipulators. Small-
scale electromagnetic actuators are able to provide rapid motion
with high positioning accuracy. The actuator presented in
this paper utilizes a displacement amplification mechanism to
increase the maximum stroke length that can be achieved.
The dynamics of this actuator are nonlinear due to the
dependence of the applied force on gap distance between the
coils and the amplification mechanism. This nonlinearity causes
the performance of PID control to vary with respect to the
displacement of the actuator. The control method proposed in
this paper to limit the overshoot resulting from nonlinearity
uses a combination of PID control and robust input shapers.
Using robust input shapers to account for parameter variation
across the workspace, the combined controller eliminates the
overshoot while maintaining short settling times. Simulations
are presented to demonstrate the performance of the proposed
method.

I. INTRODUCTION

There are various types of micro-electromagnetic actuators
that are used for a variety of applications in industry and
research. A few of the main application areas of small-scale
actuators include microfluidic systems, positioning systems,
and robotic manipulators [1]. Advantages of using electro-
magnetic actuators for these applications include short rise
time and low input-voltage [2]. Solid-state actuators, such
as piezoelectric actuators, are also capable of rapid motion
for micro-scale applications. However, they typically provide
stroke distances that are shorter than micro-electromagnetic
actuators [3], [4]. Similarly, electrostatic actuators provide
rapid motion, but require high voltage-inputs in order to
achieve large displacements and are sensitive to airborne
particulates [2], [5].

The actuator addressed in this paper has nonlinear dynam-
ics dependent on its displacement. Methods that have been
used to account for nonlinear dynamics of electromagnetic
actuators include using linear parameter-varying models in
conjunction with a robust, gain-scheduled controller [6]. PID
control, quadratic feedback control, and optimal feedback
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control have been used for vibration control of a cantilever
beam with a tip mass [7]. An inverse-Preisach-model-based
feedforward sliding-mode controller has also been used to
control a micro-positioning stage driven by electromagnetic
actuators [4].

Because of the nonlinear dynamics of the actuator dis-
cussed in this paper, the response characteristics with a PID
controller are related to its displacement, which results in
overshoot for setpoints higher than the setpoint about which
the PID gains were tuned. In this paper, a method is proposed
to mitigate overshoot by combining PID control with input
shaping. Input shaping has been used to reduce the resid-
ual vibration amplitude of flexible systems [8]–[11]. When
combined with feedback controllers, it has the potential to
improve both rise time and settling time of the system while
canceling residual vibration. Combined feedback and input
shaping controllers can also provide robustness to sensor
disturbances and discontinuous nonlinearities [10], [12]. In
this work, the use of input shaping combined with PID
control allows the actuator to retain a fast response time
while limiting overshoot and residual vibration over the
entire workspace.

The next section introduces the actuator and its model used
for simulation. Section III then discusses the closed-loop
dynamics of the actuator subject to PID control and explains
how its nonlinearity affects the performance. Section IV
gives an overview of input shaping followed by a discussion
of tuning of the combined controller and selection of the
input shaper. Lastly, Section V analyzes the performance of
the combined controller and compares the results with PID
control.

II. MODEL OF MICRO-ELECTROMAGNETIC ACTUATOR

The simulations presented in this paper were performed
using a model of the actuator shown in Figure 1 [13]. This
actuator uses a displacement amplification mechanism to
increase the maximum stroke length that can be achieved
and reduce the necessary current output [13], [14]. When
current is applied to the coils of the actuator, the size of
the gap decreases, pushing out the amplification mechanism.
For this actuator, the amplification mechanism is designed to
provide an amplification ratio approximately equal to four.
The equation of motion describing the dynamics of this
system is [13]:

M0

A
ẍout +

C0

A
ẋout +

K0

A
xout = Fin (1)
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Fig. 3. Schematic of the prototype actuator. The blue arrows show the main
path of the magnetic flux, and the input displacement is amplified for output by
the displacement amplification mechanism.

Fig. 4. Principles of motion of the prototype actuator. (a) Coils generate the
magnetic flux indicated by the blue arrows owing to the applied current. (b) By
increasing the current applied to the coils, the air gap becomes smaller owing to
the electromagnetic attractive force caused by the increased magnetic flux. This
motion is amplified to the output, as indicated by the black arrows. (c) When
the magnetic flux decreases owing to the smaller applied current, the air gap
becomes larger owing to the restoring force of the compliant mechanism. This
causes the output motion indicated by black arrows.

(center of the structure) following the blue arrows in Fig. 3. In
this structure, the magnetic flux passing through the amplified
parts (right or left side of the structure) is negligible because
the magnetic resistance is very high at the flexure hinges. Fig. 4
illustrates the driving principle of the prototype actuator. The
air gap becomes smaller, deforming the compliant mechanism,
when the magnetic flux increases, and an electromagnetic at-
tractive force is generated between the upper and lower cores.
In contrast, the compliant mechanism makes the air gap larger
owing to the restoring force of the compliant mechanism if the
magnetic flux decreases. The change in the air gap is amplified
by the compliant mechanism and output as the lateral displace-
ment. Thus, the proposed actuator enables bidirectional linear
actuation.

III. MODEL-BASED ANALYSIS

This section proposes a dynamic model to estimate the be-
havior of the proposed actuator and make use of it for design.
The mechanical and electromagnetic-circuit systems are mod-
eled independently as a strong nonlinearity can be observed
from the relationship between the current and the force gener-

Fig. 5. Elastic model of the displacement amplification mechanism.

ated by the electromagnetic circuit, which is the most important
part of the proposed principle. First, a static model is cre-
ated before considering the dynamic behavior. Then, a dynamic
model is developed on the basis of the static model established
in advance.

A. Static Analysis

Although several analytical models of displacement amplifi-
cation mechanisms have been proposed [13]–[15], a static model
based on the model of [16] is introduced to analyze the basic
characteristics of the prototype actuator. Fig. 5 shows a quarter
model of the diamond-shaped bridge-type displacement am-
plification mechanism. The input displacement xin and output
displacement xout are defined by xg and A as follows:

xin =
1

2
(xg0 − xg ) (9)

xout = Axin (10)

where xg0 is the initial air gap under a nonelectromagnetic force.
In the analytical model in Fig. 5, if the link and hinges are con-
sidered to be a rigid body and joints (each joint is assumed to
be at the center of hinge) with a rotational spring, the devia-
tion ratios of ∆xin and ∆xout are expressed in (11) and (12)
using the deviation ratio of the electromagnetic attractive force
∆Fin [16]

∆xin =
2Kr + Ktla

2 cos2 φ sin2 φ

4KtKr cos2 φ
∆Fin (11)

∆xout =
la

2 cos φ sinφ

4Kr
∆Fin (12)

where la is the length between the centers of the hinges, and φ
is the effective angle of the link. Kt and Kr are the translational
and rotational elastic moduli expressed as follows [17]:

Kt =
Ew

l2h

{
(4 − π)r2 + lh t

}
(13)

Kr =
1

Cr
(14)

Cr =
12

Ewt3

[
lh − 2r

+
2r

(2r + t)(4r + t)3

{
t(4r + t)(6r2 + 4rt + t2)

+ 6r(2r + t)2
√

t(4r + t) arctan

√
1 +

4r

t

}]
(15)
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Fig. 1. Micro-electromagnetic actuator utilizing a displacement amplifica-
tion mechanism [13]

where M0 is the effective mass, C0 is the damping coeffi-
cient, K0 is the stiffness, A is the amplification ratio, xout is
the displacement of the output as shown in Figure 1, and Fin

is the force input. The effective mass, M0, and the stiffness,
K0, are defined by:

M0 =
12m1 +

(
15 + 4A2

)
m2 + 6

(
1 +A2

)
m3

3
(2)

K0 =
8KrA

2

l2a
(3)

where Kr and la are the rotational elastic moduli and length
of each hinge, respectively. The damping coefficient, C0, was
determined experimentally. The force input, Fin, is defined
by:

Fin =
αI2

(x̄+ xg)
2 (4)

where I is the applied current, and x̄ is a function of the
magnetic permeability of the components of the actuator.
The gap width, xg , and α are defined by:

xg = xg0 −
xout

A
(5)

α = 4µ0SN
2 (6)

where µ0 is the space permeability, S is the cross-sectional
area of the gap, N is the number of turns of the coil, and
xg0 is the initial gap width. The applied force is a function
of not only the applied current, but also the displacement of
the actuator, contributing to the nonlinear dynamics. A more
detailed explanation of the derivation and verification of this
equation of motion can be found in [13].

The open-loop, undamped response of the actuator is
shown in Figure 2, where the current necessary to achieve a
setpoint, xdes, of 0.05mm was calculated using:

I2 =
K0xdes (x̄+ xg,des)

2

Aα
(7)

where xg,des is the gap distance at xdes. When this current
is applied to the system, the command induces residual
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Fig. 2. Open-loop, undamped response of the actuator

vibration. Feedback can be used to control the actuator
and reduce residual vibration, as will be shown in the next
section.

III. ANALYSIS OF CLOSED-LOOP DYNAMICS

A. Closed-Loop Equation of Motion

To analyze the closed-loop dynamics of the actuator, I2 is
used as the PID output. While the open-loop dynamics are
second-order, the use of integral gain results in a third-order
closed-loop transfer function. The equation of motion of the
closed-loop system is:

...
Γ = −

(
Aα

M0r
KI

)
Γ−

(
Aα

M0r
Kp +

K0

M0

)
Γ̇

−
(

Aα

M0r
Kd +

C0

M0

)
Γ̈ + u (8)

where Γ is the integral of displacement with respect to time,
and Kp, KI , and Kd are the proportional, integral, and
derivative gains, respectively, and u is defined by:

u =
Aα

M0r

(
KIΓdes +KpΓ̇des +KdΓ̈des

)
(9)

where Γdes is the integral with respect to time of the desired
displacement. In both (8) and (9), r is a function of x̄, xg0,
and the displacement of the actuator, which is defined as:

r =

(
x̄+ xg0 −

Γ̇

A

)2

(10)

To determine how the behavior of the actuator changes
with respect to its displacement, (8) was linearized about a
sequence of displacements so that the pole locations can be
found. This is done by evaluating (10) at each displacement,
which then becomes:

r0 =

(
x̄+ xg0 −

Γ̇des

A

)2

(11)

Figure 3 shows the poles of the actuator when linearized
about displacements ranging from 0 to 0.1mm while using
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Fig. 3. Poles for desired setpoints of 0, 0.025mm, 0.05mm, 0.75mm, and
0.1mm

PID gains of Kp = 1.8, KI = 3334, and Kd = 6× 10−4.
The nonlinearity can be observed by the movement of the
poles as displacement changes. As displacement increases,
the first-order poles move to the left, increasing the decay
rate of the first-order response. The frequency and damping
ratio of the second-order poles also increase.

B. Performance under PID Control

Before analyzing the performance of the combined PID
and input shaping controller, simulations of a PID controller
are presented for comparison. The gains were tuned using
a step command from 0 to 0.05mm, which is half of the
maximum stroke length. The twiddle method was used to
minimize a cost function:

J = α (PO)
2
+ βT 2

s (12)

where PO is the percent overshoot and Ts is the settling time
of the response. The gains that minimize the cost function are
Kp = 1.8, KI = 3334, and Kd = 6× 10−4. The response
of the actuator to a step command from 0 to 0.05mm is
shown in Figure 4, where the response has a settling time of
2.10× 10−3s and no overshoot.

Because of the nonlinearity, the performance of the PID
controller is inconsistent for command profiles different from
that for which it was tuned, as shown for the stair-step com-
mand profile in Figure 5. For instance, although the response
in Figure 4 does not have overshoot, the steps at 0.075mm
and 0.1mm in Figure 5 have percent overshoot of 4.3%
and 10.7%, respectively. The response characteristics of the
PID controller for the stair-step command are summarized
in Table I.

IV. PID CONTROL AND INPUT SHAPING

A. Input Shaping Overview

Input shaping limits residual vibration by convolving a
sequence of impulses with a reference command to reduce
the vibration amplitude of a response [8], [15]. An illustration
of the input shaping process for a Zero Vibration (ZV) shaper
is shown in Figure 6. When the original unshaped reference
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Fig. 4. Performance of the PID controller for a setpoint of 0.05mm
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Fig. 5. Performance of the PID controller for a stair-step command

command is passed to the system, it induces vibration.
The two impulses of the input shaper are convolved with
the reference command to produce a shaped command that
results in zero residual vibration. As a consequence of the
convolution process, the duration of the shaped command is
longer than that of the original command by an amount equal
to the time of the last impulse of the shaper, which is ∆ in
Figure 6.

The necessary impulse amplitudes and time locations that
are convolved with the shaper to limit unwanted oscillation
are found using constraints on residual vibration amplitude
and the input shaper impulse amplitudes and times. The
amplitude of the residual vibration response resulting from

TABLE I
PID RESPONSE CHARACTERISTICS

Step % Overshoot 5% Settling Times (s)

0–0.025mm 0 2.03× 10−3

0.025–0.05mm 0 2.04× 10−3

0.05–0.075mm 4.3% 7.3× 10−4

0.075–0.1mm 10.7% 1.93× 10−3
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Fig. 6. Convolution of a ZV shaper with a step command

a sequence of n impulses normalized by the response which
results from a unity magnitude impulse at time zero is [8]:

V (ω, ζ) = e−ζωtn

√
[C(ω, ζ)]

2
+ [S(ω, ζ)]

2 (13)

where

C(ω, ζ) =

n∑

i=1

Aie
ζωti cos

(
ωti
√
1− ζ2

)
(14)

S(ω, ζ) =

n∑

i=1

Aie
ζωti sin

(
ωti
√
1− ζ2

)
(15)

and ζ is the damping ratio of the system, ω is the natural
frequency, and Ai and ti are the ith impulse amplitude and
time location. This is known as the percent residual vibration
(PRV) and is used to measure the residual vibration ampli-
tude produced by the shaped command over the amplitude
produced by the unshaped command. This equation is used
to form a constraint by setting it less than or equal to a
tolerable level of residual vibration, Vtol. To ensure that the
shaped command reaches the same set-point as the unshaped
command, impulse amplitudes are constrained to sum to one.
The time of the last impulse, tn, is then minimized to ensure
the shortest input shaper duration.

The above constraints are common to all types of input
shapers. Additional constraints are needed depending on the
type of input shaper desired. For instance, for the ZV-shaper
shown in Figure 6, Vtol is set to zero, and each impulse
amplitude is constrained to be greater than zero.

The robustness of input shapers to error in natural
frequency is quantified using Insensitivity. The sensitivity
curves of various shapers are shown in Figure 7, where the
percent residual vibration is plotted on the vertical axis and
actual frequency normalized by the modeled frequency is
plotted on the horizontal axis. For a desired Vtol, the Insen-
sitivity of a shaper is the range of normalized frequency for

0.06

0.40
0.29

Fig. 7. Sensitivity curves of ZV, ZVD, and EI shapers

which the sensitivity curve falls below Vtol. The robustness
of input shaping can be increased by including additional
robustness constraints. However, typically shaper duration
also increases as shaper robustness increases, where longer
shaper duration usually results in longer response rise time
[16].

B. PID Tuning for Input Shaping

Because (13) is derived for the response of a second-order,
underdamped system, the PID controller is retuned so that
the second-order poles are dominant. When the system is
oscillatory, the sum of the coefficients for Γ and Γdes is
nearly zero such that (8) can be simplified to approximate a
second-order system, and the natural frequency and damping
ratio are described by:

w =

√
Aα

M0r
Kp +

K0

M0
(16)

ζ =
1

2ωn

(
Aα

M0r
Kd +

C0

M0

)
(17)

where both (16) and (17) are functions of actuator displace-
ment due to r, so that the natural frequency and damping
ratio vary over the workspace of the actuator. The negative
effects of this nonlinearity on the performance of input
shaping can be reduced by using piecewise and energy-based
shaper designs, as well as using robust input shapers [17]–
[19].

As proportional gain increases, the median and range of
(16) across the workspace also increase. The range of natural
frequency normalized by the median frequency represents the
Insensitivity required by the input shaper in order to limit
residual vibration below the tolerable level. Figure 8 shows
the required Insensitivity verses a range of proportional gains
to suppress vibration for frequencies between displacements
of 0 and 0.1mm. Once the value of Kp is chosen, a Specified
Insensitivity (SI) input shaper can be designed to mitigate
residual vibration within the necessary frequency range. In
addition to constraining impulse amplitudes to sum to one, SI
shapers limit vibration over an arbitrary range of frequency
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Fig. 9. Duration of SI input shaper for a range of proportional gains

by constraining (13) less than or equal to Vtol for sampled
frequencies within the desired range [20]:

V (ωk, ζ) ≤ Vtol, ∀ωk ∈ [ω1, ω2] (18)

where ω1 and ω2 are the bounds of the desired frequency
range, and ωk is the kth sampled frequency in that range.
For the actuator, ω1 and ω2 are the values of (16) at
displacements of 0 and 0.1mm, respectively, for a given Kp.

Increasing the Insensitivity of an input shaper typically
results in longer shaper durations. Although the use of higher
proportional gains increases the range of (16) and requires
shapers with higher Insensitivity, the increase in median
natural frequency allows for faster rise times, resulting in
shorter shaper durations. This is shown in Figure 9 where
the duration of an SI shaper tends to decrease as proportional
gain increases. Due to this, a high natural frequency is
achieved by using the highest possible proportional gain,
which limits the delay introduced by input shaping. The PID
controller then provides a fast rise time while the input shaper
reduces the overshoot and residual vibration induced by the
command.
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Fig. 10. Performance of the combined controller for a setpoint of 0.05mm

V. PERFORMANCE OF COMBINED CONTROLLER

Two sets of PID gains were chosen for the combined
controller to compare its performance to PID control alone.
The first set of gains used is Kp = 5, KI = 10594, and
Kd = 2.10× 10−4. The impulse amplitudes and times of
the SI input shaper used for these gains are:

SIKp=5 =

[
Ai

ti

]
=

[
0.3902 0.4392 0.1706
0.0 0.0004 0.0007

]
(19)

The second set of gains used for the combined controller is
Kp = 10, KI = 20000, and Kd = 2.25× 10−4. These gains
are utilized with the SI input shaper with impulse amplitudes
and times of:

SIKp=10 =

[
Ai

ti

]
=

[
0.3621 0.4504 0.1875
0.0 0.0003 0.0005

]
(20)

The responses of the controller with these gains for a setpoint
of 0.05mm is shown in Figure 10. Both sets of gains produce
no overshoot while providing settling times of 1.68× 10−3s
and 1.18× 10−3s for Kp = 5 and Kp = 10, respectively.

Figure 11 shows the response of the combined controller
for a stair-step command from setpoints of 0 to 0.1mm.
Comparing the response of the PID controller shown in
Figure 5 to the combined controller, the combined controller
does not produce overshoot at any setpoint while maintaining
short settling times. The settling times for Kp = 5 and
settling time normalized by the settling times using PID
control alone are summarized in Table II. The combined
controller reduces the settling time for each step except for
the step from 0.05mm to 0.075mm. Similarly, the response
characteristics for Kp = 10 are summarized in Table III. The
combined controller with Kp = 10 has lower settling times
than the other controllers, which was expected due to having
higher natural frequencies across the workspace.

A drawback of using higher proportional gains is that the
peak current at the initiation of the command is higher. Using
PID alone, which had the lowest proportional gain, the peak
current was 0.30A. The peak current output for Kp = 5 was
0.31A while the peak current output for Kp = 10 was 0.42A.
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Fig. 11. Performance of the combined controller for a stair-step command

TABLE II
COMBINED CONTROLLER (Kp = 5) 5% SETTLING TIMES

Step 5% Settling Times (s) Normalized

0–0.025mm 1.78× 10−3 0.88
0.025–0.5mm 1.75× 10−3 0.86
0.05–0.075mm 1.45× 10−3 1.99
0.075–0.1mm 1.10× 10−3 0.57

TABLE III
COMBINED CONTROLLER (Kp = 10) 5% SETTLING TIMES

Step 5% Settling Times (s) Normalized

0–0.025mm 1.19× 10−3 0.59
0.025–0.5mm 6.64× 10−4 0.33
0.05–0.075mm 7.43× 10−4 1.02
0.075–0.1mm 7.23× 10−4 0.37

Due to this, maximum current output of the current source
is the limiting factor in choosing the proportional gain for
the controller.

VI. CONCLUSION

A combined PID and input shaping controller was used
to limit the overshoot and vibration amplitude of a micro-
electromagnetic actuator with nonlinear dynamics. It was
shown that the nonlinearity caused the performance of the
actuator with PID control alone to vary depending on its
displacement. This contributed to overshoot for high set-
points. The natural frequency of the actuator increases with
proportional gain, providing faster rise times and allowing
for shorter shaper durations despite the need for shapers
with more robustness. The combined PID and input shaping
controller exploits this property and eliminates overshoot
while maintaining short settling times.
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