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Abstract—Developments in machine learning and graph
analytics have seen these fields establish themselves as pervasive
in a wide range of applications. Non-volatile memory (NVRAM)
offers higher capacity and information retainment in case
of power loss, therefore it is expected to be adopted for
such applications. However, the asymmetric access latencies
of NVRAM greatly degrade performance. The focus of this
paper is to reduce the effect of memory access latency on
emerging machine learning and graph workloads. The pro-
posed mechanism uses software tagging of application data
structures so as to control on-chip cache evictions based on data
type and reuse patterns in an NVRAM based multicore system.
Learner models are developed that are capable of predicting
cache allocations for a variety of machine learning and graph
applications. The optimized learning model yields an average
performance benefit of 21% compared to a system that does
not optimize for the write latency challenges in NVRAM.

I. INTRODUCTION

Machine learning and graph analytics are becoming

the epitome of data processing applications. Algorithms

stemming from such applications crunch on large data sizes.

One of the most revolutionary changes to cater for this data

requirement is the advent of non-volatile memory (NVRAM)

as the main memory replacement for DRAMs [27]. Such

memory is power-persistent, it’s structuring allows larger

storage capacities [24], and is a cheaper per-byte alternative to

DRAM [29]. Large-scale multicore machines with NVRAM

are expected to execute workloads that exploit plentiful

parallelism [32]. NVRAM-only main memory systems are

utilized because machine learning and graph applications

can lookup crucial training and intermediate data even when

the device is turned off. This is analogous to mobile and

car applications, where devices are turned off frequently.

However, the heterogeneous latencies of NVRAM lead to

many performance challenges. Higher write latencies are

associated with NVRAM because entire dirty pages need to

be re-written in multiple segments of the main memory [32],

[22]. Such heterogeneous latencies often become a bottleneck

in parallel applications.

Machine learning and graph problems are known to be

highly parallel in nature, allowing great performance benefits

to be acquired with parallel machines, such as Intel’s Xeon

Phi multicores [17]. However, large-scale multicores with

NVRAM based main memory do not exist yet. There is

a need to simulate such systems, and evaluate the hetero-
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Figure 1: Completion time breakdowns with conventional

DRAM and NVRAM based main memory.

geneous latency challenge. Figure 1 shows the well-known

parallel workloads, AlexNet [18] for image classification, and

SSSP [11] for shortest path computations on the California

road network. The simulations are run using an industry class

simulator setup with a conventional DRAM, as well as an

NVRAM with heterogeneous access latencies [24]. It can be

seen that there is a significant degradation in performance

due to excessive memory stalls in the the NVRAM setup.

Typical machine learning and graph applications rely

on read-after-write patterns of temporally changing shared

data [8]. In parallel implementations, threads see higher

stall times due to the off-chip eviction of write data that is

expected to be read afterwards. Moreover, the potentially

large number of threads in futuristic multicore systems

exacerbate the problem by increasing write contention on

memory controllers. These data access patterns occur due to

algorithmic aspects, such as layer-by-layer computations in

machine learning and the iterative nature of graph algorithms.

Since the problems operate on large amounts of data, the

shared data structures get displaced by high reuse data.

Therefore, high write latencies are observed by the NVRAM,

and it becomes imperative to keep the shared data on-chip

to mitigate computational costs.

Prior architectural works that attempt to keep data on-

chip suffer from significant hardware complexity to dis-

tinguish data with high spatio-temporal locality from the

write-intensive data. Reuse counters [9], cache line replace-

ment [13], and cache partitioning [36], [38] schemes all

attempt to keep data on-chip to minimize overall off-chip

miss rates. However, they require fine-grain aspects such

as counters at cache line granularity, thereby complicating

hardware. Programmer-based software hints help reduce

complexity by identifying application data structures that
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require resource allocations. Pragmas are applied within and

across the target applications to forgo the need for complex

control schemes.

This paper proposes a software–hardware framework that

consists of profiling and exposing application data structures

to the underlying microarchitecture. The hardware exposes

last-level cache partitioning as a knob for data allocations. A

set of static and dynamic learning paradigms are proposed

that predict the allocation of cache partitions so as to co-

optimize write and read miss rates in an NVRAM based

multicore. Such performance prediction paradigms are known

to help in various architectural paradigms [2].

Program profiling identifies structures in various bench-

marks that potentially have variable read-after-write access

patterns. Such structures are tagged as markers and pushed

to the underlying cache hierarchy, where dynamically tagged

cache partitioning is utilized at the hardware level to keep

tagged data on-chip. A prediction model is proposed to

cater for per-benchmark aspects that control the last-level

cache partitioning. However, these aspects may change within

different benchmarks across various phases of execution,

and thus a fine-grain prediction model is also proposed

that profiles application phases for resource allocations.

It performs a design space exploration of tagged cache

partitioning at the benchmark’s function granularity. The

learning is performed off-line using representative synthetic

inputs for all benchmarks. The model is evaluated at runtime

to predict the right cache partitioning strategy. The function-

level partitioning model enables performance improvements

at an average of 21% over an NVRAM system that does not

utilize cache partitioning for managing the heterogeneous

memory access latencies.

II. RELATED WORK

The NVRAM latency problem has been known for some

time, and various works have attempted to tackle it [12].

Algorithmic works rely on software changes to minimizes

off-chip writes [5]. They introduce heuristics to stall writes

for certain suspicious structures that may require off-chip data

due to their increased data sharing. However, these works do

not target applications that demonstrate unpredictably varying

data reuse distances. Moreover, the strict implementations of

various data analytic frameworks do not allow for algorithmic

changes at each algorithm phase [1]. Various works also

attempt to improve NVRAM access rates by lowering write

latencies and improving bandwidth within the main memory.

These include byte-addressing memory [22] and software

management [29] for certain applications. These works do

not learn for dynamic aspects, which leads to limited scope

for performance improvements.

On-chip architectural solutions have been applied to

improve data access latency. Cache partitioning is a well-

known idea to reduce off-chip miss rates, thereby improving

efficiency [34], [6]. These works target generic cache access

rates, and are not entirely optimized for heterogeneous

access latencies in NVRAM. Although some works have

used cache partitioning to improve performance in NVRAM

systems [37], [38]. However, such works do not evaluate

large-scale multicores, where latencies are magnified by

increased data accesses by concurrent threads. Other works

improve cache replacement policies [38], [16], which require

various hardware overheads to measure data reuse distances.

Writeback-aware Cache Partitioning (WCP) [38] utilizes

hardware based partitioning to improve access latency in

NVRAM based systems. It utilizes LRU bits to predict write-

backs from a cache slice for each cache line. Dynamic cache

partitions are created to keep cache lines with higher amounts

of write-backs, avoiding capacity issues that cause evictions

to main memory. The constrained hardware resources do

not fully exploit the temporally changing shared data, thus

WCP acquires limited performance benefits. Moreover, the

hardware requirements are complicated to implement, and

processor vendors hesitate to implement them in production

chips. What vendors do support is coarse-grain last level

cache (LLC) partitioning, such as Intel’s Cache Allocation

Technology [15]. We propose to utilize existing resource

allocation paradigms and build a software–hardware co-

design framework. It utilizes cache partitioning as a control

knob, along with software hints to predict which data needs

to be kept on-chip to mitigate the challenges with NVRAM

data access latencies.

III. NVRAM CHALLENGES IN BIG-DATA APPLICATIONS

AlexNet is a winning application for ImageNet [10], an

image recognition dataset, and is thus a viable contender

for a case study of the proposed framework. It starts from a

given input image, which propagates through its convolution

filter layers and fully connected neuron layers to classify the

image at the output. Neurons are distributed among threads

for efficient concurrency control. Primary data sections for

each layer contain input data, filter coefficients, and output

data. Threads in a given layer read the propagated data

obtained from the prior layer. However, threads have to read

a lot of filter and image data to work on propagated output.

In the case of AlexNet, the working set is ∼400MB, and

unable to fit completely in the on-chip caches (up to 30MB in

modern machines [15]). This requires data to be evicted to the

main memory repeatedly. Moreover, in large-scale multicores,

distributed cache slices are quite small for a given thread

(tens to hundreds of KBs), and hence preserving locality is

of utmost importance. This objective causes programmers

to exploit locality on filter coefficients, and image data, as

these are expected to exhibit high reuse. This locality is on

reads, and given the constant access latency and bandwidth

of DRAMs, such schemes provide ample performance. With

less reuse on writes, data worked on in the previous iteration

is evicted in favor of read data by conventional caching

policies. Most of the latency seen through writes in a DRAM

system is also hidden by the locality achieved via reads.
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Figure 2: A read-write-read shared data access pattern in

AlexNet, leading to expensive evictions to NVRAM.
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Figure 3: Data-marking based cache partitioning.

However, in an NVRAM based architecture, the write

latency is much higher (up to 10×) compared to the read

latency in DRAM, and exploiting read locality on high reuse

data can only help so much for performance. With smaller

caches, writes build up on the memory controller queues,

resulting in increased access latencies. Such cache evictions

are caused by threads trying to exploit read locality by reading

and prefetching read data from either the main memory, or

the last-level cache slices of other cores. In the context

of NVRAM, the lack of write locality causes high latency

evictions and read stalls in various threads. This temporal

aspect is depicted in Figure 2, which shows write data being

evicted in favor of higher read locality data. Unpredictable

temporal read-after-write patterns cause higher latencies to

be seen on data that is supposed to be read some time after

being written to memory. Moreover, real implementations

that pipeline images into an AlexNet application observe

extreme performance overheads since there is much more

read locality to exploit.

This overhead can be mitigated by keeping temporal

read-after-write data on-chip, so it can be accessed with

lower latency. Software or even hardware prefetching is not

expected to help much in such scenarios as it may cause

pollution in shared caches, causing even further evictions.

Off the shelf cache partitioning mechanisms can be utilized

to develop a set of software profiling schemes. This ensures

that only certain shared data with higher reuse distance gets

captured without having to complicate hardware. It brings

the programmer (or a profiler) into the loop to identify data

structures and functions that require isolated last-level cache

Algorithm 1 Various Layers of Parallel AlexNet

1: Init Matr. input(in), filter/other(ch, s), outputs(out)
2: //Red shows marked pragma set/unset around array

accesses

3: for each Layer in range(0, nLayers) do

4: Range = get_loc(tile)

5: for each ch in range(0, kernel) do

6: for each r in Range do

7: Perform 2d conv. and accumulate

8: outC[r]+=conv(out, image, in, ch, r, s)

9: Barrier

10: outP [r] = PoolingLayer(outC, ch, s)

11: Barrier

12: outL[r] = LrnLayer(outP, ch, s)

13: Barrier

14: for each neuron_layer do

15: for each n in neuron do

16: outN [layer][n]=neurMac (outL, in, ch, s)

17: Barrier

18: Barrier

19: outSoft[r] = SoftMaxLayer(outN, ch, s)

resources.

IV. SOFTWARE–HARDWARE FRAMEWORK

This section explains how data and functions are marked

in software for cache resource allocation, as well as the

architecture to facilitate the cache allocation scheme. Figure 3

shows the software and architectural aspects of the proposed

scheme. Programmer marks data structures using pragmas.

Set-partitioning is done to distinguish variable distance read-

write data. The pragmas and set-partitions are propagated

from the core to the cache hierarchy to partition the last-level

cache. Several learning paradigms are evaluated to determine

the right cache partition sizes for the marked and unmarked

data. Software pragma insertions are done before profiling

to allow optimal learning outcomes.

A. Software Marking in Applications

This section describes the process of marking data struc-

tures within a target application. Algorithm 1 shows the

pseudo-code for AlexNet with various data structures and

functions being utilized. The input matrix, in takes in images,

and computed values from prior layers. The filter matrix takes

in filter coefficients, which are large and change across layers.

Finally, the output matrix stores computed values from the

current layer, and is used in subsequent layers as the input

layer. In machine learning algorithms, several data structures

are accessed in various functions, with layers separated by

synchronization barriers. It is easy to identify structures that

are expected to be evicted due to long reuse distances. Such

structures are separated by barriers or by locks, as parallel

implementations require writes with consistency. In the case
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of AlexNet, these are all the out-based structures, and thus

they are marked via program pragmas to be kept within the

cache (Lines 8, 10, 12, 16, and 19 in Algorithm 1).

The pragma is set for all load and store instructions to

marked data structures. In the proposed framework, pragmas

are inserted for all output shared data structures. Barriers do

not need marked resources as their variables are dynamically

allocated to maintain high synchronization performance. The

Pragma insertion is done by the programmer before any

automated learning is performed. The compiler can also be

modified to mark data structures at compile time, however

that requires compiler analysis and is out of scope of this

paper. Profiling and learning is then performed to determine

the optimal partition sizes of marked and unmarked cache

partitions.

B. Data Marking based Set Partitioning

Marking loads and stores is a primary solution to propagate

software hints for data structures that are expected to exhibit

temporal write locality during program execution. The cache

allocation knob is tuned to allocate the right capacity for

marked and unmarked data. Cache set partitioning is done at

the last-level cache (LLC), where each LLC slice in a core

gets partitioned based on sets. This is applied in a cache orga-

nization where private L1 caches are backed-up by shared L2

cache slices. The shared LLC is physically distributed among

the tiles as L2 cache slices, and coherence is maintained using

the directory based protocol. Set partitioning is selected due

to its lower complexity compared to way partitioning [30].

For example, in an 8-way set associative 64KB L2 cache

slice, there are 1024 total cache lines assuming a cache line

size of 64 bytes. This results in 128 total sets, of which a

percentage of sets are allocated to marked partitions. The

remaining sets are used for unmarked partitions. Figure 3

shows the cache allocation knob, as well as the architectural

aspects of LLC partitioning.

1) Pragma Propagation for Cache Partitioning: The

pragma marked data structures are interpreted by the compiler

as special load and store instructions. If the pragma is set

and the corresponding data access misses the private L1

cache, it brings the respective cache line into the marked

partition. Evictions from L1 to L2 cache slices are directed

to the appropriate partition based on the tag lookup. The

LRU policy is separately maintained for each partition in the

L2 tag array, where one is for the marked sets and the other

for unmarked sets [15]. If an L1 miss for marked partition

results in L2 cache hit to unmarked partition (and vice versa),

the L2 cache controller is responsible for moving that cache

line to the appropriate partition. Moreover, partition sizes

can also be dynamically changed during execution, which

also results in moving cache lines between partitions.

2) Dynamic Management of Marked Partition: Cache par-

titioning is performed dynamically at per-function granularity

to generate fine-grain control of the cache resource allocation

knob. This is also propagated to the architecture via an added
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Figure 4: Read and write miss rates for various marked

partition sizes. Optimal points are observed at different

marked partition sizes.

instruction directed by another program-level pragma. The L2

cache slice access is stalled and sets are partitioned according

to the propagated value. This is utilized as a global parameter,

and L2 slices of all cores are uniformly partitioned with equal

sized partitions. Sliding the partition scale in Figure 3 means

that unmarked cache lines may start polluting the marked

partition if the marked partition size is increased, and vice

versa. Prior architectural works solve this issue by either

flushing the polluted sets to main memory, or moving cache

lines when a cache partition size changes. Flushing adds

further overheads for NVRAM as it flushes cache lines to

the memory controller queues, thereby increasing write traffic.

Moving cache lines is a more viable solution, and can be

executed only when a cache line is brought into a partition

that has been polluted. It is further optimized to only move

a cache line upon an L1 miss. From here the L2 controller

receives a load or store for a marked partition, and sees if it is

already in the marked partition. If the cache line is incorrectly

in the unmarked partition, the L2 controller moves the cache

line to the marked partition. Cache line movement requires

stalling of the L2 cache slice for atomicity and consistency

purposes. Thus, upon a function change within an application,

the learner sets a cache partition size value and the cache

stalls to move cache lines on L1 misses.

C. The Effect of Partitioning Knob on LLC Misses

Due to the heterogeneous access latencies associated with

NVRAM, the goal is to minimize write miss rates while

keeping read misses in check. Figure 4 exhibits the L2 read

and write misses per kilo instruction (MPKI) associated with

various marked partition sizes, for a 256 core multicore with

a 64KB L2 cache slice per core. The MPKI versus partition

size results are shown for two machine learning workloads,

AlexNet and VGG [1]. VGG is a machine learning workload

with a larger memory footprint than AlexNet, and hence

shows varied sensitivity to resource allocations. The write

MPKI decreases due to reduction of evictions acquired by

allocating cache memory to marked partitions. However, the

read MPKI goes up with the increase in marked partition size

as more capacity is taken out of the already exploitable read

locality. Overall, misses for both reads and writes increase

as larger marked partitions decrease capacity of unmarked
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Figure 5: Completion times of various benchmark phases

normalized to their maximum completion time. Data shows

the need to dynamically control marked partition sizes based

on application phases.

partitions.

VGG optimizes at a higher marked partition size than

AlexNet, primarily because of more high distance reuse data

in VGG due to it being a larger and wider network with

increased memory requirements. Optimal performance is

observed at a point where write miss rates are not minimized,

which happens because of the increase in read misses that

need to be traded-off. This favors a paradigm that can

configure these architectural knobs dynamically at per bench-

mark granularity. However, even per-benchmark partition

settings may not be optimal as different phases within

a benchmark exhibit varying memory requirements. This

dynamic resource allocation requirement must be adopted

at runtime. Hence, several static and dynamic schemes are

presented and evaluated in this paper.

D. Static Partitioning Allocation

To maximize performance, the programmer can assign

static partitioning size across all benchmarks. This is achieved

via program profiling heuristics to acquire an optimal partition

size from all target benchmarks. All benchmarks are run for

various partition sizes, and the partition size that gives the best

overall performance is selected. This approach is expected

to under-perform, as a single partition size might not work

for all benchmarks. This is evident from Figure 4, where

optimal partition sizes change across the two benchmarks. A

per-benchmark or a per-phase learner is desirable for near-

optimal performance.

E. Per-Benchmark & Per-Phase Partitioning Allocation

The proposed per-benchmark learner optimizes partition

sizes individually for each benchmark. For example, for

VGG in Figure 4 the optimal partition size is 5%, while

for AlexNet it is 1%. This helps for a benchmark with

characteristics common to all its inputs. However, variable

benchmark aspects must be taken into account. These aspects
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Figure 6: Functions used for the per-phase learner.

are considered inputs to the model, while resource allocations

are considered outputs of the prediction model. The model

is trained on synthetic inputs, and then benchmarks are

scheduled online for the partition size selection.

While per-benchmark partitioning is expected to reduce

miss rates, workloads have various diverse functions, each

of which have sliding memory requirements. These traits

are expected to vary partition knobs throughout program

execution. Figure 5 shows these variations for AlexNet and

SSSP running California road network, with the marked

partitioning size manually changed to optimal at function

call granularity. In AlexNet, these calls constitute functions

like get_loc () and conv (), as depicted in Algorithm 1,

and many others not shown in the pseudocode. In SSSP,

these constitute graph lookups and relax routines. It can

be seen that the optimal partition size per function varies

during execution from 0% to 10%. Figure 5 also shows

the functions that dictate a particular optimal partition

size. AlexNet has higher marked partition size requirement

for convolution, and the neural network fully connected

layers. SSSP, however has variations in partition size

requirements due to its iterative processing of the input

graph (roadNet-CA). Early in execution, SSSP relaxes

on several vertices, and hence needs more marked cache

resources due to variable reuse distances of many vertices.

These updates sublime and then peak again in Figure 5

when more vertices are activated for relaxations, depending

on the connectivity of the input graph. Such variations add

dynamic aspects that need to be learned at a per-function

granularity. This learner paradigm is formulated as follows.

Model Variables are Benchmark and Input combina-

tions, and Partition Sizes. The output constitutes an

optimal marked partition size for a given function, with

the learner optimizing for performance. Benchmarks are

formulated into two vector variables, !B1 and !B2, which

distinguish various machine learning and graph workload

functions. As the model learns on several benchmarks and

functions/kernels within benchmarks, it is imperative to

reduce learning complexity. This is done by marking and

learning during the offline profiling phase of the proposed

framework. For example, graph lookups are common across

all graph workloads, as are reductions and other parallel

functions. In machine learning workloads, these are getting

kernel filter ranges (get_loc()), conv(), and neuMac()). Bench-
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Figure 7: Learner model encompassing inputs and outputs.

mark variables are thus integers where for example for !B2,

different functions have different values depending on their

importance in the program. Figure 6 shows the different

functions for the evaluated benchmarks.

Benchmark inputs also vary performance, and thus need

to be considered when determining partition sizes. For

example, larger inputs may not fit in naively sized partitions,

while smaller inputs may under-utilize cache resources.

Inputs to all target benchmarks take the form of matrices,

which can be classified via row and column sizes, and these

are taken as two input vector variables ( !I1 and !I2). The
!I3 input for density (edges per vertex) is considered as an

additional input variable for graph algorithms.

Learning Paradigms: Multiple non-linear and linear re-

gression models, as well as several deep learning models

are constructed from the above !B and !I variables. Due

to non-linear aspects depicted in Figure 4, a non-linear

higher order regression model is required to achieve suitable

learning capability. A linear regression is also evaluated for

comparison, although it is not expected to show significant

performance improvements.

Multi-layer deep learning perceptrons (MLPs) are also

utilized for learning, as they are known to learn well on

non-linear aspects. The number of neurons and layers is

dictated by the required classification accuracy, and the

number of inputs for classification [35]. Hence, MLPs with

at least 32 neurons (MLP-32) (4 layers, 8 neurons per layer)

are used in our case. The inputs and outputs of all evaluated

learners are the same as shown in Figure 7. The proposed

models and learners are also compared with an ideal learner

that exhaustively evaluates the search space for optimal

cache partition sizes.

Training Model: The learner models are trained using

synthetic inputs to the benchmarks. Both regression and

deep learning models are trained with the same inputs as

they have the same input and output variables. Synthetic

inputs to machine learning workloads are matrices and

arrays (i.e., various kernels and input/output layers) that

vary in size, while graph benchmarks are trained for uniform

random graphs [4], and Kronecker graphs modeling power

law mechanics of real graphs [20]. These inputs are varied

from a size of 1 to 4096 for variable-dimensional matrix

sizes, and 1 to 1M for array sizes. Synthetic graph inputs

are varied from 16 to 16M vertices, and 1 to 1024 edges per

vertex. These sizes are well within the sizes observed in real

world input graphs.

Large complexities result from these tuple variables, as

many combinations can be made from the input variables

and output partition sizes for various benchmarks. With

13 benchmarks, more than 50 profiled functions, several

hundred synthetic training inputs, and several partition

sizes to choose from, the total complexity results in several

million combinations. Due to this large complexity, training

is done offline. After training, the predictor is deployed to

process real inputs. The proposed predictor is deployed in

software to take in variables to predict the marked partition

sizes.

The Importance of Model Variables: How the model trains

for the target variables can be seen in the equation 1, which

shows a 6th order non-linear function that conforms to more

than 90% classification accuracy.

F (Cache partition size) = w1( !B1)6 + w2( !B2)3+ (1)

w3( !I1)6 + w4( !I2)4 + w5( !I3)2 + 8.0

Variables with more direct correlation to performance, such

as benchmark type ( !B1), and input row size ( !I1) have higher

orders. As seen earlier in Figure 5, phase behavior does have

a role in performance. Phase changes within benchmarks

are shown by !B2, where weight changes symbolize function

changes, which changes intensity of partition sizes required

for optimality. Changes in phases correspond to changes in

weights, which changes output partition sizes in the regression

equation.

Graph workloads have more randomly skewed memory

access compared to machine learning workloads. From input

variables, !I1 has the highest order, as input row sizes

(matrix row counts in machine learning, and vertex counts

in graphs) directly affect required concurrency and memory

requirements. !I1 also defines cache requirements, which

correlates directly with L2 partition size requirements. !I2
and !I3 also affect partition size requirements in indirect

ways and hence have some weight on the output partition

size. Similarly, a multi-layer perceptron learner is expected

to have similar trends in terms of neurons and layers. The

overhead of these learners is added to the overall completion

time during the evaluation phase. A sensitivity study is done

in the evaluation section to quantify which learner provides

the most performance benefit at acceptable classification

accuracy.

V. EVALUATION METHODOLOGY

A. Simulator Setup

We evaluate a futuristic 256–core tiled multicore processor

with a two-level private–shared cache hierarchy. As hundreds

of cores do not exist in real machine setups with NVRAM

based main memory, we utilize a simulator setup to get
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Architectural Parameter Value

Cores 256 RISC-V @ 1 GHz
Comp. Pipeline per Core In–Order, Single–Issue
Word Size 64 bits

Memory Subsystem

L1–I Cache per core 16KB, 4–way Assoc., 1 cycle
L1–D Cache per core 16KB, 4–way Assoc., 1 cycle
L2 Inclu. Cache per core 64KB, 8–way Assoc.

2 cycle tag, 4 cycle data
Cache Line Size 64 bytes
Directory Protocol Invalid. MESI, ACKwise4 [19]

Electrical 2–D Mesh with XY Routing

Hop Latency 2 cycles (1–router, 1–link)
Contention Model Only link contention, 64-bit Flits

(Infinite input buffers)
Flit Width 64 bits

Memory Controllers - NVRAM Parameters

Num. of Mem. Contr 8 - Dual Channel
Mem. Contr. Buffer Size 64 entries per Channel
Bandwidth 20 GBps per Controller
NVRAM Read-Write Lat. 100ns-1us
DRAM Latency 100ns

Table I: Architectural parameters for evaluation.

the best possible understanding of the NVRAM latency

challenge. The proposed system is implemented in an in–

house industry–class simulator which uses open source RISC-

V cores and associated LLVM compiler intrinsics. The default

architectural parameters used for evaluation are shown in

Table I. The total on-chip cache size amounts to 24MB of

which 16MB is dedicated to the shared last-level cache that

is distributed among the per tile L2 cache slices.

NVRAM parameters have been acquired from prior works

and real systems [25], which consist of memory controller

parameters for channels and controller buffers, as well as

the heterogeneous memory access latency and bandwidth.

Prior works show that the disparity between read and write

NVM latencies (for Phase Change Memories (PCMs) or Spin

based memories (STTRAMs)) ranges around 10×, and we

thus keep this disparity in our setup as well [27]. An 8GB
of NVRAM memory capacity is modeled. The simulated

system utilizes either NVRAM or DRAM, but not both at

the same time. However, a study is also done to show a

DRAM-only analysis.

The on-chip network is modeled with 2–cycle per hop

delay and XY routing protocol. The appropriate pipeline

latencies associated with loading and unloading a packet onto

the network are accounted. In addition to the fixed per–hop

latency, network contention delays are also modeled, which

are derived from Graphite [26]. The energy numbers are

obtained from McPat [23] using 22nm technology scaled to

11nm. Read and write energy numbers from [7] are utilized

for each NVRAM access.

Benchmark Input Dataset

Machine Learning

MLP, CNN-MNIST, KNN [28] MNIST [1]
CNN-GTRSB [31] GTSRB [33]
AlexNet [18], SqueezeNet [14], VGG[1] ImageNet [1]

Graph Analytic CRONO Suite [3]

PageRank, Triangle Counting, Community, California Road

Connected Components, SSSP, BFS Network [21]

Table II: Benchmarks and inputs.

B. Benchmarks and Evaluation Metrics

The benchmarks and their inputs are presented in Table II.

Seven machine learning benchmarks are developed using the

models and datasets referenced in Table II. These consist of

MNIST, which is used for handwritten digits identification;

GTRSB, which is used for traffic signs for detection; and

ImageNet that has images to be classified. In terms of

workloads, we incorporate K-Nearest Neighbors (KNN) and

an MLP based neural network, which has 768 neurons

and multiple layers. CNN adds convolution layers to MLP

based networks to improve classifications. AlexNet and VGG

are industry class workloads for image classification, and

comprise of convolution layers and neural networks, with

VGG being larger than AlexNet. SqueezeNet is an inception

neural network with a reduced model size compared to

AlexNet, rendering it suitable for architectures with smaller

caches. Six graph benchmarks are also taken from the parallel

CRONO benchmark suite [3].

Each benchmark is run to completion, and the completion

time and dynamic energy consumption of the parallel region

are measured. With the learner models parallelized, they

take between 1ms to 10ms for the evaluation phase. The

learner’s runtime evaluation overheads are added to the

overall completion time for fair comparisons. For the per-

benchmark scheme, the learner overhead is added once per

workload run, while for the per-phase scheme it is added

on function calls. The static scheme does not have any

dynamic learner overhead. These schemes and learners are

also compared to an ideal case which does not have any

performance overheads and has 100% classification accuracy.

VI. EVALUATION

This section analyzes the proposed framework in terms

of performance and energy improvements. All results are

normalized to a system with main memory (DRAM or

NVRAM) without any LLC partitioning scheme. The per-

function learner utilizes MLP-64, while the per-benchmark

learner utilizes the MLP-32 deep neural network. These

learners are selected as they give the highest performance for

the two settings. A hardware-only scheme, WCP [38], is also

compared in terms of performance and energy. WCP utilizes

LRU aspects to predict cache lines with high probability of

writebacks, so they can be moved to marked partitions to

reduce evictions (scheme explained in Section II).
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Figure 8: Normalized completion times with the proposed system over a scheme that does not partition the LLC.

A. Performance Improvements

Two cache partitioning schemes (static and dynamic)

are discussed in Section IV, where dynamic includes per-

benchmark and per-function granularity based LLC partition-

ing. Figure 8 shows the results for the proposed NVRAM

based system. On average, the acquired performance im-

provement using the static scheme is ∼10%, while the per

benchmark and per function schemes improve performance

by 11% and 21% relative to an NVRAM system that does

not partition the LLC. WCP performs well for machine

learning workloads due to distinguishable structures that

have higher write-backs. However, it does not perform as

well for graph workloads, where cache lines are packed with

vertices with dynamically varying access requirements. WCP

is also not optimized for large-scale multicores, as such

parallel machines put more pressure on the limited memory

controllers and the LLC due to more requests from larger

numbers of threads. This enables low distance write locality

to be exploited by WCP, whereas the problem in machine

learning and graph workloads pertained to high distance

writes, and hence WCP does not perform as well.

Compared to the smaller network SqueezeNet, larger neural

network workloads, such as VGG provide larger performance

gains. This is because larger working sets do not fit in

small shared caches, which exacerbates the capacity and high

distance reuse eviction problem. In the case of KNN, there is

a lot of data with high reuse distance, and hence this results

in larger benefits. Graph workloads also give improvements,

with all workloads with at least 12% benefit when using the

per function scheme. Workloads that have smaller working

sets due to smaller dynamic data structures (such as BFS)

do not see large gains as their working set already fits in

shared caches. Moreover, workloads with phases, such as

reductions in Triangle Counting also see improved gains

from the dynamic scheme as they temporally change their

memory requirements. However, the total benefit acquired in

graph workloads is much lower compared to that achieved

in machine learning. This happens primarily because graph

workloads incorporate unstructured access patterns, and hence

they cannot exploit spatial locality in marked partitions.

Overall, the static and the per-benchmark schemes do

provide performance benefits. However, more benefits can

be acquired in workloads that require different resource

allocations across phases. All analyzed schemes are within

5% of the ideal case, which shows the effectiveness of the

learner. One downside of the per-function scheme is that

programmers have to mark functions, however this depends

on how much performance is required to be traded-off with

marking complexity.

B. Energy Improvements

The rise in read accesses due to the proposed scheme

may induce additional energy consumption, and thus it is

important to analyze dynamic energy of the system. Figure 9

shows the energy benefits, where trends follow performance

results. Energy reductions stem from less writes going off-

chip to NVRAM, which has a higher per-write energy cost,

and also from the reduction in completion time. In machine

learning, larger networks such as VGG improve more on

energy than smaller networks such as SqueezeNet because

smaller networks do not suffer much from the lack of

cache capacity. As more energy is consumed in contended

functions, such as reductions, workloads with these functions

acquire more energy benefits. For graph workloads, phases

matter as they have reductions that consume a lot of energy

via accesses, which can be improved using optimal cache

allocation. On average, a 51% energy benefit is acquired

with the per-function scheme over an NVRAM system with

no partitioning, while the static and per-benchmark schemes

provide 25-29% benefits. All proposed schemes are again

within 5% of the ideal case. WCP only provides a 23%

energy benefit, which is lower than the benefit acquired by

the static scheme. This is because WCP does not perform

well in graph workloads, where access patterns are input

dependent and require intricate reuse distance information.

C. Learning Models

The target learning model for cache resource allocations

is predictive, and thus it must be compared with ideal

results to evaluate its effectiveness. Table III shows various

learning schemes to predict partition sizes at phase and

benchmark granularities. The proposed model is compared

with regression schemes (R-order), other multi-layer per-

ceptrons (MLP-neurons), and an ideal learner with no

overhead and ideal accuracy. Table III also shows the average

overhead of each evaluated scheme, which increases with

more complex learners and with the function level scheme.
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Figure 9: Normalized energy acquired using the proposed system over a scheme that does not partition the LLC.

Table III: SpeedUp (Speed.), accuracy (Acc.) shown for each

learner. The overhead (Over.) is the computation overhead

at each invocation of the learner. Settings in bold show the

deep-learners used for the per-benchmark and the per-phase

models.

Setting Per Bench. Per Phase.

Speed. Acc. Over. Speed. Acc. Over.

% % (ms) % % (ms)

Lin.(R-1) 2.2 48.4 0.5 4.9 44.8 12.4

R-4 4.1 65.3 3.0 7.3 62.5 24.4

R-5 8.1 84.3 3.4 12.3 82.5 27.7

R-6 9.8 82.1 3.8 14.1 84.5 32.1

MLP-32 11.4 91.3 1.8 17.6 86.1 15.3

MLP-64 10.8 93.5 2.1 20.8 90.3 17.0

MLP-128 9.5 95.3 2.9 20.4 92.6 24.1

Ideal 12.2 100 0 22.1 100 0

The proposed per-benchmark and per-phase schemes provide

ample performance benefit with their target neuron settings.

It is also within 5-10% of the ideal learner, meaning that it

can be deployed for such benchmarks. Linear regression does

not provide ample benefits, primarily due to the non-linear

aspects of input dependence and partitioning settings. Higher

order regressions perform well, but exhibit higher overheads.

MLP-128 does not perform as well as MLP-64 or MLP-32

because it incurs a huge evaluation overhead due to higher

neuron complexity. While the per-phase scheme shows a

higher overhead due to more function and learner calls, it

does provide enough benefits to offset these overheads.

D. Memory Controller Queuing Delays

The proposed hardware-software scheme is deduced to

reduce write misses, which in return should reduce con-

tention on memory controller queues. Figure 10 shows this

percentage improvement in queuing delay over the system

utilizing no partitioning. It is seen that machine learning

workloads that have higher write misses due to variable

distance write data, show the most improvement in contention

reduction. This result is in line with the performance and

energy improvements acquired in Figures 8 and 9.
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Figure 10: Improvement (%) in average NVRAM queue

contention delay over the baseline utilizing no partitioning.

Table IV: Write latency variations for various DRAM and

NVRAM systems.

Main Mem Type DRAM NVRAM

Write Latency (us) 0.1 0.2 0.5 0.7 1.0

GeoMean SpeedUp (%) 6.0 11 15 18 21

E. Write Latency Sensitivity for NVRAMs

With upcoming NVRAM technologies from various in-

dustry leaders, it is imperative to analyze various write

latencies associated with our proposed scheme. Different

write latencies are thus compared, ranging from 2× to 10×

worse compared to the read latency. Table IV shows the

performance results across all benchmarks acquired with

various write latencies. It can be seen that the acquired

performance benefits variy from 6% with the DRAM-based

system to 21% in an NVRAM-based system that has a

10× worse write latency than reads. Intermediately worse

write latencies also show performance improvements that are

directly correlated with the latency penalty. This shows that

the proposed scheme works effectively for various DRAM

and NVRAM based systems executing machine learning and

graph analytic parallel applications.

VII. CONCLUSION

NVRAM based main memory architectures have high write

latencies that induce performance and energy overheads in

machine learning and graph workloads. This work improves

performance in such systems by intelligently marking data

structures in software that have temporally variable reuse

distances during program execution. Dynamically changing
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last-level cache partitions are created to keep marked data on-

chip, thereby reducing off-chip evictions of write accesses.

This work shows that performance benefits of 21%, and

energy benefits of 51% can be acquired using the proposed

dynamic learning paradigm for LLC partitioning in futuristic

multicores.
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