2018 IEEE International Parallel and Distributed Processing Symposium

Software-Hardware Managed Last-level Cache Allocation Scheme for Large-Scale
NVRAM-based Multicores Executing Parallel Data Analytics Applications

Masab Ahmad*, Halit Dogan*, Fabio Checconi', Xinyu QueT, Daniele Buono!, Omer Khan*
*University of Connecticut, Storrs, CT, USA
IBM Research, Yorktown Heights, NY, USA

Abstract—Developments in machine learning and graph
analytics have seen these fields establish themselves as pervasive
in a wide range of applications. Non-volatile memory (NVRAM)
offers higher capacity and information retainment in case
of power loss, therefore it is expected to be adopted for
such applications. However, the asymmetric access latencies
of NVRAM greatly degrade performance. The focus of this
paper is to reduce the effect of memory access latency on
emerging machine learning and graph workloads. The pro-
posed mechanism uses software tagging of application data
structures so as to control on-chip cache evictions based on data
type and reuse patterns in an NVRAM based multicore system.
Learner models are developed that are capable of predicting
cache allocations for a variety of machine learning and graph
applications. The optimized learning model yields an average
performance benefit of 21% compared to a system that does
not optimize for the write latency challenges in NVRAM.

I. INTRODUCTION

Machine learning and graph analytics are becoming
the epitome of data processing applications. Algorithms
stemming from such applications crunch on large data sizes.
One of the most revolutionary changes to cater for this data
requirement is the advent of non-volatile memory (NVRAM)
as the main memory replacement for DRAMs [27]. Such
memory is power-persistent, it’s structuring allows larger
storage capacities [24], and is a cheaper per-byte alternative to
DRAM [29]. Large-scale multicore machines with NVRAM
are expected to execute workloads that exploit plentiful
parallelism [32]. NVRAM-only main memory systems are
utilized because machine learning and graph applications
can lookup crucial training and intermediate data even when
the device is turned off. This is analogous to mobile and
car applications, where devices are turned off frequently.
However, the heterogeneous latencies of NVRAM lead to
many performance challenges. Higher write latencies are
associated with NVRAM because entire dirty pages need to
be re-written in multiple segments of the main memory [32],
[22]. Such heterogeneous latencies often become a bottleneck
in parallel applications.

Machine learning and graph problems are known to be
highly parallel in nature, allowing great performance benefits
to be acquired with parallel machines, such as Intel’s Xeon
Phi multicores [17]. However, large-scale multicores with
NVRAM based main memory do not exist yet. There is
a need to simulate such systems, and evaluate the hetero-

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/1PDPS.2018.00041

316

014 W Compute Stalls B Memory atalls = Synchronization
— 0.12 : —_ =
< o1 <3

]

£ 0.08 = €, R
= 0.06 =
5 004 S1
+ 0.02 k=
2 o0 20
g DRAM NVRAM cE> DRAM NVRAM
© AlexNet © SSSP-CA
Figure 1: Completion time breakdowns with conventional

DRAM and NVRAM based main memory.

geneous latency challenge. Figure 1 shows the well-known
parallel workloads, AlexNet [18] for image classification, and
SSSP [11] for shortest path computations on the California
road network. The simulations are run using an industry class
simulator setup with a conventional DRAM, as well as an
NVRAM with heterogeneous access latencies [24]. It can be
seen that there is a significant degradation in performance
due to excessive memory stalls in the the NVRAM setup.

Typical machine learning and graph applications rely
on read-after-write patterns of temporally changing shared
data [8]. In parallel implementations, threads see higher
stall times due to the off-chip eviction of write data that is
expected to be read afterwards. Moreover, the potentially
large number of threads in futuristic multicore systems
exacerbate the problem by increasing write contention on
memory controllers. These data access patterns occur due to
algorithmic aspects, such as layer-by-layer computations in
machine learning and the iterative nature of graph algorithms.
Since the problems operate on large amounts of data, the
shared data structures get displaced by high reuse data.
Therefore, high write latencies are observed by the NVRAM,
and it becomes imperative to keep the shared data on-chip
to mitigate computational costs.

Prior architectural works that attempt to keep data on-
chip suffer from significant hardware complexity to dis-
tinguish data with high spatio-temporal locality from the
write-intensive data. Reuse counters [9], cache line replace-
ment [13], and cache partitioning [36], [38] schemes all
attempt to keep data on-chip to minimize overall off-chip
miss rates. However, they require fine-grain aspects such
as counters at cache line granularity, thereby complicating
hardware. Programmer-based software hints help reduce
complexity by identifying application data structures that

IEEE
computer
® psoaety

require resource allocations. Pragmas are applied within and
across the target applications to forgo the need for complex
control schemes.

This paper proposes a software—hardware framework that
consists of profiling and exposing application data structures
to the underlying microarchitecture. The hardware exposes
last-level cache partitioning as a knob for data allocations. A
set of static and dynamic learning paradigms are proposed
that predict the allocation of cache partitions so as to co-
optimize write and read miss rates in an NVRAM based
multicore. Such performance prediction paradigms are known
to help in various architectural paradigms [2].

Program profiling identifies structures in various bench-
marks that potentially have variable read-after-write access
patterns. Such structures are tagged as markers and pushed
to the underlying cache hierarchy, where dynamically tagged
cache partitioning is utilized at the hardware level to keep
tagged data on-chip. A prediction model is proposed to
cater for per-benchmark aspects that control the last-level
cache partitioning. However, these aspects may change within
different benchmarks across various phases of execution,
and thus a fine-grain prediction model is also proposed
that profiles application phases for resource allocations.
It performs a design space exploration of tagged cache
partitioning at the benchmark’s function granularity. The
learning is performed off-line using representative synthetic
inputs for all benchmarks. The model is evaluated at runtime
to predict the right cache partitioning strategy. The function-
level partitioning model enables performance improvements
at an average of 21% over an NVRAM system that does not
utilize cache partitioning for managing the heterogeneous
memory access latencies.

II. RELATED WORK

The NVRAM latency problem has been known for some
time, and various works have attempted to tackle it [12].
Algorithmic works rely on software changes to minimizes
off-chip writes [5]. They introduce heuristics to stall writes
for certain suspicious structures that may require off-chip data
due to their increased data sharing. However, these works do
not target applications that demonstrate unpredictably varying
data reuse distances. Moreover, the strict implementations of
various data analytic frameworks do not allow for algorithmic
changes at each algorithm phase [1]. Various works also
attempt to improve NVRAM access rates by lowering write
latencies and improving bandwidth within the main memory.
These include byte-addressing memory [22] and software
management [29] for certain applications. These works do
not learn for dynamic aspects, which leads to limited scope
for performance improvements.

On-chip architectural solutions have been applied to
improve data access latency. Cache partitioning is a well-
known idea to reduce off-chip miss rates, thereby improving
efficiency [34], [6]. These works target generic cache access
rates, and are not entirely optimized for heterogeneous

317

access latencies in NVRAM. Although some works have
used cache partitioning to improve performance in NVRAM
systems [37], [38]. However, such works do not evaluate
large-scale multicores, where latencies are magnified by
increased data accesses by concurrent threads. Other works
improve cache replacement policies [38], [16], which require
various hardware overheads to measure data reuse distances.
Writeback-aware Cache Partitioning (WCP) [38] utilizes
hardware based partitioning to improve access latency in
NVRAM based systems. It utilizes LRU bits to predict write-
backs from a cache slice for each cache line. Dynamic cache
partitions are created to keep cache lines with higher amounts
of write-backs, avoiding capacity issues that cause evictions
to main memory. The constrained hardware resources do
not fully exploit the temporally changing shared data, thus
WCP acquires limited performance benefits. Moreover, the
hardware requirements are complicated to implement, and
processor vendors hesitate to implement them in production
chips. What vendors do support is coarse-grain last level
cache (LLC) partitioning, such as Intel’s Cache Allocation
Technology [15]. We propose to utilize existing resource
allocation paradigms and build a software—hardware co-
design framework. It utilizes cache partitioning as a control
knob, along with software hints to predict which data needs
to be kept on-chip to mitigate the challenges with NVRAM
data access latencies.

III. NVRAM CHALLENGES IN BIG-DATA APPLICATIONS

AlexNet is a winning application for ImageNet [10], an
image recognition dataset, and is thus a viable contender
for a case study of the proposed framework. It starts from a
given input image, which propagates through its convolution
filter layers and fully connected neuron layers to classify the
image at the output. Neurons are distributed among threads
for efficient concurrency control. Primary data sections for
each layer contain input data, filter coefficients, and output
data. Threads in a given layer read the propagated data
obtained from the prior layer. However, threads have to read
a lot of filter and image data to work on propagated output.
In the case of AlexNet, the working set is ~400M B, and
unable to fit completely in the on-chip caches (up to 30M B in
modern machines [15]). This requires data to be evicted to the
main memory repeatedly. Moreover, in large-scale multicores,
distributed cache slices are quite small for a given thread
(tens to hundreds of KBs), and hence preserving locality is
of utmost importance. This objective causes programmers
to exploit locality on filter coefficients, and image data, as
these are expected to exhibit high reuse. This locality is on
reads, and given the constant access latency and bandwidth
of DRAMs, such schemes provide ample performance. With
less reuse on writes, data worked on in the previous iteration
is evicted in favor of read data by conventional caching
policies. Most of the latency seen through writes in a DRAM
system is also hidden by the locality achieved via reads.

Some Output) Output Data read pzzzz /777
@ data is % from NVRAM, *\»’» 2 Output
e Stale via LRU Performance Hit Data
Bring in New Stale Ou.tput Filter
" Data Evicted
Filter Data \ 77 Data
M M‘ from L2
t1 t2 13 New Filter
Data

Transition from one Layer to Next Layer

Figure 2: A read-write-read shared data access pattern in
AlexNet, leading to expensive evictions to NVRAM.

.._____________.i
Core
> Cor

1 Pipeline

Msg (Req, Mark)="*

Set Dyn. Part Size

Pragma Set Programmer/

Profiler Control
A

Pragma UnSet

v
UnMarked R/W ~ Memory

Marked R/Wt
Resource Knob

!

Marked = UnMarked y 5
- f
L2 Partition ;. L2Partition t
R/W

Control Partition Size

NVRAM - Memory Controller

Figure 3: Data-marking based cache partitioning.

However, in an NVRAM based architecture, the write
latency is much higher (up to 10x) compared to the read
latency in DRAM, and exploiting read locality on high reuse
data can only help so much for performance. With smaller
caches, writes build up on the memory controller queues,
resulting in increased access latencies. Such cache evictions
are caused by threads trying to exploit read locality by reading
and prefetching read data from either the main memory, or
the last-level cache slices of other cores. In the context
of NVRAM, the lack of write locality causes high latency
evictions and read stalls in various threads. This temporal
aspect is depicted in Figure 2, which shows write data being
evicted in favor of higher read locality data. Unpredictable
temporal read-after-write patterns cause higher latencies to
be seen on data that is supposed to be read some time after
being written to memory. Moreover, real implementations
that pipeline images into an AlexNet application observe
extreme performance overheads since there is much more
read locality to exploit.

This overhead can be mitigated by keeping temporal
read-after-write data on-chip, so it can be accessed with
lower latency. Software or even hardware prefetching is not
expected to help much in such scenarios as it may cause
pollution in shared caches, causing even further evictions.
Off the shelf cache partitioning mechanisms can be utilized
to develop a set of software profiling schemes. This ensures
that only certain shared data with higher reuse distance gets
captured without having to complicate hardware. It brings
the programmer (or a profiler) into the loop to identify data
structures and functions that require isolated last-level cache

318

Algorithm 1 Various Layers of Parallel AlexNet

1: Init Matr. input(in), filter /other(ch, s), outputs(out)

2: //Red shows marked pragma set/unset around array
accesses
3: for each Layer in range(0, nLayers) do
4: Range = get_loc(tile)
5: for each ch in range(0, kernel) do
6: for each r in Range do
7: Perform 2d conv. and accumulate
8 outC[r]+=conv(out, image, in, ch, r, s)
9: Barrier
10: out P[r] = PoolingLayer(outC, ch, s)
11: Barrier
12: outL[r] = LrnLayer(outP, ch, s)
13: Barrier
14: for each neuron_layer do
15: for each n in neuron do
16: outN [layer][n]=neurMac (outL,in,ch, s)
17: Barrier
18: Barrier
19: outSoft[r] = SoftMaxLayer(outN, ch, s)
resources.

IV. SOFTWARE-HARDWARE FRAMEWORK

This section explains how data and functions are marked
in software for cache resource allocation, as well as the
architecture to facilitate the cache allocation scheme. Figure 3
shows the software and architectural aspects of the proposed
scheme. Programmer marks data structures using pragmas.
Set-partitioning is done to distinguish variable distance read-
write data. The pragmas and set-partitions are propagated
from the core to the cache hierarchy to partition the last-level
cache. Several learning paradigms are evaluated to determine
the right cache partition sizes for the marked and unmarked
data. Software pragma insertions are done before profiling
to allow optimal learning outcomes.

A. Software Marking in Applications

This section describes the process of marking data struc-
tures within a target application. Algorithm 1 shows the
pseudo-code for AlexNet with various data structures and
functions being utilized. The input matrix, ¢n takes in images,
and computed values from prior layers. The filter matrix takes
in filter coefficients, which are large and change across layers.
Finally, the output matrix stores computed values from the
current layer, and is used in subsequent layers as the input
layer. In machine learning algorithms, several data structures
are accessed in various functions, with layers separated by
synchronization barriers. It is easy to identify structures that
are expected to be evicted due to long reuse distances. Such
structures are separated by barriers or by locks, as parallel
implementations require writes with consistency. In the case

of AlexNet, these are all the out-based structures, and thus
they are marked via program pragmas to be kept within the
cache (Lines 8, 10, 12, 16, and 19 in Algorithm 1).

The pragma is set for all load and store instructions to
marked data structures. In the proposed framework, pragmas
are inserted for all output shared data structures. Barriers do
not need marked resources as their variables are dynamically
allocated to maintain high synchronization performance. The
Pragma insertion is done by the programmer before any
automated learning is performed. The compiler can also be
modified to mark data structures at compile time, however
that requires compiler analysis and is out of scope of this
paper. Profiling and learning is then performed to determine
the optimal partition sizes of marked and unmarked cache
partitions.

B. Data Marking based Set Partitioning

Marking loads and stores is a primary solution to propagate
software hints for data structures that are expected to exhibit
temporal write locality during program execution. The cache
allocation knob is tuned to allocate the right capacity for
marked and unmarked data. Cache set partitioning is done at
the last-level cache (LLC), where each LLC slice in a core
gets partitioned based on sets. This is applied in a cache orga-
nization where private L1 caches are backed-up by shared L2
cache slices. The shared LLC is physically distributed among
the tiles as L2 cache slices, and coherence is maintained using
the directory based protocol. Set partitioning is selected due
to its lower complexity compared to way partitioning [30].
For example, in an 8-way set associative 64K B L2 cache
slice, there are 1024 total cache lines assuming a cache line
size of 64 bytes. This results in 128 total sets, of which a
percentage of sets are allocated to marked partitions. The
remaining sets are used for unmarked partitions. Figure 3
shows the cache allocation knob, as well as the architectural
aspects of LLC partitioning.

1) Pragma Propagation for Cache Partitioning: The
pragma marked data structures are interpreted by the compiler
as special load and store instructions. If the pragma is set
and the corresponding data access misses the private L1
cache, it brings the respective cache line into the marked
partition. Evictions from L1 to L2 cache slices are directed
to the appropriate partition based on the tag lookup. The
LRU policy is separately maintained for each partition in the
L2 tag array, where one is for the marked sets and the other
for unmarked sets [15]. If an L1 miss for marked partition
results in L2 cache hit to unmarked partition (and vice versa),
the L2 cache controller is responsible for moving that cache
line to the appropriate partition. Moreover, partition sizes
can also be dynamically changed during execution, which
also results in moving cache lines between partitions.

2) Dynamic Management of Marked Partition: Cache par-
titioning is performed dynamically at per-function granularity
to generate fine-grain control of the cache resource allocation
knob. This is also propagated to the architecture via an added

319

-e-Write Miss Rate -+-Read Miss Rate :: Point of Lowest Completion Time
25 20
//AIEXNEt/‘
0

20 0
Marked Partition Size (%)

15
10

L2 MPKI

5

10

10

Figure 4: Read and write miss rates for various marked
partition sizes. Optimal points are observed at different
marked partition sizes.

instruction directed by another program-level pragma. The L2
cache slice access is stalled and sets are partitioned according
to the propagated value. This is utilized as a global parameter,
and L2 slices of all cores are uniformly partitioned with equal
sized partitions. Sliding the partition scale in Figure 3 means
that unmarked cache lines may start polluting the marked
partition if the marked partition size is increased, and vice
versa. Prior architectural works solve this issue by either
flushing the polluted sets to main memory, or moving cache
lines when a cache partition size changes. Flushing adds
further overheads for NVRAM as it flushes cache lines to
the memory controller queues, thereby increasing write traffic.
Moving cache lines is a more viable solution, and can be
executed only when a cache line is brought into a partition
that has been polluted. It is further optimized to only move
a cache line upon an L1 miss. From here the L2 controller
receives a load or store for a marked partition, and sees if it is
already in the marked partition. If the cache line is incorrectly
in the unmarked partition, the L2 controller moves the cache
line to the marked partition. Cache line movement requires
stalling of the L2 cache slice for atomicity and consistency
purposes. Thus, upon a function change within an application,
the learner sets a cache partition size value and the cache
stalls to move cache lines on L1 misses.

C. The Effect of Partitioning Knob on LLC Misses

Due to the heterogeneous access latencies associated with
NVRAM, the goal is to minimize write miss rates while
keeping read misses in check. Figure 4 exhibits the L2 read
and write misses per kilo instruction (MPKI) associated with
various marked partition sizes, for a 256 core multicore with
a 64KB L2 cache slice per core. The MPKI versus partition
size results are shown for two machine learning workloads,
AlexNet and VGG [1]. VGG is a machine learning workload
with a larger memory footprint than AlexNet, and hence
shows varied sensitivity to resource allocations. The write
MPKI decreases due to reduction of evictions acquired by
allocating cache memory to marked partitions. However, the
read MPKI goes up with the increase in marked partition size
as more capacity is taken out of the already exploitable read
locality. Overall, misses for both reads and writes increase
as larger marked partitions decrease capacity of unmarked

—o—AlexNet -4-SSSP-CA
- '\?12
£<w0
S8 g
=
— ¢ 6
© o
Ez 4 . «
|t 2 Ak~
o¢f 0
0 0.2 0.4 0.6 0.8 1
Normalized Completion Time
AlexNet Acquire Conv Neural Classify
Image Layers Layer Output
Less More .
Final
SSSP Graph Relax Vertex Vertex na

LookUp Edges Relaxations

Relaxations Relaxations

Figure 5: Completion times of various benchmark phases
normalized to their maximum completion time. Data shows
the need to dynamically control marked partition sizes based
on application phases.

partitions.

VGG optimizes at a higher marked partition size than
AlexNet, primarily because of more high distance reuse data
in VGG due to it being a larger and wider network with
increased memory requirements. Optimal performance is
observed at a point where write miss rates are not minimized,
which happens because of the increase in read misses that
need to be traded-off. This favors a paradigm that can
configure these architectural knobs dynamically at per bench-
mark granularity. However, even per-benchmark partition
settings may not be optimal as different phases within
a benchmark exhibit varying memory requirements. This
dynamic resource allocation requirement must be adopted
at runtime. Hence, several static and dynamic schemes are
presented and evaluated in this paper.

D. Static Partitioning Allocation

To maximize performance, the programmer can assign
static partitioning size across all benchmarks. This is achieved
via program profiling heuristics to acquire an optimal partition
size from all target benchmarks. All benchmarks are run for
various partition sizes, and the partition size that gives the best
overall performance is selected. This approach is expected
to under-perform, as a single partition size might not work
for all benchmarks. This is evident from Figure 4, where
optimal partition sizes change across the two benchmarks. A
per-benchmark or a per-phase learner is desirable for near-
optimal performance.

E. Per-Benchmark & Per-Phase Partitioning Allocation

The proposed per-benchmark learner optimizes partition
sizes individually for each benchmark. For example, for
VGG in Figure 4 the optimal partition size is 5%, while
for AlexNet it is 1%. This helps for a benchmark with
characteristics common to all its inputs. However, variable
benchmark aspects must be taken into account. These aspects

320

Machine N Graph
Learning [f_, Workloads
convolution get_loc reduction relax

neural_mac EcludianDistance find_component graph_lookup

nonlinear_conv SoftMaxLayer reconstruct find_nearest_neighbor

tilingN pooling add_to_tri_count search_vertex

LrnLayer PushForward |calc_dangling_PageRank find_community

Figure 6: Functions used for the per-phase learner.

are considered inputs to the model, while resource allocations
are considered outputs of the prediction model. The model
is trained on synthetic inputs, and then benchmarks are
scheduled online for the partition size selection.

While per-benchmark partitioning is expected to reduce
miss rates, workloads have various diverse functions, each
of which have sliding memory requirements. These traits
are expected to vary partition knobs throughout program
execution. Figure 5 shows these variations for AlexNet and
SSSP running California road network, with the marked
partitioning size manually changed to optimal at function
call granularity. In AlexNet, these calls constitute functions
like get_loc () and conv (), as depicted in Algorithm 1,
and many others not shown in the pseudocode. In SSSP,
these constitute graph lookups and relax routines. It can
be seen that the optimal partition size per function varies
during execution from 0% to 10%. Figure 5 also shows
the functions that dictate a particular optimal partition
size. AlexNet has higher marked partition size requirement
for convolution, and the neural network fully connected
layers. SSSP, however has variations in partition size
requirements due to its iterative processing of the input
graph (roadNet-CA). Early in execution, SSSP relaxes
on several vertices, and hence needs more marked cache
resources due to variable reuse distances of many vertices.
These updates sublime and then peak again in Figure 5
when more vertices are activated for relaxations, depending
on the connectivity of the input graph. Such variations add
dynamic aspects that need to be learned at a per-function
granularity. This learner paradigm is formulated as follows.

Model Variables are Benchmark and Input combina-
tions, and Partition Sizes. The output constitutes an
optimal marked partition size for a given function, with
the learner optimizing for performance. Benchmarks are
formulated into two vector variables, B1 and gQ, which
distinguish various machine learning and graph workload
functions. As the model learns on several benchmarks and
functions/kernels within benchmarks, it is imperative to
reduce learning complexity. This is done by marking and
learning during the offline profiling phase of the proposed
framework. For example, graph lookups are common across
all graph workloads, as are reductions and other parallel
functions. In machine learning workloads, these are getting
kernel filter ranges (get_loc()), conv(), and neuMac()). Bench-

Benchmarks (Machine
Learning & Graphs) (B1)
Benchmark
Functions (B2)

Learner Model

-
Prediction » L2 Marked

Partition Size

Model

Figure 7: Learner model encompassing inputs and outputs.

mark variables are thus integers where for example for §2,
different functions have different values depending on their
importance in the program. Figure 6 shows the different
functions for the evaluated benchmarks.

Benchmark inputs also vary performance, and thus need
to be considered when determining partition sizes. For
example, larger inputs may not fit in naively sized partitions,
while smaller inputs may under-utilize cache resources.
Inputs to all target benchmarks take the form of matrices,
which can be classified via row and column sizes, and these
are taken as two input vector variables (I_i and I_Q). The
I3 input for density (edges per vertex) is considered as an
additional input variable for graph algorithms.

Learning Paradigms: Multiple non-linear and linear re-
gression models, as well as several deep learning models
are constructed from the above B and I variables. Due
to non-linear aspects depicted in Figure 4, a non-linear
higher order regression model is required to achieve suitable
learning capability. A linear regression is also evaluated for
comparison, although it is not expected to show significant
performance improvements.

Multi-layer deep learning perceptrons (MLPs) are also
utilized for learning, as they are known to learn well on
non-linear aspects. The number of neurons and layers is
dictated by the required classification accuracy, and the
number of inputs for classification [35]. Hence, MLPs with
at least 32 neurons (MLP-32) (4 layers, 8 neurons per layer)
are used in our case. The inputs and outputs of all evaluated
learners are the same as shown in Figure 7. The proposed
models and learners are also compared with an ideal learner
that exhaustively evaluates the search space for optimal
cache partition sizes.

Training Model: The learner models are trained using
synthetic inputs to the benchmarks. Both regression and
deep learning models are trained with the same inputs as
they have the same input and output variables. Synthetic
inputs to machine learning workloads are matrices and
arrays (i.e., various kernels and input/output layers) that
vary in size, while graph benchmarks are trained for uniform
random graphs [4], and Kronecker graphs modeling power
law mechanics of real graphs [20]. These inputs are varied
from a size of 1 to 4096 for variable-dimensional matrix
sizes, and 1 to 1M for array sizes. Synthetic graph inputs

321

are varied from 16 to 16M vertices, and 1 to 1024 edges per
vertex. These sizes are well within the sizes observed in real
world input graphs.

Large complexities result from these tuple variables, as
many combinations can be made from the input variables
and output partition sizes for various benchmarks. With
13 benchmarks, more than 50 profiled functions, several
hundred synthetic training inputs, and several partition
sizes to choose from, the total complexity results in several
million combinations. Due to this large complexity, training
is done offline. After training, the predictor is deployed to
process real inputs. The proposed predictor is deployed in
software to take in variables to predict the marked partition
sizes.

The Importance of Model Variables: How the model trains
for the target variables can be seen in the equation 1, which
shows a 6th order non-linear function that conforms to more
than 90% classification accuracy.

F(Cache partition size) = wl(B1)® + w2(B2)°+ (1)
w3(11)° 4+ wa(12)* + w5(I3)% + 8.0

Variables with more direct correlation to performance, such
as benchmark type (B1), and input row size (I1) have higher
orders. As seen earlier in Figure 5, phase behavior does have
a role in performance. Phase changes within benchmarks
are shown by B2, where weight changes symbolize function
changes, which changes intensity of partition sizes required
for optimality. Changes in phases correspond to changes in
weights, which changes output partition sizes in the regression
equation.

Graph workloads have more randomly skewed memory
access compared to machine learning workloads. From input
variables, I1 has the highest order, as input row sizes
(matrix row counts in machine learning, and vertex counts
in graphs) directly affect required concurrency and memory
requirements. /1 also defines cache requirements, which
correlates directly with L2 partition size requirements. I2
and I3 also affect partition size requirements in indirect
ways and hence have some weight on the output partition
size. Similarly, a multi-layer perceptron learner is expected
to have similar trends in terms of neurons and layers. The
overhead of these learners is added to the overall completion
time during the evaluation phase. A sensitivity study is done
in the evaluation section to quantify which learner provides
the most performance benefit at acceptable classification
accuracy.

V. EVALUATION METHODOLOGY

A. Simulator Setup

We evaluate a futuristic 256—core tiled multicore processor
with a two-level private—shared cache hierarchy. As hundreds
of cores do not exist in real machine setups with NVRAM
based main memory, we utilize a simulator setup to get

Architectural Parameter

Value

Benchmark Input Dataset

Cores
Comp. Pipeline per Core
Word Size

256 RISC-V @ 1 GHz
In-Order, Single-Issue
64 bits

Memo:

ry Subsystem

L1-I Cache per core
L1-D Cache per core
L2 Inclu. Cache per core

Cache Line Size

16KB, 4-way Assoc., 1 cycle
16KB, 4-way Assoc., 1 cycle
64KB, 8-way Assoc.

2 cycle tag, 4 cycle data

64 bytes

Directory Protocol Invalid. MESI, ACKwise4 [19]

Electrical 2-D Mesh with XY Routing

Hop Latency
Contention Model

2 cycles (1-router, 1-link)

Only link contention, 64-bit Flits
(Infinite input buffers)

Flit Width 64 bits

Memory Controllers - NVRAM Parameters

8 - Dual Channel

64 entries per Channel
20 GBps per Controller
100ns-1us

100ns

Num. of Mem. Contr
Mem. Contr. Buffer Size
Bandwidth

NVRAM Read-Write Lat.
DRAM Latency

Table I: Architectural parameters for evaluation.

the best possible understanding of the NVRAM latency
challenge. The proposed system is implemented in an in—
house industry—class simulator which uses open source RISC-
V cores and associated LLVM compiler intrinsics. The default
architectural parameters used for evaluation are shown in
Table 1. The total on-chip cache size amounts to 24M B of
which 16 B is dedicated to the shared last-level cache that
is distributed among the per tile L2 cache slices.

NVRAM parameters have been acquired from prior works
and real systems [25], which consist of memory controller
parameters for channels and controller buffers, as well as
the heterogeneous memory access latency and bandwidth.
Prior works show that the disparity between read and write
NVM latencies (for Phase Change Memories (PCMs) or Spin
based memories (STTRAMs)) ranges around 10x, and we
thus keep this disparity in our setup as well [27]. An 8GB
of NVRAM memory capacity is modeled. The simulated
system utilizes either NVRAM or DRAM, but not both at
the same time. However, a study is also done to show a
DRAM-only analysis.

The on-chip network is modeled with 2—cycle per hop
delay and XY routing protocol. The appropriate pipeline
latencies associated with loading and unloading a packet onto
the network are accounted. In addition to the fixed per—hop
latency, network contention delays are also modeled, which
are derived from Graphite [26]. The energy numbers are
obtained from McPat [23] using 22nm technology scaled to
11nm. Read and write energy numbers from [7] are utilized
for each NVRAM access.

322

Machine Learning

MLP, CNN-MNIST, KNN [28]
CNN-GTRSB [31] GTSRB [33]
AlexNet [18], SqueezeNet [14], VGG 1] ImageNet [1]

Graph Analytic CRONO Suite [3]
California Road
Network [21]

MNIST [1]

PageRank, Triangle Counting, Community,
Connected Components, SSSP, BFS

Table II: Benchmarks and inputs.

B. Benchmarks and Evaluation Metrics

The benchmarks and their inputs are presented in Table II.
Seven machine learning benchmarks are developed using the
models and datasets referenced in Table II. These consist of
MNIST, which is used for handwritten digits identification;
GTRSB, which is used for traffic signs for detection; and
ImageNet that has images to be classified. In terms of
workloads, we incorporate K-Nearest Neighbors (KNN) and
an MLP based neural network, which has 768 neurons
and multiple layers. CNN adds convolution layers to MLP
based networks to improve classifications. AlexNet and VGG
are industry class workloads for image classification, and
comprise of convolution layers and neural networks, with
VGG being larger than AlexNet. SqueezeNet is an inception
neural network with a reduced model size compared to
AlexNet, rendering it suitable for architectures with smaller
caches. Six graph benchmarks are also taken from the parallel
CRONO benchmark suite [3].

Each benchmark is run to completion, and the completion
time and dynamic energy consumption of the parallel region
are measured. With the learner models parallelized, they
take between 1ms to 10ms for the evaluation phase. The
learner’s runtime evaluation overheads are added to the
overall completion time for fair comparisons. For the per-
benchmark scheme, the learner overhead is added once per
workload run, while for the per-phase scheme it is added
on function calls. The static scheme does not have any
dynamic learner overhead. These schemes and learners are
also compared to an ideal case which does not have any
performance overheads and has 100% classification accuracy.

VI. EVALUATION

This section analyzes the proposed framework in terms
of performance and energy improvements. All results are
normalized to a system with main memory (DRAM or
NVRAM) without any LLC partitioning scheme. The per-
function learner utilizes MLP-64, while the per-benchmark
learner utilizes the MLP-32 deep neural network. These
learners are selected as they give the highest performance for
the two settings. A hardware-only scheme, WCP [38], is also
compared in terms of performance and energy. WCP utilizes
LRU aspects to predict cache lines with high probability of
writebacks, so they can be moved to marked partitions to
reduce evictions (scheme explained in Section II).

o 1 HWCP 7~ Static
£
09 7 7
c A 7 7 7 7 7 .
= 7z 7 7 7 7z 7 7
207 |4 I Z I 7 I Z Z Z 7
£ 7z 7 7 7 7 Z Z
7 7 7 Z 7
o 7 7 7 7 7 Z 7
Sos 7 Z 7 7 z 7 I V
7 7 7 Z 7z
B W 7 Z 7 7 7 %
s A A © 5 x o S
E & & ¢ & £ ¢ ¢
z o & & v o

Il Per Benchmark ® Per Function

p 7 . 0890900389
Z 7 7 7 7 7 V
IZ ‘ |2 ‘ ‘é H ‘g é 2 é |
Z 7 7 7% 7
7 7 7 7 7 7 7
Z Z Z Z 7 7 Z
Z 7z 7 7z 7 7 Z
Z Z 7 7 Z 7 Z
Z 7 Z 7 Z 7 Z
Z Z 7 7 Z 7 Z
7 7 7 Vi 7 7
7 7 7 Z 7
7 Z Z 7 7 7 Z
EER A N N R
& Q- & < O
% & & &

(&3 &

Figure 8: Normalized completion times with the proposed system over a scheme that does not partition the LLC.

A. Performance Improvements

Two cache partitioning schemes (static and dynamic)
are discussed in Section IV, where dynamic includes per-
benchmark and per-function granularity based LLC partition-
ing. Figure 8 shows the results for the proposed NVRAM
based system. On average, the acquired performance im-
provement using the static scheme is ~10%, while the per
benchmark and per function schemes improve performance
by 11% and 21% relative to an NVRAM system that does
not partition the LLC. WCP performs well for machine
learning workloads due to distinguishable structures that
have higher write-backs. However, it does not perform as
well for graph workloads, where cache lines are packed with
vertices with dynamically varying access requirements. WCP
is also not optimized for large-scale multicores, as such
parallel machines put more pressure on the limited memory
controllers and the LLC due to more requests from larger
numbers of threads. This enables low distance write locality
to be exploited by WCP, whereas the problem in machine
learning and graph workloads pertained to high distance
writes, and hence WCP does not perform as well.

Compared to the smaller network SqueezeNet, larger neural
network workloads, such as VGG provide larger performance
gains. This is because larger working sets do not fit in
small shared caches, which exacerbates the capacity and high
distance reuse eviction problem. In the case of KNN, there is
a lot of data with high reuse distance, and hence this results
in larger benefits. Graph workloads also give improvements,
with all workloads with at least 12% benefit when using the
per function scheme. Workloads that have smaller working
sets due to smaller dynamic data structures (such as BFS)
do not see large gains as their working set already fits in
shared caches. Moreover, workloads with phases, such as
reductions in Triangle Counting also see improved gains
from the dynamic scheme as they temporally change their
memory requirements. However, the total benefit acquired in
graph workloads is much lower compared to that achieved
in machine learning. This happens primarily because graph
workloads incorporate unstructured access patterns, and hence
they cannot exploit spatial locality in marked partitions.

Overall, the static and the per-benchmark schemes do
provide performance benefits. However, more benefits can
be acquired in workloads that require different resource

323

allocations across phases. All analyzed schemes are within
5% of the ideal case, which shows the effectiveness of the
learner. One downside of the per-function scheme is that
programmers have to mark functions, however this depends
on how much performance is required to be traded-off with
marking complexity.

B. Energy Improvements

The rise in read accesses due to the proposed scheme
may induce additional energy consumption, and thus it is
important to analyze dynamic energy of the system. Figure 9
shows the energy benefits, where trends follow performance
results. Energy reductions stem from less writes going off-
chip to NVRAM, which has a higher per-write energy cost,
and also from the reduction in completion time. In machine
learning, larger networks such as VGG improve more on
energy than smaller networks such as SqueezeNet because
smaller networks do not suffer much from the lack of
cache capacity. As more energy is consumed in contended
functions, such as reductions, workloads with these functions
acquire more energy benefits. For graph workloads, phases
matter as they have reductions that consume a lot of energy
via accesses, which can be improved using optimal cache
allocation. On average, a 51% energy benefit is acquired
with the per-function scheme over an NVRAM system with
no partitioning, while the static and per-benchmark schemes
provide 25-29% benefits. All proposed schemes are again
within 5% of the ideal case. WCP only provides a 23%
energy benefit, which is lower than the benefit acquired by
the static scheme. This is because WCP does not perform
well in graph workloads, where access patterns are input
dependent and require intricate reuse distance information.

C. Learning Models

The target learning model for cache resource allocations
is predictive, and thus it must be compared with ideal
results to evaluate its effectiveness. Table III shows various
learning schemes to predict partition sizes at phase and
benchmark granularities. The proposed model is compared
with regression schemes (R-order), other multi-layer per-
ceptrons (MLP-neurons), and an ideal learner with no
overhead and ideal accuracy. Table III also shows the average
overhead of each evaluated scheme, which increases with
more complex learners and with the function level scheme.

mWCP 7 Static

&
o 08 V7 /)
< 7 Z 7 % 7 ,
w 7 7 7 7 7 '
2 Ul ViV U UV v
g 7z Z 7 7z Z 7 7
204 B7 Z Z Z Z Z 7
e Z Z 7 7 Z 7 Z
LN N HRIR IR R
2 , I 7 Z Z Z Z Z
A A > X X o S
§\" ‘@\" é\qi’ \es?’ ég\“ © &
s 5 ‘ N
&S S s

Il Per Benchmark ® Per Function

7 ' 0.77 0.74

7 / V 7 0
7 Z Z p Z %
7 Z ? 7 Z 7z 7| 0.a0
bl Ui Ui Ul Ul ¥
/ I / I / I / I / / /
z z 7z 7 7 7
7 7 7 / Z 2 Z
z z 7z Z 7 7
7 7 7 / Z 7 Z
7 / Z Z 7 7 Z
(_5—5'3 & Q:b‘& Ko Q{\\’C\ S ®é"°

& Q& L Q.(“ O

< (_,0((\ o &

Figure 9: Normalized energy acquired using the proposed system over a scheme that does not partition the LLC.

Table III: SpeedUp (Speed.), accuracy (Acc.) shown for each
learner. The overhead (Over.) is the computation overhead
at each invocation of the learner. Settings in bold show the
deep-learners used for the per-benchmark and the per-phase
models.

Setting Per Bench. Per Phase.

Speed. Acc. Over. | Speed. Acc. Over.
% % (ms) % % (ms)
Lin.(R-1) 2.2 48.4 0.5 4.9 448 124
R-4 4.1 65.3 3.0 7.3 625 244
R-5 8.1 84.3 34 12.3 825 277
R-6 9.8 82.1 3.8 14.1 845 321
MLP-32 114 91.3 1.8 17.6 86.1 153
MLP-64 10.8 93.5 2.1 20.8 903 17.0
MLP-128 9.5 95.3 2.9 20.4 926 241

Ideal 12.2 100 0 22.1 100 0

The proposed per-benchmark and per-phase schemes provide
ample performance benefit with their target neuron settings.
It is also within 5-10% of the ideal learner, meaning that it
can be deployed for such benchmarks. Linear regression does
not provide ample benefits, primarily due to the non-linear
aspects of input dependence and partitioning settings. Higher
order regressions perform well, but exhibit higher overheads.
MLP-128 does not perform as well as MLP-64 or MLP-32
because it incurs a huge evaluation overhead due to higher
neuron complexity. While the per-phase scheme shows a
higher overhead due to more function and learner calls, it
does provide enough benefits to offset these overheads.

D. Memory Controller Queuing Delays

The proposed hardware-software scheme is deduced to
reduce write misses, which in return should reduce con-
tention on memory controller queues. Figure 10 shows this
percentage improvement in queuing delay over the system
utilizing no partitioning. It is seen that machine learning
workloads that have higher write misses due to variable
distance write data, show the most improvement in contention
reduction. This result is in line with the performance and
energy improvements acquired in Figures 8 and 9.

324

<

.52%40

£E830

g28,

2

Uw:

-] I

= - C

2900 0

£ 32

£t
S & & Q‘:’% N \\(70 S <5 Q‘;‘% & S {\{6 & &
IR VARG M SRS
SIS IR & T &
& S 2 (SN

Figure 10: Improvement (%) in average NVRAM queue
contention delay over the baseline utilizing no partitioning.

Table IV: Write latency variations for various DRAM and
NVRAM systems.

Main Mem Type DRAM NVRAM
Write Latency (us) 0.1 02105107 1.0
GeoMean SpeedUp (%) 6.0 11 15 18 | 21

E. Write Latency Sensitivity for NVRAMs

With upcoming NVRAM technologies from various in-
dustry leaders, it is imperative to analyze various write
latencies associated with our proposed scheme. Different
write latencies are thus compared, ranging from 2x to 10x
worse compared to the read latency. Table IV shows the
performance results across all benchmarks acquired with
various write latencies. It can be seen that the acquired
performance benefits variy from 6% with the DRAM-based
system to 21% in an NVRAM-based system that has a
10x worse write latency than reads. Intermediately worse
write latencies also show performance improvements that are
directly correlated with the latency penalty. This shows that
the proposed scheme works effectively for various DRAM
and NVRAM based systems executing machine learning and
graph analytic parallel applications.

VII. CONCLUSION

NVRAM based main memory architectures have high write
latencies that induce performance and energy overheads in
machine learning and graph workloads. This work improves
performance in such systems by intelligently marking data
structures in software that have temporally variable reuse
distances during program execution. Dynamically changing

last-level cache partitions are created to keep marked data on-
chip, thereby reducing off-chip evictions of write accesses.
This work shows that performance benefits of 21%, and
energy benefits of 51% can be acquired using the proposed
dynamic learning paradigm for LLC partitioning in futuristic
multicores.

VIII. ACKNOWLEDGMENTS

The authors thank Dong Chen (IBM Research), who helped
motivate and enable this work. This research was partially
supported by the National Science Foundation under Grant
CNS-1718481. This work was also supported in part by
the US Government under a grant by the Naval Research
Laboratory.

(1]

(2]

(3]

(91

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

R. Adolf, S. Rama, B. Reagen, G. y. Wei, and D. Brooks.

Fathom: reference workloads for modern deep learning meth-

ods. In 2016 IEEE International Symposium on Workload

Characterization (IISWC), pages 1-10, Sept 2016.

M. Ahmad, C. J. Michael, and O. Khan. Efficient situational

scheduling of graph workloads on single-chip multicores and
us. I[EEE Micro, 37(1):30-40, Jan 2017.

asab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer
Khan. Crono: A benchmark suite for multithreaded graph
algorithms executing on futuristic multicores. In Workload
Characterization (IISWC), 2015 IEEE Int. Symp. on, pages
44-55. 1IEEE, 2015.

David A. Bader and Kamesh Madduri. Gtgraph: A synthetic
Eragh generator suite, 2006.)

. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool,
0. Schwartz, and H. V. Simhadri. Write-avoiding algorithms.
In 2016 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pages 648-658, May 2016.
Jichuan Chang and Gurindar S. Sohi. Cooperative cache
partitioning for chip multiprocessors. In ACM International
Conference on Supercomputing 25th Anniversary Volume,
Eages 402-412, New York, NY, USA, 2014. ACM. =

himin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking
database algorithms for phase change memory. January 2011.
Y. Chen and et. al. DaDianNao: A machine-learning su-
percomputer. In 47th Annual IEEE/ACM Int. Symp. on
Microarchitecture, pages 609-622, 2014.

Y. H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks.
In 2016 ACM/IEEE 43rd Annual International Symposium on
Com]guter Architecture (ISCA), pages 367-379, June 2016.
Jia Deng, Wei Dong, Richar ocher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.
H. Dogan, F. Hijaz, and et. al. Accelerating graph and
machine learning workloads using a shared memory multicore
architecture with auxiliary support for in-hardware explicit
messaging. In 2017 IEEE Int. Parallel and Distributed
Processing Syméa. IQIPDPS), pages 254-264, M% 2017.

B. Van Essen, R. Pearce, S. Ames, and M. Gokhale. On the
role of nvram in data-intensive architectures: An evaluation.
In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, pages 703714, May 2012.

Fei Guo and Yan Solithin. An analytical model for cache
replacement policy performance. In Proceedings of the Joint
International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’06/Performance 06, pages
228-239, New York, NY, USA, 2006. ACM.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and< 0.5
mb model size. arXiv preprint arXiv:1602.07360, 2016.
Intel. Intel® 64 and ia-32 architectures software developer’s
manual volume 3b system programming guide, part 2. 2015.

325

[16]

[17]

(18]

(191

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

Aamer Jaleel and et. al. High performance cache replacement
using re-reference interval prediction (rrip). In Proceedings of
the 37th Annual Int. Symp. on Computer Architecture, ISCA
’10, paées 60-71, New York, NY, USA, 2010. ACM.
L. Jin, Z. Wang, R. Gu, C. Yuan, and Y. Huang. Training large
scale deep neural networks on the intel xeon phi many-core
coprocessor. In 2014 IEEE Int. Parallel Distributed Processing
Symp. Workshops, pages 1622—-1630, May 2014.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Adv. in Neural Inf. Proc. systems, Opa es 1097-1105, 2012.
George Kurian and et. al. Afac: a 1000-core cache-coherent
processor with on-chip optical network. In Proceedings of the
19th international conference on Parallel architectures and
compilation techniques, pé%es 477-488. ACM, 2010.
Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos
Faloutsos, and Zoubin Ghahramani. Kronecker graphs: An
approach to modeling networks. J. Mach. Learn. Res., 11:985-
1042, March 2010.
Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and
Michael W Mahoney. Community structure in large networks:
Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29-123, 2009.
D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu,
and W. Yu. Identifying opportunities for byte-addressable
non-volatile memory in extreme-scale scientific applications.
In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, pages 945-956, May 2012.
Sheng Li and et. al. cpat: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In Proc. of the 42nd Annual IEEE/ACM Int.
Symp. on Microarch. ACM, 2009.
Micron. NVDIMM: Persistent Memory Performance.
https://www.micron.com/~/media/documents/products/

roduct-flyer/nvdimm_flyer.pdf, 2016.

icron. Breakthrough nonvolatile memory technology, 3dx-

oint. 2017.

ason E Miller and et. al. Graphite: A distributed parallel
simulator for multicores. In High Performance Comp. Arch.
(HPCA), IEEE 16th Int. Symp. on, pages 1-12. IEEE, 2010.
S. Mittal and J. S. Vetter. A survey of software techniques for
using non-volatile memories for storage and main memory
systems. [EEE Transactions on Parallel and Distributed
Systems, 27(?\?_:1537—1550, May 2016.
Michael A. Nielsen. Neural Networks and Deep Learning.
Determination Press, 2015.

Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill
Bridge. Storage management in the nvram era. Proc. VLDB
Endow., 7(2):121-132, October 2013.
Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable
and efficient fine-grain cache partitioning. In Proc. of the 38th
Annual Int. Symposium on Computer Architecture, 2011.
P. Sermanet and Y. LeCun. Traffic sign recognition with multi-
scale convolutional networks. In Neural Networks (IJCNN),
The 2011 Int. Joint Can[r on, pages 2809-2813. IEEE, 2011.
Seunghee Shin, James Tuck, and Yan Solihin. Hiding the
long latency of persist barriers using speculative execution. In
Proc. of the 44th Annual Int. Symp. on Computer Architecture,
ISCA ’17, pages 175-186, NY, USA, 2017. ACM.
Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Chris-
tian Igel. The german traffic sign recognition benchmark: a
multi-class classification competition. In Neural Net. (I/CNN),
The 2011 Int. Joint Conf. on, pages 1453—-1460. IEEE, 2011.
G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning
of shared cache memory. J. Supercomput., 2851 1726, 2004.
Yoshiyasu Takefuji.]\geural ﬁetwar Parallel Computing.
Kluwer Academic Publishers, Norwell, MA, USA, 1992.
Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. Jenga:
Software-defined cache hierarchies. In Proceedings of the 44th
Annual International Symposium on Computer Architecture,
ISCA ’17,1gages 652-665, New York, NY, USA, 2017. ACM.
Wei Wei, Dejun Jiang, Jin Xiong, and Mingyu Chen. Hap:
Hybrid-memory-aware partition in shared last-level cache.
ACM Trans. Archit. Code Optim., 14(3):24:1-24:25, 2017.
M. Zhou, Y. Du, B. R. Childers, R. Melhem, and D. Mossé.
Writeback-aware bandwidth partitioning for multi-core systems
with pcm. In Proc. of the 22nd Int. Conf. on Parallel Arch.
and Compilation Techniques, pages 113-122, 2013.

