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Abstract—Consider a setup in which a central estimator
seeks to estimate an unknown deterministic parameter using
measurements from multiple sensors. Some of the sensors may
be adversarial in that their utility increases with the Euclidean
distance between the estimate of the central estimator and
their own local estimate. These sensors may misreport their
measurements to the central estimator at a falsification cost. We
formulate a Stackelberg game in which the central estimator
acts as the leader and the adversarial sensors act as the follower.
We present the optimal linear fusion scheme for the estimator
and the optimal attack pattern for the adversarial sensors in
the Nash equilibrium sense. Interestingly, the estimate at the
central estimator may be better than if the measurements from
the adversarial sensors were altogether ignored.

I. INTRODUCTION
Smart personal devices equipped with a rich set of embed-

ded sensors have led to the emergence of crowd sensing in
a variety of applications such as environmental monitoring,
traffic control, social networking, and so on. In this paradigm,
a large number of sensors owned by different individuals
generate measurements for an application and share these
measurements with a central estimator. However, it may be
costly for participants to serve as sensors. Not only may
it consume resources such as power for measurement and
transmission, there may also be a potential privacy hazard.
Since the sensors do not belong to the central estimator, an
important challenge for the central estimator is to design
a mechanism to incentivize the sensors to generate and
transmit measurements of sufficient quality.
A review of various incentive mechanisms that have been

proposed for this purpose, including both monetary and non-
monetary incentives, is provided in [1] and [2]. More specif-
ically, systems based on micro-payments [3], reputations [4]
[5] and auctions [6] [7] [8] have been discussed in the
literature. One common assumption in early works in this
direction was that sensors (more precisely, their owners) are
truthful, in that they do not provide false measurements on
purpose to ‘game’ the system and either gain more payment
or degrade the estimate at the central estimator. Lately,
strategic sensors, that can be untruthful in order to maximize
their utilities, have also been considered. As an example, the
work [9] studied selfish sensors who can transmit falsified
information to increase their compensation.
Yet, sensors may also be adversarial in that their utility

increases with the degradation in the quality of the estimate
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at the central estimator. This may be the case if the sensor
benefits from particular actions that the central estimator may
take due to its estimate being inaccurate, e.g., in a traffic
estimation and control setting. Clearly, if all sensors are
adversarial, the central estimator will not be able to obtain
an estimate with bounded error (unless the falsification costs
for the sensors are very high). We consider a setting in which
only one sensor is adversarial and ask the question if it is
possible to design a fusion scheme in which the central
estimator can gain by including the (possibly erroneous)
measurements from the adversarial sensor.
To this end, we formulate a Stackelberg game in which

the central estimator acts as the leader and declares its
fusion algorithm. The sensors act as the followers and choose
their data to transmit. We solve the game by finding the
subgame perfect Nash equilibrium (SPNE). We show that
it is unique and always exists. In the SPNE, we show
that the estimate at the central estimator can improve by
including the information from the adversarial sensor as
compared to simply discarding it. We also study the role of
information availability at the adversarial sensor and show
that the adversarial sensor can degrade the estimate at the
central estimator more if she has access to the observations
from the other sensors.
There are several streams of work that are relevant. The

literature on CPS security in general, and security with
malicious attackers in an estimation problem in particular,
is now quite well developed (e.g., see [10], [11], [12], [13]).
In this stream, our work is closest to those that model the
problem as a game (e.g., [14] [15]); yet our formulation is
quite different. As mentioned above, a different stream is
the one inspired by crowdsensing and incentive design to
obtain accurate data; however, these works do no consider
adversarial sensors in general. Works on the Byzantine
general problem consider adversarial sensors [16] [17], yet
there does not seem to be a comprehensive game theoretic
study of the problem. The work closest to ours seems to
be [16], which studies estimation with an adversarial sensor
that can arbitrarily change its reported data and designs an
approach based on hypothesis testing to decide whether the
data from the adversarial sensor should be used. Unlike [16],
we set up a game theoretical model in which the adversarial
sensor is assigned a utility function that guides its strategy.
Although the utility function that we consider in this work is
quite specific, the framework allows for more general utility
functions in which the sensor wishes to degrade the estimate
of the central estimator according to various metrics.
The rest of this paper is organized as follows. In Section II,
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the problem statement is presented and a Stackelberg game
between the central estimator and the adversarial sensor is
formulated. In Section III, we find the SPNE under two
different scenarios and present the main results. Some further
discussions are presented in Section IV. In Section V, we
conclude the paper with some avenues for future work.
Notation: θ̂ denotes an estimate of the parameter θ. The

Gaussian pdf is denoted by N (m,σ2) where m is the mean
and σ is the standard deviation. The expectation of a random
variable X is denoted by E[X]. The conditional expectation
of a random variable X given another random variable Y
is shown by E[X|Y ]. All variables are real-valued unless
mentioned otherwise.

II. PROBLEM STATEMENT

We consider a centralized static estimation problem in
which a central estimator uses observations from two sensors
to estimate an unknown deterministic parameter θ ∈ R.
Section III-D considers the case of N > 2 sensors. We
consider the following model:

x1 = θ + v1, (1)

x2 = θ + v2, (2)

where x1 and x2 are observations of θ obtained by sensor
1 and sensor 2 separately; v1 and v2 are independent and
identically distributed (i.i.d.) noises with v1, v2 ∼ N (0,σ2).
Clearly, the minimum variance unbiased (MVU) estimate of
θ using x1 and x2 would, in general, have lower error vari-
ance than the one obtained using either of the measurements
alone.
The central estimator asks the two sensors to report their

measurements. Denote by xr1 and xr2, respectively, the
measurements that sensor 1 and sensor 2 report to the central
estimator. In general, xri ̸= xi. The central estimator is
interested in calculating the minimum variance unbiased
(MVU) estimate of θ. If xri = xi, i = 1, 2, then this estimate

is given by θ̂g =
xr1 + xr2

2
with variance =

σ2

2
, which is

also the Cramer-Rao lower bound (CRLB) for the problem.
We now present the utility functions and strategy spaces

of various decision makers.
• Sensor 1 is denoted as the loyal sensor. Its utility

function is assumed to be U1 = constant and its strategy
space is the choice of xr1. Given that its utility function
is independent of its strategy, we assume xr1 = x1.

• Sensor 2 is the adversarial sensor. Its strategy space is
to choose xr2. We consider two separate scenarios:
1) Scenario S1: xr2 is a function of both x1 and x2.
2) Scenario S2: xr2 is a function of x2 alone.

The utility function for this sensor is given by

Ua = (θ̂g − θ̂a)
2 − β(xr2 − x2)

2, (3)

where θ̂g denotes the MVU estimate calculated by the
central estimator using xr1 and xr2, θ̂a is the MVU
estimate of θ calculated by sensor 2 using the informa-
tion she has access to, and β > 0 is a parameter that is

used to calculate the falsification cost. For future use,
we denote by ϵ = xr2 − x2 the amount of falsification
introduced by sensor 2.

• The central estimator seeks to calculate the MVU esti-
mate θ̂g of θ using xr1 and xr2. We limit ourselves to
the case when

θ̂g = w1xr1 + w2xr2, (4)

where w1 and w2 are weights designed by the central
estimator as its strategy. The utility function of the
central estimator is denoted by Uestimator = −var(θ̂g).

We make the following assumptions:
(i) Constants such as β and σ2, as well as the form of

utility functions, are public knowledge.
(ii) The decision makers are risk neutral. Thus, sensor 2

seeks to maximize E[Ua] and the central estimator seeks to
maximize E[Uestimator].

(iii) The timeline of the problem is as shown in Fig. 1.

adversarial sensor 

CE 
announces

t0 t1 t4t3t2

loyal sensor 

ߠ

ଵݔ = ߠ + ଵݒ

ଶݔ = ߠ + ଶݒ

௥ଵݔ = ଵݔ

௥ଶݔ = ଶݔ + ߳

෠ߠ௚ = ௥ଵݔଵݓ + ௥ଶݔଶݓ
ଵݓ and ଶݓ

Fig. 1. Timeline of the Stackelberg game considered in the paper.

We are interested in a Stackelberg formulation of the
problem in which the central estimator acts as the leader
and the sensors act as the followers.
Remark 1: Note that the loyal sensor may not be a

physically separate sensor. The role of this sensor can be
played by the a priori information about θ as possessed by
the central estimator.
Remark 2: As shown in the timeline in Fig. 1, w1 and w2

are announced at time t0. The adversarial sensor chooses ϵ
at time t3 given this knowledge. The expectation on Ua in
the utility function is over v1 and v2.
Remark 3: An upper bound on performance of the central

estimator is obtained when xr1 = x1 and xr2 = x2. In this
case, as discussed earlier, θ̂g =

xr1 + xr2

2
and var(θ̂g) =

σ2

2
. A lower bound is obtained if the measurement from the

adversarial sensor is discarded, i.e., if the central estimator
sets w1 = 1 and w2 = 0. In this case, θ̂g = xr1 = x1 and
var(θ̂g) = σ2.
The problem we consider is to identify the SPNE of this

game and to identify the resulting utility functions. Subgame
perfect Nash equilibrium (SPNE) is a generalization of the
Nash equilibrium to a dynamic game. We refer the reader to
[18] for a formal definition of SPNE.

III. MAIN RESULTS

We proceed by backward induction to identify the SPNE
of the game.
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A. Scenario S1: xr2 is a function of both x1 and x2.

For the case when the adversarial sensor has access to
both x1 and x2, we have the following result.

Theorem 1: Consider the problem setting in Section II. If
the adversarial sensor can choose xr2 as a function of both
x1 and x2, the SPNE is given by the following strategies.
(i) The adversarial sensor chooses:

xr2 = x2 + ϵ = x2 +
w2

β − w2
2

(
w1x1 + w2x2 −

x1 + x2

2

)
.

(5)
(ii) The central estimator chooses:

⎧
⎪⎨

⎪⎩

w1 = w2 =
1

2
when β ≥ 1

4
,

w1 = 1− w2; w2 =
1

2
− 1

2

√
1− 4β when β <

1

4
.

(6)
(iii) At SPNE, the estimate is unbiased and the variance

is given by:

min.var(θ̂g) =

⎧
⎪⎨

⎪⎩

σ2

2 when β ≥ 1

4
,

A+B

C
σ2 when β <

1

4
,

(7)

where

A =

(
β − 1

4
+

(
1

2
β +

1

4

)√
1− 4β

)2

,

B =

(
1

2
− β − 1

2

√
1− 4β

)(
β − 1

4
+

1

4

√
1− 4β

)2

,

and C =

(
2β − 1

2
+

1

2

√
1− 4β

)2

.

(8)

Proof: Under Scenario S1, θ̂a =
x1 + x2

2
. Given w1

and w2, the utility function of adversarial sensor is

Ua =

(
w1x1 + w2 (x2 + ϵ)− x1 + x2

2

)2

− βϵ2. (9)

Setting the derivative of Ua with respect to ϵ equal to 0 yields
the best response of the adversarial sensor at time t3 as

dUa

dϵ
= 0

=⇒ ϵ =
w2

β − w2
2

(
w1x1 + w2x2 −

x1 + x2

2

)
.

(10)

For the central estimator, first we note that if the weights are
chose to satisfy the constraints w1 + w2 = 1 and w2

2 < β,
then, E[ϵ] = 0 and θ̂g is unbiased. This can be seen by noting
that E[x1] = E[x2] = θ and

E[ϵ] = w2

β − w2
2

((
w1 −

1

2

)
E[x1] + (w2 −

1

2
)E[x2]

)

= 0
(11)

when w1 + w2 = 1. Hence

E[θ̂g] = E[w1x1 + w2xr2]

= E[w1x1 + w2x2 + w2ϵ]

= (w1 + w2)θ = θ.

(12)

Now, we have two possible cases.

• If β ≥ 1

4
, the optimal strategy of the central estimator

is w1 = w2 =
1

2
. This can be seen by noting that

according to (10), w1 = w2 =
1

2
yields ϵ = 0. Further

with this choice,

θ̂g =
x1 + xr2

2
=

x1 + x2

2
, (13)

which is an unbiased estimate that attains the CRLB.
• If β <

1

4
, the optimal strategy of the central estimator

is given by w1 =
1

2
+
1

2

√
1− 4β, w2 =

1

2
− 1

2

√
1− 4β.

This can be noted by observing that,

xr2 = x2 + ϵ

= x2 +
w2

β − w2
2

(w1 −
1

2
)x1 +

w2

β − w2
2

(w2 −
1

2
)x2

=
w2(w1 − 1

2 )

β − w2
2

x1 +
β − 1

2w2

β − w2
2

x2.

(14)

Thus, the global estimate θ̂g is given by

θ̂g = w1x1 + w2xr2

=
βw1 − 1

2w
2
2

β − w2
2

x1 +
w2(β − 1

2w2)

β − w2
2

x2.
(15)

Given that x1 and x2 are independent and w1+w2 = 1,
we can write

var(θ̂g) =
(βw1 − 1

2w
2
2)

2 + w2
2(β − 1

2w2)2

(β − w2
2)

2

=
(β(1− w2)− 1

2w
2
2)

2 + w2
2(β − 1

2w2)2

(β − w2
2)

2
.

(16)

Note that var(θ̂g) is convex over w2. Taking the deriva-

tive dvar( ˆθg)
dw2

= 0 yields a cubic equation with three

real roots. We choose the root w2 =
1

2
− 1

2

√
1− 4β

which satisfies w2
2 < β. The weight w1 is then given by

w1 = 1−w2. Replacing w2 in (16) with
1

2
− 1

2

√
1− 4β

yields (7). Notice here that w2
2 < β and hence Ua is

concave over ϵ and (10) yields the maximum of Ua.

Remark 4: When the adversarial sensor has access to x1,
her optimal falsification ϵ is an affine function of x1 and x2.
Remark 5: The subgame perfect Nash equilibrium is

unique.
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B. Scenario S2: xr2 is a function of x2 only
For the case when the adversarial sensor only has access

to x2, we have the following result.
Theorem 2: Consider the problem setting in Section II. If

the adversarial sensor can choose xr2 as a function of x2

only, the SPNE is given by the following strategies.
(i) The adversarial sensor chooses:

xr2 = x2 + ϵ = x2 +
w2

β − w2
2

(w1 + w2 − 1)x2. (17)

(ii) The central estimator chooses:
⎧
⎪⎨

⎪⎩

w1 = w2 =
1

2
when β ≥ 1

4
,

w1 = 1− w2; w2 =
√
β when β <

1

4
.

(18)

(iii) At SPNE, the estimate is unbiased and the variance
is given by:

inf.var(θ̂g) =

⎧
⎪⎨

⎪⎩

σ2

2 when β ≥ 1

4
,

((1−
√
β)2 + β)σ2 when β <

1

4
.

(19)
Proof: When the adversarial sensor does not have

access to x1, θ̂a = x2. Given w1 and w2, the expected utility
of the adversarial sensor can be written as

E[Ua] =E[(w1x1 + w2xr2 − x2)
2 − βϵ2]

=E[w2
2ϵ

2 + 2(w1x1 + w2x2 − x2)w2ϵ

+ (w1x1 + w2x2 − x2)
2 − βϵ2].

(20)

The expectation is over x1. Since x1 is unknown to the
adversarial sensor, E[x1|x2] = θ̂a = x2 is the maximum
likelihood estimate for x1. Hence,

E[Ua] =(w2
2 − β)ϵ2 + 2(w1 E[x1] + w2x2 − x2)w2ϵ

+ E[(w1x1 + w2x2 − x2)
2]

=(w2
2 − β)ϵ2 + 2(w1x2 + w2x2 − x2)w2ϵ

+ E[(w1x1 + w2x2 − x2)
2].

(21)

Setting dE[Ua]
dϵ = 0 yields the best response of the adversarial

sensor at t3.

dE[Ua]

dϵ
= 0

=⇒ 2(w2
2 − β)ϵ+ 2(w1x2 + w2x2 − x2)w2 = 0

=⇒ ϵ =
w2

β − w2
2

(w1 + w2 − 1)x2.

(22)

For the central estimator, we again note that if w1 +w2 = 1
and w2

2 < β, then, ϵ = 0 and θ̂g is unbiased. Now we have
two possible cases.

• If β ≥ 1

4
, the optimal strategy of the central estimator

is w1 = w2 =
1

2
. This can be seen by noting that

according to (22), w1 = w2 =
1

2
yields ϵ = 0. Further

with this choice,

θ̂g =
x1 + xr2

2
=

x1 + x2

2
, (23)

which is an unbiased estimate that attains the CRLB.
• If β <

1

4
, the optimal strategy of the central estimator

is given by w1 = 1 −
√
β and w2 =

√
β. This can be

noted by observing that,

θ̂g = w1x1 + w2xr2

= w1x1 + w2x2.
(24)

Since x1 and x2 are independent and w1 + w2 = 1,

var(θ̂g) = (1− w2)
2 + w2

2, (25)

which is monotonically decreasing over w2 that satisfies
w2

2 < β for any β <
1

4
. Taking the infimum provides

the desired result. Notice here that w2
2 < β and hence

Ua is concave over ϵ and (22) yields the maximum of
Ua.

Remark 6: Even when the adversarial sensor does not have
access to x1, her optimal falsification ϵ remains an affine
function of her observation x2. Further if w1 + w2 = 1, the
optimal falsification is 0.

C. Comparison of the two scenarios
A numerical example for Scenario S1 and S2 is shown in

Fig. 2 with β =
1

5
. The variance of the global estimate (16)

under Scenario S1 and the variance of the global estimate
(25) under Scenario S2 are plotted as functions of w2. We can
see that the variance under Scenario S2 is lower throughout
than the one under Scenario S1. This suggests that more
information at the adversarial sensor allows it to degrade the
estimate at the central estimator more. We have the following
result.

−0.4 −0.2 0.0 0.2 0.4

0.
5

1.
0

1.
5

2.
0

w2

va
r(

θ g)
σ2

Scenario S1 
Scenario S2

Fig. 2. A numerical example of β = 1
5 . The variance of the global estimate

(16) under Scenario S1 and the variance of the global estimate (25) under
Scenario S2 are plotted as functions of w2.

Corollary 1: If β ≥ 1

4
, the central estimator can obtain

an unbiased estimate that attains Cramer-Rao lower bound
by choosing w1 = w2 =

1

2
, irrespective of whether the

adversarial sensor has access to x1 or not. If β <
1

4
, the

central estimator can obtain an unbiased estimate under both
scenarios; however, it can obtain an unbiased estimate with
a lower error variance if the adversarial sensor does not have
access to x1 than if the adversarial sensor has access to x1.
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Proof: The proof follows from Theorem 1 and Theorem
2 (specifically, (7) and (19)) in a straightforward manner. A
pictorial description of the minimum variances for all β <

1

4
is also given in Fig. 3.
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0
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β

m
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. v
ar

(θ
g)

σ2

Scenario S1 
Scenario S2

Fig. 3. Minimum variances of the global estimates obtained under both
the scenarios for all 0 < β <

1

4
. Note that the minimum variance under

Scenario S2 (when the adversarial sensor has less information) is always
less than the one under Scenario S1.

Remark 7: For all β > 0, whether or not the adversarial
sensor has access to x1, the central estimator can find an
optimal strategy that linearly fuses the reported values from
the adversarial and the loyal sensors, and yields an unbiased
estimate with variance smaller than the variance attained by
using the measurement from the loyal sensor only.

D. A general case

The arguments above generalize to the case when there
exist n > 1 loyal sensors for which xr1 = x1, xr2 =
x2, ..., xrn = xn and 1 adversarial sensor. The basic idea
is that the central estimator can first fuse the n loyal sensors
with identical weights to obtain one equivalent loyal sensor.
Specifically, the central estimator forms

θ̂g = w1x1 + w2x2 + ...+ wnxn + wn+1xr(n+1)

=
n∑

i=1

wloyal

n
xi + wn+1xr(n+1).

(26)

The expected utility of the adversarial sensor thus becomes

E[Ua] = E[(θ̂g − θ̂a)
2 − βϵ2]

= E[(
n∑

i=1

wloyal

n
xi + wn+1xr(n+1) − θ̂a)

2 − βϵ2]

= E[(
n∑

i=1

wloyal

n
xi + wn+1xn+1 + wn+1ϵ− θ̂a)

2 − βϵ2].

(27)

E[Ua] is concave if and only if

w2
n+1 < β. (28)

Setting dE[Ua]
dϵ = 0 yields the best response of the adversarial

sensor.
dE[Ua]

dϵ
= 0

=⇒ 2(w2
n+1 − β)ϵ

+ 2(
n∑

i=1

wloyal

n
xi + wn+1xn+1 − θ̂a)wn+1 = 0

=⇒ ϵ =
wn+1

β − w2
n+1

(
n∑

i=1

wloyal

n
xi + wn+1xn+1 − θ̂a).

(29)
In this general case, the unbiased estimate that attains the

Cramer-Rao lower bound is given by

θ̂a =

∑n
i=1 xi + xn+1

n+ 1
. (30)

We summarize the result below.
Theorem 3: Consider the formulation in Section II but

with n loyal sensors and 1 adversarial sensor.
1) Scenario S1: When the adversarial sensor has access to∑n
i=1 xi,
• The optimal strategy of the adversarial sensor in the

SPNE is given by
xr(n+1) = xn+1 + ϵ

= xn+1 +
wn+1

β − w2
n+1

(
n∑

i=1

wloyal

n
xi

+ wn+1xn+1 −
∑n

i=1 xi + xn+1

n+ 1
).

(31)

• If wloyal + wn+1 = 1 and w2
n+1 < β, then E[ϵ] = 0.

• The optimal strategy of the central estimator in the
SPNE is given by
⎧
⎪⎨

⎪⎩

wi = wn+1 = 1
n+1 , β ≥ 1

(n+ 1)2
,

wi =
1− wn+1

n
; wn+1 = A, β <

1

(n+ 1)2
,

(32)
where A =

1

n+ 1
− 1

n+ 1

√
1− (n+ 1)2β and i =

1, 2, ..., n.
2) Scenario S2: When the adversarial sensor only has

access to xn+1,
• The optimal strategy of the adversarial sensor in the

SPNE is given by
xr(n+1) = xn+1 + ϵ

= xn+1 +
wn+1

β − w2
n+1

(
n∑

i=1

wloyal

n

+ wn+1 − 1)xn+1.

(33)

• If wloyal + wn+1 = 1 and w2
n+1 < β, then ϵ = 0.

• The optimal strategy of the central estimator in the
SPNE is given by
⎧
⎪⎨

⎪⎩

wi = wn+1 = 1
n+1 , β ≥ 1

(n+ 1)2
,

wi =
1− wn+1

n
; wn+1 =

√
β, β <

1

(n+ 1)2
,

(34)
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where i = 1, 2, ..., n.
3) If β ≥ 1

(n+1)2 , the central estimator can obtain an unbi-
ased estimate that attains the CRLB by setting wi = wn+1 =

1

n+ 1
, i = 1, 2, ...n in either scenario. If β <

1

(n+ 1)2
, the

central estimator can obtain an unbiased estimate with lower
variance under Scenario S2 than under Scenario S1.
An illustration of n = 10 loyal sensors and 1 adversarial

sensor is presented in Fig. 4, which shows the minimum
variance of the global estimate under Scenario S2 is always
less than the one under Scenario S1 for all 0 < β <

1

(n+ 1)2
.
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Fig. 4. Minimum variances of the global estimates obtained under both
the scenarios for all 0 < β <

1

121
with n = 10 loyal sensors and

1 adversarial sensor. Note that the minimum variance under Scenario S2
(when the adversarial sensor has less information) is always less than the
one under Scenario S1.

IV. FURTHER DISCUSSION

We note that the SPNE above automatically satisfies the
individual rationality constraint. The adversarial sensor has
non-negative utility if she plays her best response. Specifi-
cally, her utility in the subgame perfect Nash equilibrium is
given by

Uopt
a =

(w1x1 + w2x2 − θ̂a)2β

β − w2
2

, (35)

which is non-negative since β > 0 and w2
2 < β.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered a formulation in which a
central estimator seeks to estimate an unknown deterministic
parameter using reported measurements from a loyal sensor
and an adversarial sensor. We formulated a Stackelberg game
in which the central estimator acts as the leader and the
adversarial sensor acts as the follower. The Stackelberg game
is solved by finding the subgame perfect Nash equilibrium.
We show that the falsification of the adversarial sensor can be
restricted. Interestingly, we found that the central estimator
can obtain a better estimate by fusing the information from
the adversarial sensor rather than simply discarding it. When
the falsification cost is high enough, the central estimator
can obtain an unbiased estimate that attains the Cramer-
Rao lower bound. When the falsification cost is low, we
present a mechanism that guarantees the best response of

the adversarial sensor is truthfully reporting if she does not
have access to measurements from the other sensor. If the
adversarial sensor has access to measurements from the other
sensor, we provided the optimal linear fusion scheme for
the central estimator to obtain an unbiased estimate with
minimum variance. We also considered a general case where
there exist multiple loyal sensors and one adversarial sensor.
Future work will involve considering multiple adversarial
sensors and dynamic estimation. Also of interest would be
simultaneously considering selfish sensors and adversarial
sensors.
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