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Abstract— Consider a setup in which a central estimator
seeks to estimate an unknown deterministic parameter using
measurements from multiple sensors. Some of the sensors may
be adversarial in that their utility increases with the Euclidean
distance between the estimate of the central estimator and
their own local estimate. These sensors may misreport their
measurements to the central estimator at a falsification cost. We
formulate a Stackelberg game in which the central estimator
acts as the leader and the adversarial sensors act as the follower.
We present the optimal linear fusion scheme for the estimator
and the optimal attack pattern for the adversarial sensors in
the Nash equilibrium sense. Interestingly, the estimate at the
central estimator may be better than if the measurements from
the adversarial sensors were altogether ignored.

I. INTRODUCTION

Smart personal devices equipped with a rich set of embed-
ded sensors have led to the emergence of crowd sensing in
a variety of applications such as environmental monitoring,
traffic control, social networking, and so on. In this paradigm,
a large number of sensors owned by different individuals
generate measurements for an application and share these
measurements with a central estimator. However, it may be
costly for participants to serve as sensors. Not only may
it consume resources such as power for measurement and
transmission, there may also be a potential privacy hazard.
Since the sensors do not belong to the central estimator, an
important challenge for the central estimator is to design
a mechanism to incentivize the sensors to generate and
transmit measurements of sufficient quality.

A review of various incentive mechanisms that have been
proposed for this purpose, including both monetary and non-
monetary incentives, is provided in [1] and [2]. More specif-
ically, systems based on micro-payments [3], reputations [4]
[5] and auctions [6] [7] [8] have been discussed in the
literature. One common assumption in early works in this
direction was that sensors (more precisely, their owners) are
truthful, in that they do not provide false measurements on
purpose to ‘game’ the system and either gain more payment
or degrade the estimate at the central estimator. Lately,
strategic sensors, that can be untruthful in order to maximize
their utilities, have also been considered. As an example, the
work [9] studied selfish sensors who can transmit falsified
information to increase their compensation.

Yet, sensors may also be adversarial in that their utility
increases with the degradation in the quality of the estimate
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at the central estimator. This may be the case if the sensor
benefits from particular actions that the central estimator may
take due to its estimate being inaccurate, e.g., in a traffic
estimation and control setting. Clearly, if all sensors are
adversarial, the central estimator will not be able to obtain
an estimate with bounded error (unless the falsification costs
for the sensors are very high). We consider a setting in which
only one sensor is adversarial and ask the question if it is
possible to design a fusion scheme in which the central
estimator can gain by including the (possibly erroneous)
measurements from the adversarial sensor.

To this end, we formulate a Stackelberg game in which
the central estimator acts as the leader and declares its
fusion algorithm. The sensors act as the followers and choose
their data to transmit. We solve the game by finding the
subgame perfect Nash equilibrium (SPNE). We show that
it is unique and always exists. In the SPNE, we show
that the estimate at the central estimator can improve by
including the information from the adversarial sensor as
compared to simply discarding it. We also study the role of
information availability at the adversarial sensor and show
that the adversarial sensor can degrade the estimate at the
central estimator more if she has access to the observations
from the other sensors.

There are several streams of work that are relevant. The
literature on CPS security in general, and security with
malicious attackers in an estimation problem in particular,
is now quite well developed (e.g., see [10], [11], [12], [13]).
In this stream, our work is closest to those that model the
problem as a game (e.g., [14] [15]); yet our formulation is
quite different. As mentioned above, a different stream is
the one inspired by crowdsensing and incentive design to
obtain accurate data; however, these works do no consider
adversarial sensors in general. Works on the Byzantine
general problem consider adversarial sensors [16] [17], yet
there does not seem to be a comprehensive game theoretic
study of the problem. The work closest to ours seems to
be [16], which studies estimation with an adversarial sensor
that can arbitrarily change its reported data and designs an
approach based on hypothesis testing to decide whether the
data from the adversarial sensor should be used. Unlike [16],
we set up a game theoretical model in which the adversarial
sensor is assigned a utility function that guides its strategy.
Although the utility function that we consider in this work is
quite specific, the framework allows for more general utility
functions in which the sensor wishes to degrade the estimate
of the central estimator according to various metrics.

The rest of this paper is organized as follows. In Section II,



the problem statement is presented and a Stackelberg game
between the central estimator and the adversarial sensor is
formulated. In Section III, we find the SPNE under two
different scenarios and present the main results. Some further
discussions are presented in Section IV. In Section V, we
conclude the paper with some avenues for future work.

Notation: 6 denotes an estimate of the parameter 6. The
Gaussian pdf is denoted by N (m, o?) where m is the mean
and o is the standard deviation. The expectation of a random
variable X is denoted by E[X]. The conditional expectation
of a random variable X given another random variable Y
is shown by E[X|Y]. All variables are real-valued unless
mentioned otherwise.

II. PROBLEM STATEMENT

We consider a centralized static estimation problem in
which a central estimator uses observations from two sensors
to estimate an unknown deterministic parameter § € R.
Section III-D considers the case of N > 2 sensors. We
consider the following model:

ey
@

where x; and xo are observations of # obtained by sensor
1 and sensor 2 separately; v; and ve are independent and
identically distributed (i.i.d.) noises with vy, vs ~ N(0, 02).
Clearly, the minimum variance unbiased (MVU) estimate of
0 using x1 and x5 would, in general, have lower error vari-
ance than the one obtained using either of the measurements
alone.

The central estimator asks the two sensors to report their
measurements. Denote by x,; and x,9, respectively, the
measurements that sensor 1 and sensor 2 report to the central
estimator. In general, z,; # x;. The central estimator is
interested in calculating the minimum variance unbiased
(MVU) estimate of . If z,.;, = z;,7 = 1, 2, then this estimate
Tr1 + Tr2 2

r1 =0+ vy,

To = 0 + v,

is given by ég = with variance = —, which is
also the Cramer-Rao lower bound (CRLB) for t%le problem.

We now present the utility functions and strategy spaces
of various decision makers.

e Sensor 1 is denoted as the loyal sensor. Its utility
function is assumed to be U; = constant and its strategy
space is the choice of z,.1. Given that its utility function
is independent of its strategy, we assume x,; = .
Sensor 2 is the adversarial sensor. Its strategy space is
to choose x,2. We consider two separate scenarios:

1) Scenario Si: x,2 is a function of both z; and x».

2) Scenario Ss: 2,9 is a function of x5 alone.

The utility function for this sensor is given by

Us = (0 — 0a)% — B2y — 22)?, 3)

where ég denotes the MVU estimate calculated by the
central estimator using x,; and x,2, 6, is the MVU
estimate of @ calculated by sensor 2 using the informa-

tion she has access to, and 5 > 0 is a parameter that is
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used to calculate the falsification cost. For future use,
we denote by € = x,92 — x5 the amount of falsification
introduced by sensor 2.

The central estimator seeks to calculate the MVU esti-
mate ég of 0 using z,; and x,.o. We limit ourselves to
the case when

Og = w1xr1 + Wy,

“4)

where w; and wy are weights designed by the central
estimator as its strategy. The utility function of the
central estimator is denoted by Uestimator = fvar(ég).

We make the following assumptions:

(i) Constants such as # and o2, as well as the form of
utility functions, are public knowledge.

(i) The decision makers are risk neutral. Thus, sensor 2
seeks to maximize E[U,] and the central estimator seeks to
maximize E[Uestimator)-

(iii) The timeline of the problem is as shown in Fig. 1.

Oy = WiXpy + Wakpy

announces
wy and w,

adversarial sensor

Fig. 1. Timeline of the Stackelberg game considered in the paper.

We are interested in a Stackelberg formulation of the
problem in which the central estimator acts as the leader
and the sensors act as the followers.

Remark 1: Note that the loyal sensor may not be a
physically separate sensor. The role of this sensor can be
played by the a priori information about 6 as possessed by
the central estimator.

Remark 2: As shown in the timeline in Fig. 1, w; and wy
are announced at time ty. The adversarial sensor chooses €
at time ¢3 given this knowledge. The expectation on U, in
the utility function is over v; and vs.

Remark 3: An upper bound on performance of the central
estimator is obtained when z,; = 21 and x,o = x5. In this

case, as discussed earlier, ég _ I ;wﬂ

2
U—. A lower bound is obtained if the measurement from the
aaversarial sensor is discarded, i.e., if the central estimator
sets w; = 1 and wo = 0. In this case, ég = 2,1 = x; and
var(d,) = o>.

The problem we consider is to identify the SPNE of this
game and to identify the resulting utility functions. Subgame
perfect Nash equilibrium (SPNE) is a generalization of the
Nash equilibrium to a dynamic game. We refer the reader to
[18] for a formal definition of SPNE.

III. MAIN RESULTS

We proceed by backward induction to identify the SPNE
of the game.

and var(f,) =



A. Scenario S1: x,o is a function of both x1 and xs.

For the case when the adversarial sensor has access to
both z; and z2, we have the following result.

Theorem 1: Consider the problem setting in Section II. If
the adversarial sensor can choose x,o as a function of both
21 and z9, the SPNE is given by the following strategies.

(i) The adversarial sensor chooses:

W2 g, — LT T2
B g VT T wa 5 :
(5)

Typo = To + € = To +

(>ii) The central estimator chooses:

1 1
w1:w2:§ when 6217
1 1 1
wy =1 — ws; w2=§—§\/1—45 when ﬁ<1.

(6)
(iii) At SPNE, the estimate is unbiased and the variance
is given by:

: 1
"72 when > —,

A+B 1 )
%02 when ﬂ<1’

min.var(f,) =

where

Proof- Under Scenario Sy, 0, = T1 + X2

and wo, the utility function of adversarial sensor is

. Given w;

2
1+
U, = (wlxl + wy (23 +€) — %) A )
Setting the derivative of U, with respect to € equal to 0 yields
the best response of the adversarial sensor at time t3 as

av,

0
de

— € =

T+ X2 (10)
5 .

w2
= w% (wlml + woxo —
For the central estimator, first we note that if the weights are
chose to satisfy the constraints w; + we = 1 and w% < B,
then, E[e] = 0 and ég is unbiased. This can be seen by noting
that E[z;1] = E[z2] = 0 and

i = 52 (w1 5 ) Bloal + (w2 - ) Bl
=0

(1)

when w; + wy = 1. Hence
E[fy) = Elwi1 + wy,s)]
= E[wix1 + wazs + wae]
= (w1 +w2)f =46.

12)

Now, we have two possible cases.

1 . .
o If 5> T the optimal strategy of the central estimator

1
is wy = wy = 7 This can be seen by noting that

according to (10), w; = wy = 5 yields € = 0. Further
with this choice,

A T1+Xr2 X1+ X2
6(] = = s
: 2 2
which is an unbiased estimate that attains the CRLB.

o If B < T the optimal strategy of the central estimator

11 1 1
isgivenbyw1:§+§\/1f4 71112:575\/174@

This can be noted by observing that,

13)

Tpg = T2 + €

L B I B
*m2+ﬁ_w%(w1 2)$1+B_wg(w2 2)902
wa(wy — 3) B — 3ws
= 22 x| + 2 5 T2.
B — ws B — ws
14
Thus, the global estimate ég is given by
ég = W1T1 + Walyp2
Bwy — %w% wo (B — %wg) (15)
= X

B —w; B — w3
Given that x; and x, are independent and wy + w9 = 1,
we can write

(Bwy — 3w3)? +wi(B — 3ws)”
(8 —w3)?
(B(1 — w) — 5w})? + wi(B — 3wa)?
(B8 —w3)? '

var(ég) =

16)

Note that var(f,) is convex over wy. Taking the deriva-

tive W%wg) = 0 yields a cubic equation with three
w2

real roots. We choose the root wy = % - % 1—4p
which satisfies w2 < 3. The weight w; is then given by
wy = 1 —waq. Replacing ws in (16) with 573 1—-4p
yields (7). Notice here that w3 < 3 and hence U, is
concave over € and (10) yields the maximum of U,.

|

Remark 4: When the adversarial sensor has access to x,

her optimal falsification € is an affine function of x; and 5.

Remark 5: The subgame perfect Nash equilibrium is
unique.



B. Scenario Sy: x9 is a function of x5 only

For the case when the adversarial sensor only has access
to z2, we have the following result.

Theorem 2: Consider the problem setting in Section II. If
the adversarial sensor can choose z,o as a function of xo
only, the SPNE is given by the following strategies.

(i) The adversarial sensor chooses:

w
3372:.73’24‘6:332"-722(101 +ws — Dae.  (17)
B — w;
(i1) The central estimator chooses:
1 1
wy =wg =~ when (> —,
2 4 (18)

1
wy =1—wy; we=+/F when ﬁ<1.

(iii) At SPNE, the estimate is unbiased and the variance
is given by:

inf.var(6,) =

(19)

Proof: When the adversarial sensor does not have

access to x1, 6, = x5. Given w; and wo, the expected utility
of the adversarial sensor can be written as

E[Ua} :E[(w1x1 + Wokypo — .T2)2 — 562]
=E[w3e? + 2(w1 21 + wary — T2)wye

+ (wimy + waxy — 22)? — BE?.

(20)

The expectation is over xj. Since z; is unknown to the
adversarial sensor, E[z1]zs] = 0, = x2 is the maximum
likelihood estimate for z;. Hence,

E[Ua] =(w3 — B)€® + 2(w1 E[z1] 4+ wamy — x2)wae
+ E[(w1z1 + wozo — 2)?
:(wg - ﬁ)EQ + 2(wrme + woxos — T2)wae

+ E[(wyz1 + wozy — 22)?).

3y

Setting % = ( yields the best response of the adversarial
sensor at ts.
dE[U,]
——al _
de

— 2(w3 — B)e + 2(wiwg + woxy — T2)wy =0 (22)

2
= €= 2(’(1)1+1U2—1):172.

w
8- w3y
For the central estimator, we again note that if w; +wy =1
and wg < 3, then, € = 0 and 6, is unbiased. Now we have
two possible cases.

1
o If 5> & the optimal strategy of the central estimator

s wp = wy = 7 This can be seen by noting that

1
according to (22), w; = wy = 5 yields € = 0. Further
with this choice,

A T1+Tr2 X1+ X2
bo=—% =5

(23)
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which is an unbiased estimate that attains the CRLB.

o If 5 < T the optimal strategy of the central estimator
is given by w; = 1 — /B and wy = /B. This can be
noted by observing that,

ég = w1T1 + Waky2 24)
= w1x1 + wax2.

Since x; and x5 are independent and wy + wy = 1,

var(8,) = (1 — wa)? + w2, (25)

which is monotonically decreasing over wo that satisfies
w3 < f for any 8 < T Taking the infimum provides

the desired result. Notice here that w3 < 3 and hence
U, is concave over € and (22) yields the maximum of
U,.-

|
Remark 6: Even when the adversarial sensor does not have
access to x1, her optimal falsification € remains an affine
function of her observation x5. Further if w; + w9 = 1, the

optimal falsification is 0.

C. Comparison of the two scenarios
A numerical example for Scenario S; and S, is shown in

Fig. 2 with 8 = —. The variance of the global estimate (16)

under Scenario 551 and the variance of the global estimate
(25) under Scenario S» are plotted as functions of w». We can
see that the variance under Scenario So is lower throughout
than the one under Scenario S;. This suggests that more
information at the adversarial sensor allows it to degrade the
estimate at the central estimator more. We have the following
result.

]
3]
~
o -
=
@
§ o
—— Scenario Sy S. -
v _|| --- Scenario S, Te~al L.
o
T T T T T
-0.4 -0.2 0.0 0.2 0.4
W2

Fig. 2. A numerical example of 8 = L. The variance of the global estimate
(16) under Scenario S and the variance of the global estimate (25) under
Scenario Sa are plotted as functions of wa.

1 . .
Corollary 1: If B > —, the central estimator can obtain
an unbiased estimate that attlains Cramer-Rao lower bound
by choosing w; =

Wy = > irrespective of whether the

1, the
central estimator can obtain an unbiased estimate under both
scenarios; however, it can obtain an unbiased estimate with
a lower error variance if the adversarial sensor does not have
access to x7 than if the adversarial sensor has access to x7.

adversarial sensor has access to x; or not. If § <



Proof: The proof follows from Theorem 1 and Theorem
2 (specifically, (7) and (19)) in a straightforward manner. A

pictorial description of the minimum variances for all § < —

is also given in Fig. 3. ]
Q]
«©
o~ o
o
= «©
(@ o |
SR
c°
€ o
° —— Scenario Sy
S _||--- Scenario S,
e T T T T T
0.00 0.05 0.10 0.15 0.20 0.25
B
Fig. 3.  Minimum variances of the global estimates obtained under both

the scenarios for all 0 < 8 < —. Note that the minimum variance under

Scenario Sa (when the adversarial sensor has less information) is always
less than the one under Scenario S7.

Remark 7: For all S > 0, whether or not the adversarial
sensor has access to xp, the central estimator can find an
optimal strategy that linearly fuses the reported values from
the adversarial and the loyal sensors, and yields an unbiased
estimate with variance smaller than the variance attained by
using the measurement from the loyal sensor only.

D. A general case

The arguments above generalize to the case when there
exist n > 1 loyal sensors for which z,1 = x1,2,0 =
9, ...,Trn = X, and 1 adversarial sensor. The basic idea
is that the central estimator can first fuse the n loyal sensors
with identical weights to obtain one equivalent loyal sensor.
Specifically, the central estimator forms

0y = w11 + WoTy + ... + WpTp + Wnp1Tr(nt1)

n
Wioya (26)
= Z %xz + Wn41Tr(n+1)-

i=1
The expected utility of the adversarial sensor thus becomes

E[Ud] = E[(f; — 0a)° — 5¢]

n

Wioyal i
= E[(Z %l’z t Wnp1Tr(ny1) — 0@)2 - 562}

i=1
n
wy 1 ~
= E[(Z; i Wn 1Tt + Wopre — 00)” — Be7).
@7
E[U,] is concave if and only if
wh iy < B. 8)

Setting % = 0 yields the best response of the adversarial
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SENsor.

dE[U,]
- 0 = 0
de
- 2(wi+1 — B)E
. Wioyal ~
+ 2(2 — i + Wn1Zng1 — Oa)Wny1 =0
=1
n

v
€= Wn+1 ( Wioyal

= 2
B = wi - "

Xg + Wn4+1Tn4+1 — 9a)~

(29)
In this general case, the unbiased estimate that attains the
Cramer-Rao lower bound is given by

o i+ T
n+1
We summarize the result below.
Theorem 3: Consider the formulation in Section II but
with n loyal sensors and 1 adversarial sensor.
1) Scenario S7: When the adversarial sensor has access to
o The optimal strategy of the adversarial sensor in the
SPNE is given by

0o = (30)

Tr(nt1) = Tnt1 + €
n

Wn+1 Wioyal
Tn+1 + 5 — w%Jrl (; n s
Z?:l T + Tn+1 )
n+1 '
o If Wioyal T Wnt1 = 1 and wi_,’_l < ﬁ, then E[E] =0.
o The optimal strategy of the central estimator in the
SPNE is given by

(3D

+ Wn+1Tn+1 —

1
Wi = Wni1 = 747 ﬁ2m7
]-_w’rH—l
vi= T = A P
) ) (32)
where A = —— — ——/1—(n+1)?8 and i =
L9 n n+1l n+1

2) Scenario S: When the adversarial sensor only has
access to Tp41,

o The optimal strategy of the adversarial sensor in the
SPNE is given by

Ty(n+1) = Tn+l +e€

n
Wn+1 Wioyal
= Tpi1+ Q= 33)

2
B-wnn A
+ Wn41 — ]-)xn+l~
o If wipyar + wpg1 =1 and w2, | < S, then € = 0.
o The optimal strategy of the central estimator in the
SPNE is given by
1

- _ 1
Wi = Wn41 = 737> 5Zm»
1—wn+1 1
i = 5 n = ) < )
w - Wni1 =B, B CESIE

(34)



where ¢t = 1,2, ...,n.
HIES > L the central estimator can obtain an unbi-

J = (nd)2 .
ased estimate that attains the CRLB by setting w; = w,4+1 =
the

T 1t =1,2,...n in either scenario. If 8 < m
central estimator can obtain an unbiased estimate with lower
variance under Scenario S; than under Scenario S7.

An illustration of n = 10 loyal sensors and 1 adversarial
sensor is presented in Fig. 4, which shows the minimum
variance of the global estimate under Scenario So is always
less than the one under Scenario S; for all 0 < 8 <

1
(n+1)%

e

o S o

2 T Tee-ee e ____.___C
L
<§m 8
g s |
c
E S 4

o

Scenario S,
g |
S T \ \ \
0.000 0.002 0.004 0.006 0.008
p

Fig. 4. Minimum variances of the global estimates obtained under both
the scenarios for all 0 < 8 < —— with n = 10 loyal sensors and

1 adversarial sensor. Note that the minimum variance under Scenario S2
(when the adversarial sensor has less information) is always less than the
one under Scenario S7.

IV. FURTHER DISCUSSION

We note that the SPNE above automatically satisfies the
individual rationality constraint. The adversarial sensor has
non-negative utility if she plays her best response. Specifi-
cally, her utility in the subgame perfect Nash equilibrium is
given by .
(w11 + wamy — 0,)?

B—wi

which is non-negative since 8 > 0 and w2 < 3.

Ut = (35)

I

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered a formulation in which a
central estimator seeks to estimate an unknown deterministic
parameter using reported measurements from a loyal sensor
and an adversarial sensor. We formulated a Stackelberg game
in which the central estimator acts as the leader and the
adversarial sensor acts as the follower. The Stackelberg game
is solved by finding the subgame perfect Nash equilibrium.
We show that the falsification of the adversarial sensor can be
restricted. Interestingly, we found that the central estimator
can obtain a better estimate by fusing the information from
the adversarial sensor rather than simply discarding it. When
the falsification cost is high enough, the central estimator
can obtain an unbiased estimate that attains the Cramer-
Rao lower bound. When the falsification cost is low, we
present a mechanism that guarantees the best response of
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the adversarial sensor is truthfully reporting if she does not
have access to measurements from the other sensor. If the
adversarial sensor has access to measurements from the other
sensor, we provided the optimal linear fusion scheme for
the central estimator to obtain an unbiased estimate with
minimum variance. We also considered a general case where
there exist multiple loyal sensors and one adversarial sensor.
Future work will involve considering multiple adversarial
sensors and dynamic estimation. Also of interest would be
simultaneously considering selfish sensors and adversarial
Sensors.
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