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Abstract—Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy

consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose

a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks.

The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong

spatio-temporal predictability in real network traffic patterns. Leveraging this, we develop a novel scheme to pro-actively schedule radio

resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This

scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of

linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment

designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns,

2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on

approach, in best case, the proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better QoS.

Index Terms—5G, heterogeneous networks, small cells, energy efficiency, inter-cell interference, resource allocation, binary integer linear

programming, CDRs, big data analytics

Ç

1 INTRODUCTION

1.1 Background

IT is envisaged that network densification, a dominant
theme in 5G, is going to play a key role in coping with the

explosive mobile traffic growth. Co-channel small cells (SCs)
i.e., SCs reusing the same spectrum as macro cells (MCs), are
a preferred mode of densification since the spectrum is an
expensive and scarce resource. However, reusing the spec-
trum amongst the MCs and SCs increases ICI which, if left
un-managed, may significantly deteriorate overall network
performance [1]. Besides the ICI problem, low energy effi-
ciency (EE) is another major problem in HetNets. Although
SCs have a relatively lower power consumption profile,
one of the major concerns in the future dense deployments
is the high aggregated energy consumption. As recently
demonstrated through SC and MC power consumption
models developed in Earth project [2], always ON cells based
approach particulary increases energy inefficiency in the

network when SCs are introduced. This is because, com-
pared to MCs, the load independent power consumption
(circuit power) component in SCs constitutes a much larger
portion of over all power consumption. Therefore, a vision
for an ultra-dense network cannot become a reality without
addressing the two time-persistent challenges: higher ICI
and higher aggregated overall energy consumption stem-
ming from the classical always ON routine. In our study, we
have proposed a pro-active approach that can simulta-
neously minimize the energy consumption as well as the ICI
in emerging ultra-dense networks. This is in contrast to the
state-of-the art, that is predominantly reactive rather than
proactive. Specifically, the proposed work exploits deluge of
largely untapped Call Data Records (CDRs) data to analyze
and predict the spatio-temporal user activity behavior. This
intelligence is then utilized to dynamically optimize the
operational states of the SC (i.e., active, partially muted, or
sleep mode), to divert and focus the right amount of resour-
ces, when and where needed, while simultaneously mini-
mizing ICI and energy consumption. To the best of author’s
knowledge, this is the first study to provide a detailed analy-
sis of real CDR data and demonstrate its potential for devel-
oping a proactive energy savingmechanism.

Due to their importance, ICI mitigation and EE enhance-
ment problems have been widely studied in the literature,
initially targeting homogeneous MC only scenarios e.g., [1],
[3], [4], [5], [6], [7], [8], [9]. However, the EE or ICI solution
proposed for MCs cannot be directly used for HetNets
because of underlying differences in the power consump-
tion models of SC and MC and the interference dynamics.
For example, one reason for this inapplicability is that the
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dominant interferes for a user in the MC only network are
limited and usually not as strong as in the dense HetNet
scenario, where a SC can be very close to a MC user situated
far from the serving MC.

Focusing on the HetNets scenarios, the authors in [10],
[11] propose techniques to address SC-to-SC interference.
Although SC-to-SC interference is a notable aspect in Het-
Nets scenario, the degradation of performance for MC users
due to the interference from SCs is more critical than the
interference experienced by SC users; since there are fewer
users served by SCs as compared to MC, SC served users
are anyway allocated with more bandwidth resources.
Hence, operators have a conflict between achieving commit-
ments towards the MC users and maximizing network effi-
ciency by relying heavily on SCs. To address this challenge,
authors in [12], [13], [14] propose solutions to address inter-
ference caused by SCs to MC users.

Another line of ICI studies resorts to the spectrum parti-
tioning between cell-center and cell-edge users for instance,
as proposed by authors in [15], [16], [17], [18], [19], [20],
[21], [22], [23]. However these approaches mitigate ICI by
reducing overall capacity because of spectrum partitioning.

For joint ICI management and EE in HetNets, the studies
in [24], [25], [26], [27], [28], [29] focus on the improvement of
EE through ICI mitigation rather than directly reducing the
energy consumption by turning off the cells. Although ICI
mitigation is a reasonable approach since it reduces the
energy consumption for a given system throughput target,
however, EE of the cellular systems can be further enhanced
significantly through traffic-aware transmission strategies
as proposed in [30], [31], [32], [33], where under-utilized
BSs are recommended to switch to sleep mode or can be
turned off during off-peak time of traffic loads. The sleeping
strategies proposed in these works are recognized as prom-
ising approaches to improve the EE of the cellular system.
However, the sleep mode strategies proposed in [30], [31],
[32], [33], have not been considered in conjunction with
aforementioned ICI-mitigation.

Studies in [34], [35], [36] on the other hand investigate EE
in conjunction with ICI, albeit, for uplink transmission and
therefore focus on UEs EE. In contrast to these studies, our
work focuses on EE in the downlink which is the dominant
energy consumption factor (and the main contributor to an
operators running costs - OPEX) in cellular networks.

Furthermore, the above approaches for mitigating ICI
and enhancing EE in HetNets, may not meet the ambitious

5G QoS and resource efficiency requirements because of
their intrinsically reactive (reacting to the changes in traffic
etc, after they have occurred) design approach. Contrary to
prior studies, this paper provides a fundamentally different
approach, i.e., a proactive approach, that builds on the lines
of Big Data empowered Self Organizing Network (BSON)
vision presented for 5G in [37] leveraging CDRs to simulta-
neously minimize energy consumption and ICI in emerging
ultra-dense networks. Several studies have demonstrated
the usefulness of using real-world CDRs data in the mobile
network analysis and planning in comparison to analytical
approaches [38], [39]. The authors in [38] have performed a
spatio-temporal analysis of CDRs data collected from vari-
ous base stations in China. It has been concluded that call
arrival patterns vary over time and locations and Poisson
distribution model over 1 hour interval is inaccurate and it
has been pointed out that advance machine learning algo-
rithms can help model the phenomena more precisely.
Moreover in [39], the authors demonstrate that using real
world CDR data for mobile network and planning can learn
the insights that are not captured by smaller-scale or syn-
thetic datasets. To the best of authors’ knowledge, no other
work has exploited real CDR traces in the scheduling small
cell sleep cycles as we have done in this paper.

1.2 Leveraging the Intelligence Extractable from
CDRs for Designing Proactive ICI–EE Solution

Our study has analyzed large scale network data collected
from Milan City [40], provided by Telecom Italia as part of
their big data challenge [40]. We have performed large scale
data processing and data analytics over 10 million real net-
work CDRs and subsequently inferred a clear predictable
pattern in the spatio temporal behaviour of the network
traffic. Representative results from this analysis are illus-
trated in Figs. 1, 2, 3, and 4.

Fig. 1 shows the measurements of the aggregate real traf-
fic load over the course of one day for cells that contain a
subset of popular destinations referred to as Point Of Inter-
est (POI) versus cells that are in residential environment
referred to as non-point of interest (non-POI) coverage cells.
It is evident that calling activity has a pattern for both POI
and non-POI. For both, traffic is relatively high between
8AM till 11PM. During the quite hours of the day (between
midnight and 6am), both non-POI and POI cells have simi-
lar low activity levels. For the case of mobile data usage sim-
ilar pattern can be observed in Fig. 2 that shows the activity

Fig. 1. Calling activity for POI versus Non-POI cells for 24 hours on 7th
Dec 2013. Fig. 2. Internet activity level for non-POI (npoi) and POI cells.
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levels for morning, midday and evening times. For the early
morning case, majority of the cells are classified into the cat-
egory of low and very low activity levels. Therefore, at cer-
tain extreme (low traffic) conditions, network utilization
can become low and SCs deployed there can remain under-
utilized either due to very limited existing load or may have
to be muted when causing high interference to MC users.

Fig. 3 shows the calling and internet-usage activity pat-
tern for the whole week that exhibits a distinct periodic pre-
dictive nature with internet activity relatively very high as
compared to the calling activity. Similarly, the heat map of
this activity level is shown in Fig. 4 wherein it is observed
that the temporal variation of the traffic load has a strong
relationship with time and the geographical location.

As inferred from our exploratory data analysis, the under-
utilization of network at specific times, the clear periodicity
in spatio temporal activity of the network provides us a clear
opportunity to exploit it for energy savings as well as joint
ICI mitigation. Building upon it, we subsequently devised a
proactive sleep mode schedule strategy for SCs. A SC node,
other than the active (i.e., fully operational) mode, can be in
idle or sleep mode. Since generally there are fewer users
served by SCs, many SCs are not utilized most of the time
and the idle mode energy gets wasted; switching the node to
sleep mode can significantly reduce the energy consump-
tion. Considering the expected heavy deployment of SCs in
the near future and the dynamic traffic demands, sleep
modes pose a very promising solution to overcome the wast-
age of energy in case of low SC utilization.

While it is well-known and intuitive fact that traffic
becomes heavy during day and light during night, follow-
ing questions remain to be investigated:

1) Can CDR data, (instead of load indicators at base sta-
tion level as other studies have used) be mined to
extract meaningful traffic pattern?

2) If a minable traffic pattern exists in CDR data, what
machine learning techniques can produce accurate
traffic prediction models?

3) What is the accuracy of such prediction model?
4) Do factors such as presence of POI affect the traffic

pattern?
Several studies on energy efficiency exist that refer to

existence of day and night pattern in qualitative sense using
it as a motivation to propose an ON/OFF schemes. How-
ever, this study for the first time provides a comprehensive
quantitative analysis of the real CDR data. We mine traffic
pattern using real data to propose and analyze a proactive,
(not cyclic or reactive) ON/OFF scheme. Furthermore, we
comprehensively analyze the performance of that scheme
using a heterogeneous deployment model that takes into
account the specific traffic pattern observed in the area
where the real data was collected. This is done by placing

small cells at points that were determined to be POI as out-
come of the CDR data analysis. Therefore, another contribu-
tion of this work is the analysis of effect of POIs on the
traffic pattern. The presence of POIs changes the periodicity
pattern of the mobile network traffic and our results pro-
vides new insight on how the presence of POIs effects the
energy saving potential.

1.3 Contributions and Paper Organization

The contributions and organization of paper can be sum-
marised as follows:

1) Using a realistic HetNet system model, we mathe-
matically formulate the joint optimization problem
for minimizing the ICI and energy consumption for
the predicted traffic scenario (Section 2).

2) We propose an algorithm that exploits the base sta-
tion sleep-mode mechanism in conjunction with the
resource allocation as the optimization control varia-
bles. We then propose a heuristic low complexity
solution to solve this NP-hard problem. Our pro-
posed energy consumption aware (ECA) resource
allocation scheme addresses the limitation of fixed
time-based sleep scheduling mechanism [41] that
fails to adapt to dynamic and unusual activity, since
they are manually configured for a statistical traffic
cycle, usually during few hours of night when user
traffic is very low (Section 3).

3) We leverage the results of our big data analysis on
Milan CDRs data to propose a HetNet deployment

Fig. 3. Calling and internet activity (week 1st Dec 2013- 7th Dec 2013).

Fig. 4. Activity level map for (a) Morning, (b) Afternoon , and (c) Evening.
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scenario and evaluate the performance of the pro-
posed ECA scheme in the proposed HetNet deploy-
ment scenario, where traffic generation pattern is
derived from the real data. The results indicate that
with ECA the energy consumption could be reduced
to 1=8th in a dense heterogeneous network deployed
in a typical urban city (Section 4).

4) We further compare the proposed ECA solution
with the frequency reuse-1 scheme, through system
level simulations in NS-3. Our deterministic-load
based simulation results clearly indicate that nearly all
MC users were protected from neighboring SC inter-
ference in comparison to Reuse-1 case wherein 20 per-
cent users face outage. Moreover, during low traffic
conditions, up to 23 percent saving in the total network
power consumption can be achieved using ECA by
putting under-utilized SCs in sleepmode (Section 5).

5) We compare the complexity analysis in terms of
number of iterations between the state-of-the-art and
ECA scheme that highlights the lower complexity
and therefore, higher the practicality of the ECA
scheme (Section 5).

2 SYSTEM MODEL & PROBLEM FORMULATION

We consider a system of M þ 1 cells, as depicted in Fig. 5,
comprising one MC (identified as cell 0) and M SCs within
the MC area. The set of SCs is defined as M ¼ 1; . . . ;Mf g.
We assume that there are K active users in the system. We
consider that each user can have only one serving node, but
each cell can support multiple users; thus, K , Kj j ¼ K0[j
K1 [ KM j, where K denotes the set of all users in the system
and Km denotes the set of users served by cellm.

The total system bandwidth is divided in N resource
blocks (RBs) and each RB can be allocated to only one user
in each cell. MC can allocate all the available RBs to its asso-
ciated macro-users (MUE). Moreover, MUEs are assumed
to have minimum data rate requirements. On the other
hand, SCc reuse the same resources to serve their small cell-
users (SUE) based on a resource allocation policy. We con-
sider a central entity residing at the MC which is able to col-
lect relevant information to make resource allocation
decisions and guide SCs on the resource allocation policy to
be adopted.

We define binary indicator variables fk;m;n 2 0; 1f g,
where fk;m;n ¼ 1 when SC m serves its kth assigned user
using the nth RB; otherwise, the RB allocation parameters
take the zero value. Thus, we can define the vector contain-
ing all RB allocation parameters ff ¼ f1;1;1 . . .fK;M;N

� �

,
which characterizes the SCs’ RB allocation policy. We also
define the binary cell ON/OFF state indicator cm 2 0; 1f g,
where cm ¼ 1 indicates the active state of cell m; otherwise,
in OFF state it take the zero value. Moreover, transmit
power of the mth SC in the nth RB is denoted by
pm;n � Pmax, where Pmax is the maximum allowed transmis-
sion power of any small cell. Vector p ¼ p1;1 . . . pM;N

� �

char-
acterizes the SC power allocation policy.

2.1 User SINR and Rate Modelling

The SINR of the uth MUE at RB n in cell 0 (macrocell) can be
given by

gu;0;n ¼
p0;nG

0
u;0;n

X

M

m¼1

X

k2Km

fk;m;n

 !

pm;nG
m
u;0;n þN0B

; (1)

where p0;n denotes the transmit power of macrocell at RB n,
G
i
k;m;n is the channel gain between cell i and user k being

served at cell m in RB n, N0 is the noise power spectral den-
sity and B is the bandwidth of each RB.

Similarly, the SINR of SUE k in cell m at RB n can be
given by

gk;m;n ¼
pm;nG

m
k;m;n

p0;nG
0
k;m;n þ

X

M

i¼1i6¼m

X

l2Ki

fl;i;n

 !

pi;nG
i
k;m;n þN0B

: (2)

The rate (in bit/sec) of each user (SUE or MUE) can be
expressed by the Shannon-Hartley theorem as follows:

Rk;m;n ¼ B log 2 1þ gk;m;n

� �

: (3)

It should be noted that although (3) does not provide a
practically achievable rate, it serves as a good estimate of a
performance indicator for comparison purposes.

2.2 Maximum Interference Allowance

Given the set of RBs (Nk RBs) allocated to kth MUE in mth
macro cell by the scheduling scheme employed in the sys-
tem (e.g., Round Robbin, Proportional Fair etc.,) minimum
overall data rate demand for that MUE (Rreq

k;m) can be
translated into a minimum data rate demand at each of

the RBs allocated to that MUE (
R
req
k;m

Nk
). This further can be

translated into a specific minimum required g
req
u;0;n SINR

value [42] as

Rreq
k;m;n ¼ BRðrÞ:½1�BLERðr; greq

u;0;nÞ�; (4)

where BR is the theoretical bit rate for any modulation and
coding scheme (MCS) r when there are no errors. BLER
denotes the block error rate suffered by this user on RB n
which is a function of the realized SINR and the MCS used.
Having identified the minimum SINR value and consider-
ing (1) we can find the maximum interference power Vmax

u;n

Fig. 5. System model.

ZOHA ET AL.: LEVERAGING INTELLIGENCE FROM NETWORK CDR DATA FOR INTERFERENCE AWARE ENERGY CONSUMPTION... 1571



that MUE u can tolerate in RB n from all SCs to obtain this
rate threshold

V
max
u;n ¼

p0;nG
0
u;0;n

g
req
u;0;n

�N0B: (5)

If the potential channel gain from any SC m to the MUE
is denoted as Gm

0;u;n, the total interference caused to it by all
SCs in each RB can be given by

V
sum
n ¼

X

M

m¼1

X

k2Km

fk;m;n

 !

pm;nG
m
u;0;n

¼
X

M

m¼1

X

k2Km

fk;m;n

 !

vm
u;0;n;

(6)

where vm
u;0;n , pm;nG

m
u;0;n can be interpreted as the interfer-

ence that is caused to user u in cell 0 (MC) on RB n from SC
m.

2.3 Network Power Optimization

The total instantaneous power of a cell can be given by the
sum of the circuit power and the transmit power as

P total
m ¼ cmðP

circuit
m þ Dm:P

transmit
m Þ; (7)

where P circuit
m is the constant circuit power which is drawn if

transmit node m is active and is significantly reduced if the
node goes into sleep mode. P transmit

m is the node’s transmit
power and Dm denotes the slope of load dependent power
consumption of cellm [2].

The general network power optimisation problem com-
prising the objective function and the imposed constraints
can be formulated as follows:

min
p;ff;cc

X

M

m¼0

P total
m (8)

subject to:

fk;m;n 2 0; 1f g; 8k 2 K n K0;m 2 M; n; (9a)

X

k2Km

fk;m;n 2 0; 1f g; 8m 2 M; n; (9b)

V
sum
n � V

max
n ; 8n; (9c)

cm 2 0; 1f g;m 2 M; n; (9d)

c0 ¼ 1; (9e)

Rk;m � Rmin
k;m ; 8m 6¼ 0; (9f)

X

N

n¼1

X

k2Km

fk;m;n

 !

pm;n � Pmax; 8m 2 M; (9g)

pm;n � 0; 8m 2 M; n: (9h)

Constraint (9b) indicates that RBs are exclusively allo-
cated to one user within a cell to avoid intra-cell interference;
constraint (9c) denotes the total maximum interference that a
MUE served by MC on RB n can tolerate from all SCs in the
MC area in order to satisfy its minimum rate needs;

constraint (9d) indicates the ON/OFF state of the cells and
constraint (9e) makes sure that the MC is always in active
state. This constraint ensures coverage reliability. In case
when some SCs are switched OFF by our proposed proactive
sleeping pattern solution, Always ON macro cells are
expected to ensure that minimum coverage threshold is met
all the time. Constraint (9f) is the minimum required rate
constraint for each user; finally, constraints (9g)-(9h) stand
for the maximum and minimum transmission power con-
straints at each SC node.

2.4 Energy Efficiency Performance Metrics

Before the proposed algorithm is discussed, it is important
to define the EE performance metrics. EE is simply calcu-
lated as the total number of bits transferred, divided by the
total amount of energy consumed

EE ¼
Total data transferred

Total energy consumed
ðbit=JoulesÞ: (10)

This can also be expressed as Energy Consumption Ratio
(ECR), i.e., the amount of energy consumed to transmit one
bit [43], [44]

ECR ¼
P

D

Watt

bit=sec

� �

; (11)

Where, D ¼ B
T is the data rate in bits per second and P is the

power in Watts required to deliver B bits over time T . Fur-
thermore, energy efficiency between two systems can also
be expressed by Energy Consumption Gain (ECG), which is
a ratio of ECR for two systems [43], [44]

ECG ¼
ECRa

ECRb
: (12)

Energy savings on the other hand are expressed as Energy
Reduction Gain (ERG) [43], [44]

ERG ¼
ECRa � ECRb

ECRa

� �

� 100%: (13)

For comparison of two schemes where the coverage area
does not remain same, Area Power Consumption [45] met-
ric is helpful in accessing the power consumption of the net-
work relative to its size. It is the average power consumed
in a given area divided by the area. This metric is measured
in Watts per square Kilometre

PArea ¼
Pav

Ac
; (14)

where Pav is the average power consumed and Ac is the cov-
erage area.

3 ENERGY CONSUMPTION AWARE HEURISTIC

RESOURCE ALLOCATION SCHEME (ECA)

The formulated combinatorial optimisation problem in (8)
contains both continuous (p) and binary (ff;cc) decision vari-
ables. The problem in (8) can be identified as a mixed inte-
ger non-linear programming problem since the constraint
(9f) i.e., Rk;m is non-linear in p considering Eqs. (3) and (2).
The problem is similar to the classical 0/1 knapsack
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problem since the user can be scheduled at only one cell at
any given time which is known to be NP-hard (similar to
the one in [46]). Finding the optimal solution to these non-
convex problems in real network with dynamically chang-
ing network conditions requires computationally complex
exhaustive search, rendering its implementation in practical
systems impossible. It becomes even harder when QoS con-
straints are added on top (as is the case here with the mini-
mum MUE rate constraints). Consequently, the complexity
is expected to grow exponentially with the number of cells.
Considering that SCs allocate power to RBs according to
some predefined power levels, vector p can instead contain
integer variables. This of course renders the optimisation
problem even harder to solve.

To address the complexity issues we devise a low com-
plexity heuristic solution. The proposed Energy Consump-
tion Aware Resource Allocation Scheme (ECA) heuristically
tries to achieve the objective in (8). Although the proposed
scheme is a sub-optimal solution to problem in (8), the aim
behind this solution is to keep the computational complex-
ity very low to allow its implementation in practical net-
work. The flow diagram of the proposed ECA algorithm is
presented in Fig. 6, followed by the pseudocode. In the first
step, the ECA scheme solves the RB allocation problem
using linear binary integer programming. To this end, we
assume all SCc are ON i.e., cm ¼ 1; 8m with maximum
transmit power and equal power allocation across RBs, i.e.,
pm;n ¼ Pmax=N for any SC m. With this consideration, the
network power minimization problem is transformed into a
pure binary linear optimisation problem which can be writ-
ten as follows:

min
ff

X

M

m¼0

P total
m (15)

subject to:

fk;m;n 2 0; 1f g; 8k 2 K n K0;m 2 M; n; (16a)

X

k2Km

fk;m;n 2 0; 1f g; 8m 2 M; n; (16b)

V
sum
n � V

max
n ; 8n; (16c)

Rk;m � Rmin
k;m ; 8m 6¼ 0; (16d)

The objective is to guide the SCs with their respective
muting parameter in ffnn, in order to satisfy the maximum
interference tolerance threshold for the MUEs. This results
in significant reduction of the optimisation problem search
space by considering only RB allocation. This reduces the
complexity and convergence time of the problem; hence, it
can be easily solved after multiple or even every transmis-
sion time interval (TTI) e.g., in LTE networks. Once the SCs
are guided with their muting parameter, the algorithm anal-
yses the possibility of switching off under-utilized SCs. For
this, the MC checks if it has sufficient free resources to
accommodate small cell users without hurting its own
users. If that is the case, the under-utilized SCs are switched
to sleep mode. We simplify this process by comparing the
number of available RBs (RBAvail

0 ) at the MC (the RBs which
are not being used to serve MUEs) with a minimum thresh-
old number of RBs (RBThres

0 ). Now, based on the reported
activity of the SCs, the ON/OFF state problem is solved in a
progressive manner considering the SCs with lowest utiliza-
tion at first. Here we consider that a SC may result in a low
utilization if it has very low load (serving few users with
low average data rate requirement/constraint) or if it has a
very high RB muting factor (causing high interference to
MC users). The ON/OFF state solution is passed to the SCs
(SC State Array cc), and the MC continuously monitors its
performance over a longer time interval e.g., minutes. If a
congestion (C0 ¼ 1) occurs i.e., number of resource blocks
required for all of the MC users previously associated with
any mth sleeping SC i.e.,

P

k RB
Req
k;m exceeds number of

available RBs (RBAvail
0 ) then it starts activating sleeping SCs

prioritizing the ones whose users, that were handed over to
the MC, have hefty average data-rate requirements.

It is necessary to highlight here that for the sake of concise-
ness, this work does not address the macro-to-macro cell
interference that becomes particularly easy to manage due to
presence of X2 interface. The rationale behind this simplifica-
tion is that focus of this paper is to study how much energy
can be saved by proactively switching ON/OFF small cells,
given that themacro tomacro interference problem is already
solved using one of the existingmethods in literature.

3.1 Practical Implementation of ECA in a Real
Network

In this section, we present a high-level description of the
implementation aspects of the ECA algorithm in real SON
enabled LTE HetNets comprising macro and small cells.

� The centralized SON engine can apply Big Data ana-
lytics on the past CDRs to analyze the spatio-temporal
traffic pattern and forecasts the required data rates of
themacro and small cell users in each of the cells. State
of the art Big Data analytics tools from Hadoop eco-
system like Apache Spark and ApacheMahout can be
leveraged to achieve this objective.

� Minimization of Drive Test (MDT) reports recently
standardised by 3GPP [47] and CQI reports collected
at SON engine can be utilized to determine the user
channel gain on specific RBs. On the basis of these
reports (3) and (4) can be used to estimate the maxi-
mum interference that MUE can tolerate on a certain
RB. The MDT reports of the UEs also contain

Fig. 6. Flow diagram for ECA scheme.

ZOHA ET AL.: LEVERAGING INTELLIGENCE FROM NETWORK CDR DATA FOR INTERFERENCE AWARE ENERGY CONSUMPTION... 1573



information relevant to their neighboring cells such
as the neighboring cells reference signal received
quality along with the physical cell ID of the neigh-
boring cell. These respective MUE reports can be
used by the SON engine to estimate the top neigh-
boring interfering small cells; then, this information
can be used to estimate the total interference caused
to it by all small cells in each RB and formulate the
optimisation constraint (16c).

� Finally, the optimisation process of the suboptimal
problem in (15) is performed at the SON engine
using ECA algorithm. The optimisation function
returns the muting matrix for the small cells which is
passed to the small cells. Furthermore, the sleep
mode phase is utilized to determine and pass on the
state array (ON/OFF) to the small cells. Moreover, in
order to avoid introducing unnecessary control over-
heads into the network, muting and state array can
only be forwarded subject to change in the optimisa-
tion parameters. In that case, small cells can continue
to use the last updated muting and state array matrix
until a new update is passed by the SON engine.

Algorithm 1. Energy Consumption Aware Resource
Allocation (ECA)

for n = 1!N
Initialise :~fn =~0
Calculate : Vmax

n ;vm
u;0;n; Rk;m;n as in Eq. (3), (5) and (6)

~fn= bintprog (~Rn, ~vu;0;n, V
max
n )

end
Notify SCs with their respective fm;n.

SC Sleep Mode Phase
Analyse Available n RBs at Macrocell
if RBAvail

0 > RBThres
0

Sort SC utilisation ~U in Ascending order
while RBAvail

0 > RBThres
0

Send sleep mode activation message to SC
on top of ~U .
Update RBAvail

0 , Remove top element from ~U .
end

SC Wake-up Phase
For every SC in sleep mode do:
if
P

kRB
Req
k;m > RBAvail

0 OR C0 ¼ 1

Sort
P

kRB
Req
k;m in ascending order for allm

while
P

kRB
Req
k;m > RBAvail

0 OR C0 ¼ 1

Send wake-up message to SC on top of the list
Update RBAvail

0

end
end

4 RESULTS AND ANALYSIS USING REAL TRAFFIC
TRACES DERIVED FROM CDRS OF MILAN CITY

In this section we present our analysis based on a real net-
works traffic data to show there is sufficient predictability
component that can be exploited for significant energy sav-
ings through the proposed scheme. Later in Section 5, we
utilize simulation based deterministic traffic models to
show how the proposed scheme can enhance aggregate
throughput and energy savings.

4.1 Introduction to CDR Data from City of Milan

The data used for this analysis comes from Telecom Italia’s
network, Italy, shared as part of their big data challenge
2015 [40]. In our study, a week’s data (01st Dec 2013 to 07th
Dec 2013) is used to analyze user activity trends in the met-
ropolitan city of Milan. The data made public by Telecom
Italia is in form of CDRs for calling and internet activity. We
translated this data into traffic volumes by exploiting the
big data eco-system, the details of which are omitted for
brevity. As shown in Fig. 4, in the data shared by Telecom
Italia, the city of Milan is divided into several smaller grids
(10,000 square grids). For each grid, a CDR value corre-
sponding to call and internet activity logged at 10 minutes
interval, is made public.

4.2 Heuristic Methodology Augmenting Real Traffic
Traces with Realistic Intuitive Topology

The available data lacks information about the real base sta-
tion deployed within the city. Therefore to achieve the objec-
tives of this analysis, without compromising the generality
of its conclusions, we assume that the calling and internet
activity belongs to a macro-cell and small-cell, respectively.
From this point onward, we refer to them as macro-cell and
small-cell activity levels. The macro-cell is assumed to cover
an area of 225 square meters while each of the grid is
assumed to have one small cell. The calling activity for each
macro-cell (accumulated calling activity for 225 square grids)
is translated into data activity according to the Voice over
LTE (VoLTE) standard. Each call is assumed to be 3 minutes
based on the average European calling statistics [48]. As for
the VoLTE standard approximately 300 bits of data packet is
required to be transmitted by the end interface every 20 ms.
This brings the data rate for each VoLTE call to 15 Kbps.
Based on these details we map the CDR based activity levels
into data rates as shown in Figs. 1, 2, and 3 earlier. It is
observed that cells have a wide variation in the range of
activity levels (some small-cells have high activity and some
have very low activity). An obvious reason for this phenome-
non is the number of POIs within each cell (the popularity of
POIs also affects the activity levels of cells). To capture this
aspect of cells with and without POIs, we consider two
macro-cells as depicted in Fig. 7. The first macro-cell M1 has
no POIs within its coverage area, where as the secondmacro-
cell M2 has a number of POIs in its coverage as indicated by
blue dots on the grid. In the discussion forward, we refer M1
andM2 as Non-POI and POI cells. The plot in Fig. 7 was con-
structed by plotting the geographical coordinates of most
popular POIs in city of Milan as determined through infor-
mation available on tripadvisor.com [49].

4.3 Simulation Results for Application of ECA
Algorithm on CDRs Data

In order to analyze the potential energy savings resulting
from the application of ECA algorithm on real networks
data, sleep mode phase of the ECA algorithm is leveraged
in this section. Note that the interference estimation part of
the ECA algorithm is not utilized in the algorithm evalua-
tion since the big data available to us does not contain UE
location and thus SINR information. Therefore, we esti-
mated interference using average spectral efficiency. The
objective of this study is to demonstrate that even with
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limited information that could be extracted by us from a real
publically available data, a proactive and predictive instead
of reactive or cyclic energy efficiency algorithm can be
developed that can result into significant energy saving
gain. Additional information when incorporated into the
algorithm including user locations and SINR maps etc, can
lead to even better performance in terms of interference
aware energy efficiency.

The results and analysis are presented specific to non-
POI and POI macro-cells and under-laying small-cells as
visualized in Fig. 7. Fig. 8 shows the activity levels of non-
POI and POI macro-cell from Sunday until Saturday, pre-
sented as data rates (Mbps). As previously deduced, activity
levels are high for the POI cell as compared to the non-POI
cell. Another interesting aspect to consider for these two
considered macro-cells is that the activity levels during the
week days are relatively higher as compared to weekends.
Similar activity plots are presented for non-POI and POI
small-cells in Figs. 9, and 10. Since there are up-to 225 small
cells, in the non-POI case, activity levels of most of the
small-cells are below 1 Mbps, whereas in case of POI small-
cells several small cells have an activity level higher as com-
pared to non-POI cells.

To look into further details, graphs in Figs. 11, and 12 are
plotted to show the activity levels for a single day (hourly

level) with the help of Box and Whisker plots. Each plot
ranges from 9 to 91%ile of the values whereas the box
expresses the lower and upper quartile (25 and 75 percent).
Line dividing the box expresses the median and 0þ0

expresses the mean value. It can be observed that for 06:00
hrs and 18:00 hrs, the mean activity level for non-POI SCs is
approximately 0.4 and 0.7 Mbps respectively. Similarly in
case of POI SCs at 06:00 hrs and 18:00 hrs the mean activity
levels are at 1.2 and 2.4 Mbps respectively. This traffic trend
jointly motivates the use of ECA scheme for putting major-
ity of the low activity small-cells into sleep-mode and serv-
ing their load with the macro-cell.

Utilizing these statistics, state of the art machine learning
algorithms were employed to predict activity levels of the
cells based on past activity levels. 70 percent of the data set
was employed for training while remaining 30 percent for
testing phase. The Support Vector Machine based regres-
sion outperformed all other techniques and was able to
achieve 97 percent prediction accuracy. As discussed in
Section 1, unlike classical modelling approaches, our
machine learning approach has been able to quite accurately
predict the hourly traffic pattern (Fig. 13) since it takes into
account location metric as well. The predicted activity levels
of each of the macro and small cells (1 Macro + 225 Small
Cells) were translated to required number of PRBs using:

Fig. 7. Points of interest (POIs) on city of Milan grid.

Fig. 8. Activity level for NON-POI (red) and POI (blue) macro-cells.

Fig. 9. Activity level for NON-POI small-cells.

Fig. 10. Activity level for POI small-cells.
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RBreq
m ¼ Rmin

m =wB � S where wB = 180 KHz is the bandwidth
of one RB and S is the average spectral efficiency taken as
1.6 bps/Hz for LTE. A bandwidth of 20 MHz is considered
wherein each cell has total of 100 RBs. Based on the avail-
ability of the potential free RBs at the macro cell, ECA algo-
rithm off-loads small cell users to the macro cell and small
cells are put to sleep mode. The performance of the pro-
posed ECA algorithm is presented in terms of numbers of
SCs put into sleep mode in Figs. 14 and 15. Out of total of
225 small cells, ECA algorithms puts up-to 205 non-POI SCs
in sleep mode while the traffic conditions are low for the

small-cells as well as for the macro-cell. For the POI case up
to 160 SCs can be put to sleep mode. However, generally
there are far less SCs put into sleep-mode in case of POI SCs
as compared to non-POI case. It can also be observed that
during the peak hours of traffic load, no (a few in case of
non-POI case) SCs are put to sleep mode. The energy sav-
ings possible by putting these the SCs in sleep mode are
reflected in the later plots.

The EE performance of non-POI and POI cells is presented
in Figs. 16 and 17. It is interesting to observe that the EE per-
formance of the non-POI case is significantly less than that in
case of POI case. Such observed phenomenon can be
explained by referring back to the definition of EE, i.e., the
number of bits per Joule of energy (bits/Joule). Since the
small-cells lie in the circuit power dominant regime (circuit
power consumption is significantly higher as compared to
transmit power consumption) and the circuit power being
constant at all times. It is already established that the data
traffic flow in non-POI cells is lower as compared to POI
cells. So it can be deduced that the non-POI cells are under-
utilized, whereas POI cells have higher utilization, hence bet-
ter EE performance. Nevertheless, the important aspect to
observe for these plots is that the EE performance before the
ECA algorithm (solid black line) is improved with the

Fig. 11. Activity level for NON-POI small-cells for 24 hrs of a day. Each
plot ranges from 9 to 91 percent of the values where as the box
expresses the lower and upper quartile (25 and 75 percent). Line divid-
ing the box expresses the median and 0þ0 expresses the mean value.

Fig. 12. Activity level for POI small-cells for 24 hrs of a day. Each plot
ranges from 9 to 91 percent of the values where as the box expresses
the lower and upper quartile (25 and 75 percent). Line dividing the box
expresses the median and 0þ0 expresses the mean value.

Fig. 13. Support vector regression based traffic prediction.

Fig. 14. Number of SCs put to sleep-mode for non-POI (red) and POI
(blue) case for the whole week.

Fig. 15. Number of SCs put to sleep-mode for non-POI (red) and POI
(blue) case for 24 hours.
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application of ECA algorithm (red in case of non-POI and
blue for POI). Also note that for the non-POI cells the EE per-
formance is significantly improved as compared to the non-
sleep-mode conventional case. This aspect of the perfor-
mance analysis is further clarified through ERG (13) plots in
Figs. 18 and 19 for non-POI and POI cells respectively. For
the non-POI case, up to 8 times ERG is achieved in certain
off-peak traffic conditions, and the same results for the POI
case reach amaximumof 2 times in off-peak conditions.

The traffic prediction accuracy will have crucial role in
determining the holistic performance (Energy Reduction
Gain) of the proposed Proactive Sleeping Cell solution that
can be quantified as follows [50]

ERGP�SON ¼ aðERGcÞ þ ð1� aÞðERGicÞ; (17)

where a is the prediction accuracy and ERGc and ERGic are
the Energy Reduction Gains for correct and incorrect predic-
tions. While evaluation of ERG for different values of a is
beyond the scope of this work, (17) can be employed for
assessing the gain of Proactive Sleeping Cell Solution and the
minimum accuracy needed to achieve any gain (refer to Fig. 3
in [50]). Inaccuracies in traffic predictionmight lead to switch-
ing OFF some SCs in high traffic demand regions where they
should not have been switched OFF. However, the proposed
solution aims at switching the states of SCs only while keep-
ing the Macro cells ON all the time. Therefore, in case of

inaccurate predictions, Always ON Macro cells will be there
to offset the effect of inaccurate predictions.

Concept drift issues in this case i.e., variation in the
underlying pattern of traffic over longer period of time that
can make the learned model inaccurate, can be addressed
by employing Adaptive Base Learning techniques in which
the training is reduced and expanded to identify the impact
of variation in learning window size. Training set is dynam-
ically modified to include moistures of past and present
data and prediction model is updated. Moreover, ensemble
techniques can be leveraged for making sure that training
data is diverse and unbiased. Weaker models are pruned
and remaining models are combined based on some weight-
ing criteria. Separate machine learning models trained for
weekends/weekdays/holidays can be employed for further
improvement of the prediction accuracies. Another possibly
more promising method is to incorporate additional contex-
tual data into the model that takes into account occurrence
of events and festivals and awareness of point of interests to
improve prediction accuracy.

5 RESULTS AND ANALYSIS USING SIMULATED

DETERMINISTIC TRAFFIC MODEL

In the aforementioned section, results pertaining to the
sleep mode phase of the ECA algorithm were presented
only since no information of the actual topology and user

Fig. 16. EE (bits/Joule) performance for non-POI cells.

Fig. 17. EE (bits/Joule) performance for POI cells.

Fig. 18. Energy reduction gain (ERG) performance for non-POI case.

Fig. 19. Energy reduction gain (ERG) performance for POI case.

ZOHA ET AL.: LEVERAGING INTELLIGENCE FROM NETWORK CDR DATA FOR INTERFERENCE AWARE ENERGY CONSUMPTION... 1577



reported SINR was available. Therefore in this section we
present results for our proposed ECA scheme using deter-
ministic traffic model and simulated topology and compare
the results in terms of power consumption and users data
rate performance against the conventional schemes. Details
of the simulation parameters are given in Table 1.

For the purpose of demonstrating the function of the pro-
posed algorithm, we simulate a network with 15 SCs and a
single macrocell. Number of users in the macrocell and SCs
are generated using Poison arrival process for each snapshot.
Simulations are performed for four normalised load condi-
tions of the network (0.25, 0.50, 0.75 and 1). The value of � for
the Poison process is selected based on the load observed in
the results presented in prior sections. We consider these
four variations in network loads to analyse our algorithm at
different times of the day [51]. Furthermore, it is assumed all
MUE have minimum data rate requirement of 250 kbps.
Using Monte-Carlo simulations, 1000 snap shots are gener-
ated for each load case and results were averaged.

The operation of the ECA algorithm is depicted in Fig. 20
where a single snap shot is illustrated. The blue rings show
the active SCs, whereas the green rings show the SCs which
are switched to sleep mode and their SUEs are being served
by the macrocell. If we consider for example SCs ‘2’ and ‘13’,
both of them are switched to sleepmode and we can observe
that they have a some MUEs (red dots) in their vicinity. The
dominant interference to these MUEs causes muting of
resources at the SCs. In return due the low utilisation of these
SCs and the available capacity at the macrocell, the UEs of
these SCs are handovered to the the macrocell and SCs ‘2’
and ‘13’ are switched to sleep mode. This will usually hap-
pen at the low load times of the day. Sleeping SCs might be
awaken in case there is a congestion at the macrocell or in
case of increase in network load. If for example all the SUEs
have similar data rate requirements, then SC ‘4’ would be
awakened first, as it hasmore number of SUEs.

The Cumulative Distribution Function (CDF) for the data
rates of MUEs is presented in Fig. 21. We compare the per-
formance of our proposed ECA scheme with Reuse-1
scheme (where all nodes transmit at the same frequency
resources). It is evident from the Fig. 21 that in case of
Reuse-1 up to 20 percent of the users are in outage (below
the required data rate mark, as indicated in the figure). This
is due to the strong interference from the neighboring SCs
serving their users on the same resources. However, in case
of ECA scheme, this inter-tier interference is minimized and
nearly all the users are safe guarded from outage. This is
made possible by muting some of the SCs at certain RBs
where the victim MUEs were being served. The proposed
ECA scheme along with successfully safeguarding the vic-
tim MUEs present in the vicinity of SCs, also maximizes the
energy efficiency of the network. The energy consumption
comparison between ECA scheme and a conventional
scheme with no sleep mode savings is presented in Fig. 22.
This comparison is shown for the four different considered
load states of the network. This comparison for different
load conditions is shown with the help of bar graphs and
the y-axis of Fig. 22 indicates the sum of total power con-
sumption (circuit and load dependent transmit power) of
all transmit nodes. The horizontal line in the middle of the
plot indicates the constant circuit power of the macrocell
given by Eq. (7) which is fixed for all cases. The remaining
top portion of the bars indicates the sum of macrocells load

TABLE 1
LTE-Based Scenario - Simulation Parameters

Parameter Macro-cell Small-cell

Number of nodes 1 15

Carrier frequency 2.1 GHz

Bandwidth 10 MHz

Node transmit power 43 dBm 23 dBm

Path loss model 128:1þ 37:6 log 10 d½Km�ð Þ

UE Generation Poison Arrival Process

RBThres
0 15%

Noise Figure at UE 9 dB

Thermal noise density �174 dBm/Hz

Cell Radius 800 m 50 m

P circuit [2] 120 W 8.4 W

Dð7Þ 3.2 4

Fig. 20. Snapshot of the network with normalised load = 0.5. Red dots
indicate the MUEs and blue dots indicate SUEs. Blue rings indicate the
active SCs and green rings indicate SCs in sleep mode.

Fig. 21. CDF plot for MUE data rates.
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dependent transmit power plus the circuit and transmit
power of all the active SCs. The true potential of ECA
scheme can be clearly seen for low to medium network load
conditions. This is due to the fact that in low traffic condi-
tions, the macrocell has unused capacity which can be suc-
cessfully used to serve SUE of under-utilized SCs. The
energy saving gains come from switching off the circuitry of
the SCs but as a trade-off the load dependent transmit
power of the macrocell is slightly increased. However, up to
23 percent saving in total network power consumption can
be achieved using ECA in these traffic conditions.

The time complexity of the optimal exhaustive search in
our case shall be Oð2ðKMNÞÞ, which is exponential in
nature. However, for the state of the art algorithms that
either target interference or energy minimization problem
such as ORA (Optimal Resource Allocation) scheme [52],
the complexity is mainly dependent on solving the dual
problem. The number of computations required to solve the
RB allocation is KðM þ 1Þ and N number of allocations are
required to solve for all RBs. The complexity for each com-
plete iteration is OðNKðM þ 1ÞÞ. The total complexity of the
sub-gradient method is polynomial in the number of dual
variable and is OðN þMÞ. Therefore, the overall complexity
of the ORA scheme is OððN þMÞ2ðNMKÞÞ. The ECA
scheme is solved by binary linear integer programming.

There are several linear programming relaxations applied
to such algorithms, which make them very effective in prac-
tice but it is difficult to prove theoretical complexity bounds
on the performance of such algorithms. A comparison in
terms of number of iterations between the ORA and ECA
scheme is presented in Fig. 23, emphasizing on the lower
complexity, therefore, higher the practicality of the ECA
scheme. The minimalistic complexity of the ECA algorithm
makes it feasible to be applied to a practical LTE network
and can be updatedwithin every LTE frame.

6 CONCLUSIONS

In this paper, we have proposed a proactive energy effi-
cient resource allocation solution that not only minimizes
the overall network energy consumption but also incor-
porates the inter-tier interference mitigation solution in a
LTE HetNets environment. In this study, we exploit the
predictable nature of real traffic load to determine sleep
schedule of small cells and formulated the mathematical
optimisation problem. Furthermore, taking into account

the computational complexity limitation of a practical net-
work, we have proposed a heuristic energy efficient small cell
centralized resource allocation algorithm. In order to demon-
strate the scale of potential energy savings in a practical net-
work, real CDR data from City of Milan was used. Large
scale data processing and analysis was performed exploiting
the big data ecosystem tools (Apache Spark) in order to ana-
lyze the activity patterns throughout the Milan City. The pro-
posed ECA algorithm, by making use of sleep-mode in small
cells shows a potential of significant energy savings espe-
cially in off-peak times of the day. Results showed that energy
consumption could be reduced up to 8 times in the dense het-
erogeneous network within an urban city by incorporating
our proposed energy consumption aware resource allocation
algorithm. Moreover, our deterministic-load based simula-
tion results clearly indicate that nearly all macro-cell served
users were protected from neighboring small cell inter-tier
interference in comparison to Reuse-1 case. In addition, dur-
ing the low traffic condition, the proposed mechanism has
shown to reduce a significant amount of network energy by
switching the under-utilized cells to sleepmode.
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