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Abstract—Increased network wide energy consumption is a

paramount challenge that hinders wide scale ultra-dense net-

works (UDN) deployments. While several Energy Saving (ES)

enhancement schemes have been proposed recently, these schemes

have one common tenancy. They operate in reactive mode i.e.,

to increase ES, cells are switched ON/OFF reactively in response

to changing cell loads. Though, significant ES gains have been

reported for such ON/OFF schemes, the inherent reactiveness of

these ES schemes limits their ability to meet the extremely low

latency and high QoS expected from future cellular networks

vis-a-vis 5G and beyond. To address this challenge, in this paper

we propose a novel user mobility prediction based AUtonomous

pROactive eneRgy sAving (AURORA) framework for future

UDN. Instead of observing changes in cell loads passively and

then reacting to them, AURORA uses past hand over (HO)

traces to determine future cell loads. This prediction is then

used to proactively schedule small cell sleep cycles. AURORA

also incorporates the effect of Cell Individual Offsets (CIOs)

for balancing load among cells to ensure QoS while maximizing

ES. Extensive system level simulations leveraging realistic SLAW

model based mobility traces show that AURORA can achieve

significant energy reduction gain without noticeable impact on

QoS.

Index Terms—5G, Energy Saving, Mobility Prediction, Proac-

tive SON, Heterogeneous Networks, Sleeping Cells, ON/OFF

Small Cells, CIOs.
I. INTRODUCTION

The current exponential mobile data traffic escalation is

a precursor towards an imminent "capacity crunch". In this

backdrop, extreme network densification through deployment

of large number of Small Cells (SCs) has emerged as the

most yielding solution to achieve the 1000 fold capacity gain

goal [1]. However, the ultra-dense deployments of SCs is

on direct collision path with the economically viable and

energy efficient deployment vision of 5G. This is due to the

high aggregated network energy that "always ON" small cells

are bound to consume in an Ultra Dense Network (UDN).

In addition to higher carbon footprint, this translates into

higher OPEX. Although SCs have a relatively lower power

consumption profile, yet the always ON approach increases

overall network wide energy consumption [2]. This is because

the load independent power consumption (circuit power) com-

ponent in SCs constitutes a much larger portion of over-all

power consumption [3]. As a result, with advent of UDN, the

need for ES schemes will be even more compelling. It is a
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consensus among research community that to avert possible

energy crunch in 5G and to achieve economic viability, the

1000× capacity increase must be achieved at a similar or lower

power consumption as legacy networks [4].

A. Related Work

Energy consumption in cellular systems can be reduced

significantly by turning OFF underutilized cells during off-

peak hours or by optimizing resource allocation such that

minimum energy is consumed per bit transmission [4]–[7].

To exploit these approaches recently ES has been adopted as

a key Self Organizing Network (SON) function by 3GPP [8]

and has been extensively studied in literature. ES enhancement

with focus on optimizing resource allocation despite of its

relatively small gain compared to turning ON/OFF under-

utilized BSs has been studied more extensively compared to

later approach [4]. The resource allocation optimization can

reduce the energy consumption to only a limited degree for a

given system throughput target. ES of the cellular systems can

be further enhanced significantly by switching under-utilized

BSs to sleep mode or turning them OFF entirely during off-

peak time [5]–[7], [9]. In this direction of research, some

recent works show promising results in terms of potential ES

[10]–[23]. However, to the best of our knowledge, existing

ES approaches fall short of mark for 5G requirement due to

following four limitations:

1) Reactive mode of operation: Conventional ES SON

algorithms are designed to switch OFF/ON cells after

detecting network conditions that have already taken

effect. For example, when congestion is detected in

network, usually a non-convex NP-hard ES algorithm

is solved to identify certain sleeping/OFF cells, that

should be switched ON or using same process certain

cells are switched OFF, when low load is observed in

certain cells. This is an improvement over fixed timer

based switching ON/OFF [24] that can at best follow a

coarse statistical spatio-temporal traffic pattern and thus

achieves ES at cost of QoS. However, given the acute

dynamics of traffic and cellular environment, by the time

congestion or low traffic conditions are detected and a

realistic non-convex NP-hard ES algorithm is solved to

produce new network ON/OFF configuration optimal for

observed network conditions, the conditions may already

change. Thus, the newly determined switch ON/OFF

vector is likely to be suboptimal before it can be actuated.

This problem can exacerbate particularly in 5G, where a
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motely of traffic and plethora of cell types means the

dynamics of cellular eco-system will be even more swift.

2) Difficulty in meeting 5G low latency: Base Stations

require a certain amount of time to wake up from sleep

cycle [25]. For a user entering a sleeping cell, this time

to wake up will add to the latency experienced by the

user. This demands paradigm shift from the conventional

reactive design of ES algorithms towards proactive char-

acteristics to cope with extreme low latency requirements

of 5G in a more agile fashion.

3) Impractical cell discovery: A key challenge in switching

OFF based ES schemes is: how to discover an OFF cell

when users enter into physical coverage area of the OFF

cell? Existing ES schemes either overlook this challenge,

or propose solutions that either exploit neighboring cells

or a master controller to wake up the cell, when enough

users enter into the coverage area of OFF cell. This

approach may work in low user density network with

large macro cells with relatively less stringent Quality of

Service (QoS) requirements such as LTE, but it may not

scale to 5G because of signaling overhead, delays and

cost of missing out OFF small cells for off-loading.

4) SON Conflict prone design: The other caveat with

conventional ES solutions is that they are oblivious of

the fact that multiple SON functions may be prone to

hidden or undesired conflict when implemented together

in a network [1], [26]. Two SON use cases that become

highly relevant to the ES in HetNets are Coverage and

Capacity Optimization (CCO) and Load Balancing (LB)

[8] because of the overlap among their optimization

parameter set: Transmission Power and Cell Individual

Offsets (CIOs). When an ES switches OFF some cells, it

may force some users to be associated to neighboring ON

cells and overload them thereby conflicting with CCO and

LB SON functions. As explicated in [26], such conflict

prone ES solution design can actually degrade network’s

performance instead of improving it.

B. Contributions and Organization

To address the aforementioned limitations, we propose

AURORA framework (Fig. 1) by building on the lines of

Big Data empowered SON framework [1]. The key idea

is to make emerging cellular systems artificially intelligent

and autonomous so that they can anticipate user mobility

behavior. This intelligence in turn is then used to formulate

a novel ES optimization problem that proactively schedules

small cell sleep cycles to divert and focus the right amount

of resources when and where needed while satisfying QoS

requirements. The contributions and organization of paper can

be summarized as follows:

1) As a building block of AURORA, we develop and analyze

a Semi-Markov model based spatio-temporal mobility

prediction framework. Our proposed mobility prediction

model overcomes the limitation of conventional discrete

time Markov chain based prediction models that fail

to incorporate time dimension i.e., "Time of next HO"

(Section II-B). Next, we propose a novel method to

map the next cell spatiotemporal HO information to the

estimated future location coordinates based on the idea

of Landmarks (Section II-C). This novel method further

increases the spatial resolution of the future location

estimation without requiring increase in number of states

for Semi-Markov model. The accuracy of proposed model

is quantified through extensive Monte Carlo simulations.

2) Based on the intelligence gained from the mobility model

i.e., future cell loads, a proactive energy saving optimiza-

tion problem is formulated to minimize the energy con-

sumption by switching OFF underutilized SCs (Section

II-D). In addition to proactivness, another key novelty

of proposed ES scheme is that it leverages CIOs as

optimization variables for balancing load among cells

while deciding which cells to switch ON/OFF. In this

way, an additional UDN specific mechanism is exploited

to ensure QoS while maximizing ES. Although the for-

mulated problem is non-convex large scale combinatorial

and NP-hard, our results show that the structure of the

problems allows heuristics such as genetic programming

to find good solutions with high ES yield. The ahead of

time estimation of cell loads allows ample time for such

heuristics to converge without jeopardizing QoS.

3) We conduct multi-tier system level 3GPP compliant rigor-

ous simulations for comprehensive performance analysis

of proposed AURORA (Section III). The prediction accu-

racy of the Semi-Markov based mobility prediction model

has been quantified using realistic SLAW mobility model

in HetNets environment. The average location estimation

error was found to be around 28 meters on average, while

relying only on one piece of information that is already

available in network i.e., HO trace.

4) We also analyze the impact of cell load thresholds on

ES gains and QoS (percentage of satisfied users) for

proactive energy saving optimization. The results of this

analysis provide actionable insights for determining cell

load thresholds that can judiciously strike the intended

balance among the conflicting goals of ES and QoS.

5) We perform a comparative analysis of proposed solution,

in Low and High Traffic demand scenarios with the latter

comprising of all video users, against several bench marks

including industrial practices i.e., All ON SCs without

and with fixed CIOs. AURORA achieved 68% and 99%

gain in the total network energy reduction for low and

high traffic demand scenarios respectively by putting

under-utilized SCs in sleep mode with negligible number

of unsatisfied users. Moreover, we compare AURORA

with near-optimal performance bound that is achievable

when future network load conditions can be estimated

with 100% accuracy. This comparison demonstrates that

AURORA is reasonably resilient to location estimation

inaccuracies.

II. AURORA FRAMEWORK

In this section we present the analytical model development

of AURORA Framework whose three key corner stones are:

• Semi-Markov Process based Spatiotemporal Next Cell

Prediction
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Fig. 1. AURORA Framework

• Mapping of Next Cell Prediction to Future User Location

Estimation

• Proactive-Energy Saving Optimization based on Future

User Location Estimation

A. Network Model and Assumptions:

The AURORA framework proposed in this paper only

focuses on the downlink of cellular systems for the sake of

conciseness. It is assumed that all mobile devices and small

cells have omnidirectional antennas with a constant gain in

all directions while macro cells have directional antennas.

Frequency reuse of one is considered and same band is utilized

by the macrocell and the small cells. A full buffer traffic model

is used for each user, i.e., there is always data available to be

sent for a user with constant bit rate service. A centralized

C-SON architecture is assumed wherein a centralized server

in the core network performs system wide Proactive-Energy

Saving Optimization. Moreover, HO traces that include loca-

tion stamped information of past cell transitions such as cell

IDs, RSRPs and call detail records are assumed to be available

to the C-SON server.

B. Semi-Markov based Spatiotemporal Next Cell Prediction

1) Background: Our rationale to build and utilize mobil-

ity prediction as a foundation for AURORA is backed by

landmark study that analyzed real data for 10 million mobile

users [27] and showed that typical human mobility features

93% average predictability. The mobility prediction model

developed in this work builds on our recent study validated

in real network [28] that exploits following idea: transition

probability to a next cell can be predicted by modelling user

transition from one cell to another as a Markov stochastic

process and using HO history to estimate state transition

probabilities. Discrete Time Markov Chain (DTMC) has been

commonly used in the literature for mobility prediction pur-

poses [29]–[31]. As compared to more complex and more

space-consuming compression based predictors, the Markov

based scheme can yield more scalable solution as it does

not need to store users’ past movements. Instead the crux

of this information is captured by transition probabilities.

However, DTMC is memory less and assumes sojourn time is

geometrically distributed and each transition takes place in one

unit time. Considering these limitations of the DTMC model,

the aforementioned works have utilized DTMC for only the

Fig. 2. Probability State Transition Diagram

spatial prediction i.e., identification of future cell only without

any information about the time at which handover may take

place. Continuous Time Markov Chain (CTMC) is continuous

counter part of DTMC and can be utilized for mobility predic-

tion if the human mobility is assumed to be memory less and

cell sojourn time is assumed to be exponentially distributed. As

per [32], human mobility exhibits memory property and can be

best approximated with power law (heavy tailed) distribution

instead of memory less exponential distributions. Fortunately,

Semi-Markov is an advanced class of Markov models that

allows for arbitrary distributed sojourn times. Few recent

works have characterized prediction accuracy performance of

Semi-Markov based model for mobility prediction [33], [34].

However, to the best of our knowledge, this study is the first

of its kind that presents spatio-temporal mobility prediction

model, and a framework to transform that prediction into

future cell load estimates. It then uses those load estimates to

devise and analyze a proactive and QoS aware energy saving

solution.

2) Mobility Prediction Model: We begin by modeling user

mobility as a Semi-Markov renewal process {(Xn, Tn) : n ≥
0} with discrete state space C = 1, 2, 3 . . . , z where Tn is

the time of nth transition, Xn is the state at nth transition

and total of z cells [28]. Each cell is represented by the state

of the Semi-Markov process, and a handover from one cell

to another is considered as state transition. It is assumed that

the process is time-homogeneous during the time period in

which the model is built. Fig. 2 shows state transition diagram

for the Semi-Markov model wherein pi,j is the probability of

transition from cell i to j. The associated time-homogeneous

Semi-Markov kernel for user ‘u’ which is the probability of

transition to jth cell if user has already spent time t in ith cell

is defined as:

ψ
(u)
i,j (t)=Pr(X

(u)
n+1 = j, T

(u)
n+1 − T (u)

n ≤ t|X(u)
n = i) (1)

= p
(u)
i,j S

(u)
i,j (t) (2)
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where

p
(u)
i,j = lim

t→∞
ψ

(u)
i,j (t) (3)

=Pr(X
(u)
n+1 = j|X(u)

n = i), p
(u)
i,j ∈ P (u) (4)

and

S
(u)
i,j (t) = Pr(T

(u)
n+1 − T (u)

n ≤ t|X
(u)
n+1 = j,X(u)

n = i) (5)

Here p
(u)
i,j is the probability of handover of user ‘u’from cell i

to j, P
(u) is the probability transition matrix of the embedded

Markov chain of user ‘u’given as

P
(u) =















p
(u)
1,1 p

(u)
1,2 ∙ ∙ ∙ p

(u)
1,z

p
(u)
2,1 p

(u)
2,2 ∙ ∙ ∙ p

(u)
2,z

...
...

...
...

p
(u)
z,1 p

(u)
z,2 ∙ ∙ ∙ p

(u)
z,z















(6)

and S
(u)
i,j (t) is the sojourn time distribution of user ‘u’in cell i

when next cell is j. It is important to note here that handover

from cell to itself is not allowed, therefore diagonal of the

matrix P (u) will be all zeros and the matrix will be a hollow

matrix. Furthermore, direct handovers are possible between

neighboring cells only. The probability that the user ‘u’ in

cell i will leave cell i before or at time t regardless of the

next cell is defined as:

Λ
(u)
i (t)=Pr(T

(u)
n+1 − T (u)

n ≤ t|X(u)
n = i) (7)

=

z
∑

j=1

ψ
(u)
i,j (t) (8)

Now the time-homogeneous Semi-Markov process of user ‘u’

is defined as X = (Xt, t ∈ R
+
0
) with state transients as:

φ
(u)
i,j (t) = Pr(X

(u)
t = j|X

(u)
0 = i) (9)

= (1 − Λ
(u)
i (t))δi,j +

z
∑

m=1

∫ t

0

φ
(u)
m,j(t− τ)dψ

(u)
i,m(τ) (10)

= (1 − Λ
(u)
i (t))δi,j +

z
∑

m=1

∫ t

0

dψ
(u)
i,m(τ)

dτ
φ

(u)
m,j(t− τ)dτ (11)

where δi,j is the Kronecker function defined as:

δi,j =

{

0 , i 6= j

1 , i = j
(12)

Integral equations (10) and (11) are Volterra equations of the

first and second kind and the integral is the convolution of

ψ
(u)
i,m(.) and φ

(u)
m,j(.) i.e., ψ

(u)
i,m ∗ φ

(u)
m,j . It gives the probability

that user ‘u’ starting in cell i will be in cell j by t. The first

part of the right-hand side is the probability that the user,

being in cell i, never leaves cell i until the end of the period

t. The second part of the right-hand side of equation accounts

for all cases in which the transition from i to j occurs via

another cell m6=i applying the renewal argument. First, the

probability that the user stays in cell i for a period of length

τ and then goes to cell m is given by ψ
(u)
i,m(τ). Handover to

this new cell m can be interpreted as a renewal of the process

because the expected behavior of the user from then on is the

same irrespective of when the user enters cell m. Therefore,

the probability that the user which is in cell m at τ will be in

cell j at t is given by φ
(u)
m,j(t− τ). As the transition from i to

m can occur anytime between 0 and t, therefore all possible

transition times are considered by the integration over τ [35].

The numerical solution to solve evolution equations (10) and

(11) is given by [36] and we implement the same approach.

The evolution equation (10) can be re-written for discrete-time

homogeneous Semi-Markov process as:

φ
(u)
i,j (k) = h

(u)
i,j (k) +

z
∑

m=1

k
∑

τ=1

σ
(u)
i,m(τ)φ

(u)
m,j(k − τ) (13)

where h
(u)
i,j (k) = (1 − Λ

(u)
i (t))δi,j and σ

(u)
i,m(k) =

dψ
(u)
i,m

(τ)

dτ
can be approximated as follows assuming time step is equal

to the unit:

σ
(u)
i,m(k) =

{

ψ
(u)
i,m(1) , k = 1

ψ
(u)
i,m(k) − ψ

(u)
i,m(k − 1) , k > 1

(14)

As P
(u) is right stochastic matrix therefore ψ(u)(k)

and φ(u)(k) will also be a right stochastic matrices i.e.,
∑z
j=1 ψ

(u)
i,j (k) =

∑z
j=1 φ

(u)
i,j (k) = 1,∀i, j ∈ C. The φ

(u)
i,j (k)

gives the probability that the user ‘u’ is in cell j after k amount

of time from the time instant when he/she made transition

from somewhere to cell i. However, to predict the location

of a user at every k′ time steps, we have to estimate the

probability φ̂
(u)
i,j (k′, s) = P (X

(u)
s+k′ = j|X

(u)
0 = i, tsoj = s)

i.e., probability that a user is in cell j after k′ time given that

the current cell is i and user has stayed in cell i for sojourn

time tsoj = s. It can be evaluated as [33]:

φ̂
(u)
i,j (k′, s) =

P (X
(u)
s+k′ = j, tsoj = s|X

(u)
0 = i)

P (tsoj = s|X
(u)
0 = i)

(15)

=
h

(u)
i,j (s+ k′) +

∑z
m=1

∑s+k′

τ=s+1 σ
(u)
i,m(τ)φ

(u)
m,j(s+ k′ − τ)

1 − Λ
(u)
i (s)

(16)

Note that for s = 0 : φ̂
(u)
i,j (k′, s) = φ

(u)
i,j (k). We will also

leverage steady state distribution of Semi-Markov model to

analyze long term cell association of the users. This can help

to identify the cells where users spend most of the time and

further can be utilized to validate our proposed framework.

The steady state distribution of the Semi-Markov i.e., ζ(u) =

[ζ
(u)
1 , ζ

(u)
2 , ζ

(u)
3 , ..., ζ

(u)
z ] is given as:

ζ
(u)
j =

π
(u)
j γ

(u)
j

∑z
i=1 π

(u)
i γ

(u)
i

(17)

where [π
(u)
1 , π

(u)
2 , π

(u)
3 , ..., π

(u)
z ] is positive solution to follow-

ing balance equations:

π
(u)
j =

z
∑

i=1

π
(u)
i p

(u)
i,j , 1 ≤ j ≤ z (18)

z
∑

i=1

π
(u)
i = 1 (19)
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and γ
(u)
j , 1 ≤ j ≤ z is the mean sojourn time of user ‘u’in

cell j. Utilizing the past handover history of user ‘u’ <time,

Cell ID>, Probability transition matrix P
(u) and sojourn time

distribution matrix S
(u) are initialized as follows [37]:

p
(u)
i,j =

N
(u)
i,j

N
(u)
i

(20)

and

S
(u)
i,j (k) =

N
(u)
i,j,k

N
(u)
i,j

(21)

where N
(u)
i,j is the number of handovers of user ‘u’from cell i

to j, N
(u)
i,j,k is the number of handover of user ‘u’ from cell i to

j with sojourn time less than or equal to k and N
(u)
i is the total

number of handovers of user ‘u’ from cell i. Whenever there

is a handover from cell i to j, it updates p
(u)
i,j and S

(u)
i,j (k)

and computes ψ
(u)
i,j (k). Finally φ

(u)
i,j (k) and φ̂

(u)
i,j (k′, s) are

computed. The cell with highest probability is chosen as the

predicted future destination i.e., max φ̂
(u)
i,j (k′, s)
j∈Ni

where Ni is

set of all neighboring cells of cell i. In this way, after every

k′ time steps, the next HO tuple information for each UE

{CuN ,T
u
HO} is generated wherein CuN is next probable cell of

user ‘u’ at time TuHO.

C. Future Location Estimation

Let the UE’s current location coordinates at time instant k be

luk = (xuk , y
u
k ) and the next cell HO tuple information for each

UE be {CuN ,T
u
HO} . Next task is to utilize this information

for estimating UE’s future location coordinates in next time

step k+ k′. Inspired by observation [38], [39] that nodes in a

network usually move around a set of well-visited landmarks

with landmark trajectory fairly regular, we utilize past mobility

logs of UEs to estimate most probable landmarks visited by

each UE in each cell. This information is then utilized to

estimate direction of trajectory from current location while

distance to be travelled in that direction is estimated using

next cell HO time THO. Let the coordinates of most probable

landmark for UE ‘u’ in next cell CuN be lLM
Cu

N
= (xLM

Cu
N
, yLM
Cu

N
)

then a unit vector û originating from current coordinates in

direction of (xLM
Cu

N
, yLM
Cu

N
) is given as:

û =
[lLM
Cu

N
− luk ]

||(lLM
Cu

N
− luk )||

(22)

where ||.|| is Euclidian norm operator. The future coordinates

at time step k + k′ can be estimated as:

luk+k′ = luk +

√

(xLM
Cu

N
− xuk)

2 − (yLM
Cu

N
− yuk )2

TuHO
∗ k′ ∗ û (23)

The pseudocode for the next location estimation algorithm

is given in Algorithm 1.

D. Proactive Energy Saving Optimization

Given the next probable HO tuple and estimated future

location luk+k′ for all users, we devise ON-OFF sleeping

mechanism for SCs for next time step k + k′ to minimize

Algorithm 1 : Future Location Estimation

Input: luk ,Cu
N ,Tu

HO, lLM
Cu

N
, SojournT imemax, k, k′

Output: luk+k′

for u ∈ U
If Sojourn time of u ≥ SojournT imemaxOR no training
sample exist for this Cu

N i.e., lLM
Cu

N
= {}

luk+k′ = luk
Else

luk+k′ = luk +

√

(xLM
Cu

N

−xu
k
)2−(yLM

Cu
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−yu
k
)2

T u
HO

∗k′∗
[lLM
Cu

N
−lu

k
]

||(lLM
Cu

N

−lu
k
)||

End If

End for

network wide energy consumption. The sleeping schedule is

ensured to satisfy coverage KPI and QoS requirement of each

UE located at its estimated future location luk+k′ as well as

satisfying maximum loading constraint for each BS. The total

instantaneous power consumption of a cell can be given by

the sum of circuit and the transmit power as [3]:

P total
c = λc(P c

CT + ηc.P
c
t ) (24)

where P c
CT is the constant circuit power which is drawn if

BS in cell c is active and is significantly reduced if the BS

goes into sleep mode, P c
t is the transmit power of cell c,

ηc denotes the load and λc is indicator variable that will be

1(0) for ON(OFF) BS in cell c. One way to quantify Energy

Savings is to leverage the performance metric criterion of

Energy Consumption Ratio (ECR) [40], [41]. This ECR for

a cell is defined as the amount of energy consumed in Joules

per each bit of information that is reliably transmitted in that

cell calculated as:

ECRc =
P

∑

Uc
ωuB ∗ f(γcu)

(Joules/bit) (25)

where f(γcu) is a function that returns achievable spectral

efficiency of user ‘u’ at a given SINR γcu and ωuB is the

bandwidth assigned to user ‘u’. The f(γcu) can be defined

to take into account post processing diversity gains such as

the ones harnessed by MIMO and/or loss incurred by system

specific overheads using f(γcu) := A log2(1 + B(γcu)). Here

A and B are constants taken as 1 in our simulations studies

without loss of generality. The SINR γ̂cu at an estimated user

location luk+k′ at time step k+k′ when associated with a cell c
is defined as the ratio of reference signal received power P cr,u
by user ‘u’ from cell c to the sum of reference signal received

power by user ‘u’ from all cells i such that ∀i ∈ C/c, and the

noise variable κ:

γ̂cu(k + k′) =

[

P ct GuG
c
uδα(dcu)

−β

κ+
∑

∀i∈C/c P
i
tGuG

i
uδα(diu)

−β

]

k+k′

(26)

where P ct is the transmit power of cell c, Gu is the gain of user

equipment, Gcu is the gain of transmitter antenna of the cell c
as seen by the user ‘u’, δ is the shadowing observed by the

signal, α is the path loss constant, dcu represents the distance

of estimated user location of ‘u’ i.e., luk+k′ from cell c and β is

the pathloss exponent. The time subscript on right hand side of

(26) and in rest of the paper indicates that all terms enclosed
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within [.]k+k′ are considered for the next time step k+ k′. In

the scope of this paper, it is assumed that shadowing estimate

information for the estimated user location is available with

normally distributed error. In practical network, Channel Maps

building on the Minimization of Drive Test (MDT) reports

recently standardized by 3GPP [42] and Channel Quality

Indicator reports collected can be utilized to estimate channel

gains in estimated locations. This γ̂cu(k + k′) is fully loaded

SINR expression and is valid only when all cells are fully

utilized. The actual interference from neighboring cells based

on their respective loads is utilized as follows to calculate the

SINR for data transmission:

γ̂cu(k + k′) =

[

P ct GuG
c
uδα(dcu)

−β

κ+
∑

∀i∈C/c ηiP
i
tGuG

i
uδα(diu)

−β

]

k+k′

(27)

where ηi denotes cell load in a cell i at time step k+k′. This

way of weighting the interference power received from each

cell with its current resource utilization yields a certain cou-

pling of the total interference with different cell utilizations.

More loaded cells contribute more interference power than less

loaded ones [43]. For LTE network, instantaneous cell load can

be defined as the ratio of Physical Resource Blocks (PRBs)

occupied in cell during a Transmission Time Interval (TTI) and

total PRBs available in the cell. This indicator is available as

a standard measurement in LTE as "UL/DL total PRB usage".

The number of PRBs allocated to each user depends on the

QoS that the user requires and achievable SINR. For instance,

if the QoS is defined in terms of the required data rate, more

PRBs are assigned to a user with higher rate requirement

and/or one with lower SINR. The total load of cell c at time

step k+k′ will be the fraction of the total resources in the cell

required to achieve required rate of all users of a cell given

as:

ηc(k + k′) =

[

1

Nc

∑

Uc

τ̂u
ωB log2 1 + γcu

]

k+k′

(28)

where ωB is the bandwidth of one resource block, Nc is the

total number of resource blocks in cell c, τ̂u is the minimum

required rate of the user and Uc is the number of active

users connected to a cell c. It is a virtual load as it is

allowed to exceed one to give us a clear indication of how

overloaded a cell is. The required rate in the numerator is

the minimum bit rate required by the user depending upon

the QoS requirements of the services and user subscription

level. In LTE standard currently there does not exist an exact

method to estimate the throughput required by the user. Only

historical throughput of user can be estimated after allocation

of resources. However, 3GPP standards do define a metric

called QoS Class Identifier (QCI). The primary purpose of

QCI is to prioritize users based on their required resource

type, packet delay susceptibility and packet error loss rate.

The definition of desired throughput can build on QCI. In a

more robust approach leveraging network analytics, τ̂u can be

modelled as function of subscriber behavior, subscription level,

service request patterns, as well as the applications being used

[1]. The set of users connected to cell c is determined by the

user association criterion:

Uj := {∀u ∈ U |j = arg max
∀c∈C

(P cr,udBm + P cCIOdB)} (29)

where P cr,udBm is the true reference signal power in dBm

received by user ‘u’ from cell c and P cCIOdB is the bias

parameter (Cell Individual Offset - CIO). This CIO is primarily

used to offset lower transmit power of small cells to transfer

more load to them. In case some underutilized cells are turned

OFF, remaining cells need to have maximum utilization to

cater the transferred load from underutilized cells. However

the downside of biasing is that UEs are no longer necessarily

connected to the strongest cell. As a result, SINR is bound

to be lower with higher CIO values. However, CIO is still a

necessary measure to balance the loads. The capacity loss due

to drop in SINR can partially be offset if the serving cell has

more free PRBs that can be allocated to that user, compared

to PRBs in the previous serving cell to satisfy required QoS.

This highlights the importance of CIO parameter as a knob

to control the tradeoff between network load balancing, CCO

and Energy Consumption. It is important to highlight here that

in case of ES Optimization with guaranteed minimum QoS

requirements, it doesn’t make sense to look at throughputs,

since the UEs either get exactly the constant bit rate or they

are unsatisfied. Hence, more appropriate performance metric

to analyze is the number of unsatisfied or dropped users "Nus"
given as [44]:

Nus(k + k′) =

[

∑

c

max(0,
∑

Uc

1.(1 −
1

ηc
))

]

k+k′

(30)

where
∑

Uc
1. sums up to total number of users in cell c while

(1 − 1
ηc

) is modulation parameter indicating what percentage

of users in that cell are unsatisfied. Here ηc by definition from

(28) is allowed to exceed 1 to give a clear indication how

overloaded a cell is. When ηc = 1, the inner summation in

(30) will be zero meaning all users in cell c are satisfied.

When ηc = 2, the inner summation will be equal to half

of the number of users of cell c meaning half of the users

are satisfied. Outer summation sums up to total number of

unsatisfied users in whole network while max operator is used

since the number of unsatisfied users cannot be negative in

under loaded cells. The unsatisfied users would not be admitted

to enter the system, or they would be dropped if they are

already active.

Now we formulate the general energy consumption mini-

mization problem for time step k + k′ as (31-33):

min
λc,P

c

CIO

∑

C

[ECRc]k+k′ (31)

The objective is to optimize the parameters λc, P c
CIO

of
SCs (SC) such that energy consumption ratio in all cells is

minimized while ensuring coverage reliability and satisfaction

of user throughput requirements. The first two constraints

define the limits for the CIOs and ON/OFF state array re-

spectively. These are the constraints that will determine the

size of solution search space. The third constraint is to ensure

minimum coverage. Here P cth is the threshold for the minimum

received power for user to be considered covered, ω̄ defines

the area coverage probability (a QoS KPI) that operator wants

to maintain, and 1(.) denotes indicator function. The fourth
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min
λ
c,P c

CIO

∑

C







λc(P c
CT + ηc.P

c
t )

∑

Uc
ωcu log2(1 + (

P c
t GuGc

uδα(dc
u)−β

κ+
∑

∀i∈C/c
ηiP i

tGuGi
uδα(di

u)−β
))







k+k′

(32)

where Uj := {∀u ∈ U |j = arg max
∀c∈C

(P cr,udBm + P cCIOdB)}

P cCIO.min ≤ P cCIO ≤ P cCIO.max∀c ∈ SC (33a)

λc ∈ {0, 1}∀c ∈ SC (33b)

1

|C|

∑

C

1

|Uc|

∑

Uc

1(P cr,u ≥ P cth) ≥ ω̄ (33c)

τu ≥ τ̂u∀u ∈ U (33d)

ηc ≤ ηT∀c ∈ C (33e)

constraint ensures each users gets the required minimum bit

rate depending upon the QoS requirements of the service

and user’s subscription level. This is due to the fact that to

achieve ECR minimization objective, CIO of the remaining

ON SCs may be increased to offload users of switched OFF

cells into their coverage umbrella. The consequences are that

the received power P cr,u of offloaded users may become worse,

leading to degraded SINR and throughputs. The effect of

decreased SINR can be offset by allocating more resources

only if the received power by the user is above a certain thresh-

old. Therefore, this fourth constraint ensures that minimum

throughput is guaranteed for all users in all cases. However,

this can only happen when the number of resources available

in a cell are sufficient to meet user requirement, therefore,

this constraint is complemented with a constraint on cell load

ηc < ηT (Load Threshold) with ηT ∈ (0, 1]. The formulated

combinatorial optimisation problem in (32-33) contains both

continuous P c
CIO

and binary λc decision variables. It can be

identified as a mixed integer non-linear programming problem

(MINLP). The inherent coupling of ON/OFF state vector,

CIOs and cell loads indicate it is a large scale non convex

optimization problem. As we are dealing with two problem

parameters per cell whose effects on the optimization function

are not independent therefore the complexity is expected to

grow exponentially with the number of cells. Hence an exhaus-

tive search for the optimal parameters may not be practical

for large size network due to high complexity time search

that needs to be done in real time. For a practical scenario

with 50 SCs and only CIO as optimization variable with ten

possible values available at each SC, we already have 1050

possible settings. This is approximately equal to the number

of atoms on earth. Therefore in order to solve the formulated

ES problem, we utilized Genetic Algorithm (GA) [45]. The

reason being it is considered attractive heuristic technique for

a multi-variable MINLP problems with a large variable count

and enormous search space. Due to its random nature, the

genetic algorithm significantly improves chances of finding

a global solution especially for highly non-linear objective

functions. It is also important to note that the genetic algorithm

starts from a random parameter set in the solution space,

therefore, does not require a feasible point to start search.

Consequently based on estimated network state for time step

k + k′, AURORA Framework devises optimal ON/OFF state

array and CIO values for all the SCs ahead of time such that

energy consumption ratio of the whole network is minimized.

The ON/OFF state array and CIO values remain fixed from

k to k′. As in practical network, SCs need some non-zero

time in switching their state therefore the proposed strategy

gives ample time of k′ duration for SCs to switch to optimal

ON/OFF state.

III. PERFORMANCE ANALYSIS

In this section, we present results for our proposed AU-

RORA Framework. First we analyze the mobility predic-

tion accuracy of the Semi-Markov based model. Then we

analyze the potential energy savings resulting from the ap-

plication of AURORA Framework on HetNets. We have

benchmarked its performance against four schemes (i): Near-

Optimal Performance Bound (NARN) wherein it is assumed

that AURORA estimates future location and channel estimate

at that location with 100% accuracy, (ii): All Cell ON with

Homogeneous Network Settings (AllOn-HomNet) wherein all

cells are ON and no CIO is utilized for small cells, (iii) All Cell

On with Heterogeneous Network Settings (AllOn-HetNet)

wherein all cells are ON and fixed CIO of 10 dB is utilized

for all small cells, (iv) Reactive scheme that is simulated

by delaying user location information i.e., Optimization with

ηT = 1 is done based on location information of past one

minute.

A. Simulation Settings

We generated typical macro and small cell based network

and UE distributions leveraging LTE 3GPP standard compliant

[46] network topology simulator in MATLAB. The simulation

parameters details are given in Table I. We used wrap around

model to simulate interference in an infinitely large network

thus avoiding boundary effects. To model realistic networks,

UEs were distributed non-uniformly in the coverage area

such that a fraction of UEs were clustered around randomly

located hotspots in each sector. Monte Carlo style simulation

evaluations were used to estimate average performance of the

proposed framework. The real challenge here was selection of

a mobility trace generation model that realistically represents

behavior of actual cellular network users. Several such models
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TABLE I
NETWORK SCENARIO SETTINGS

System Parameters Values

Number of Macro Base Stations 7 with 3 Sectors per Base Station

Small Cells per Sector 5

Number of UEs Mobile: 84, Stationary: 336

LTE System Parameters Frequency = 2 GHz, Bandwidth = 10 MHz

Macro Cell Tx Parameters Tx Power = 46 dBm, Tilt = 1020

Small Cell Tx Parameters Tx Power = 30 dBm, CIO = 0 to 10 dB

Base Station Heights Macro BS = 25m, Small BS = 10m

Area Coverage Probability 100%

Total Simulation Duration 1 hour

Fig. 3. Next Cell Prediction Accuracy

have been proposed recently in literature such as SLAW,

SMOOTH, Truncated Levy Walk etc., [47]. Based on an

extensive analysis of pros and cons of these models, we

chose SLAW (Self-similar Least Action Walk) [48] mobility

model. Contrary to the conventional random walk models

where movement at each instant is completely random, chosen

randomly from set of allowed speed and angles, SLAW has

been shown to be a highly realistic mobility model. It exhibits

all the characteristics of real world human mobility i.e., (i)

truncated power-law flights and pause-times: the lengths

of human flights which are defined to be straight line trips

without directional change or pause have a truncated power-

law distribution (ii) heterogeneously bounded mobility areas:

people mostly move only within their own confined areas

of mobility and different people may have widely different

mobility areas (iii) truncated power-law inter- contact times:

the times elapsed between two successive contacts of the

same persons follows truncated power law distribution and

(iv) fractal waypoints: people are always more attracted to

more popular places. Therefore, the accuracy of AURORA

Framework tested using mobility traces generated by SLAW

is very likely to represent its true performance in real network.

The SLAW mobility model was utilized to generate HO traces

of 84 mobile users for one week. Out of which, traces for

first six days were utilized to build and train Semi-Markov

mobility model for each of the 84 UEs. Moreover, additional

336 stationary UEs (80% of total UEs [49]) were deployed

to generate additional loading on the network. For Traffic

Demand, we considered two scenarios (i) Low Traffic Demand

comprising of five different uniformly distributed UE traffic

requirement profiles corresponding to 24 kbps (voice), 56 kbps

(Text Browsing), 128 kbps (Image Browsing), 512 kbps (FTP)

and 1024 kbps (video) desired throughputs, (ii) High Traffic

Demand wherein all UEs are video users. Without loss of

generality and keeping operational complexity in mind, the

prediction interval k′ was set as 1 minute in our simulation

study.
B. Mobility Prediction Accuracy

For benchmarking prediction accuracy of the Semi-Markov

based model trained on six days training data, we utilized

Fig. 4. Effect of Prediction Interval on Next Cell Prediction Accuracy

Fig. 5. Future Location Coordinates Estimation Performance

(13) and (16) to predict serving cells of all UEs for the next

whole day after every k′ time step. At each time interval

k, when the predicted future cell in next time interval k′ is

same as actual future cell than score given is 1 otherwise 0.

Accuracy is then calculated by summing scores for all time

instants and divided by number of observations. The next cell

prediction accuracy results are given in Fig. 3. Accordingly,

maximum prediction accuracy of 87.70% was achieved having

mean value of 81.46% when choosing the top most probable

cell among all future next cell candidates (1-Cell Prediction).

The predictor performs exceptionally well since prediction

interval is only one minute. This high prediction accuracy

is in line with our recent published study [28] on bench-

marking prediction accuracy of Semi-Markov based mobility

prediction model using Real HO measurements collected from

live LTE network. This prediction can be enhanced further by

decreasing k′ interval length. Fig. 4 shows mean prediction

accuracy (denoted by dotted lines) monotonically decreases

with the increase in k′ interval length. We could not decrease

prediction interval to less than 1 minute as with computational

resources available for this study Genetic Algorithm needed at

least this minimum amount of time to find a feasible solution.

However, it is anticipated that if more powerful computational

resources are leveraged to reduce the convergence time of

Genetic algorithm, better mobility prediction accuracy may be

achieved. We also analyzed the effect of choosing the two top

most probable future next cell candidates (2-Cell Prediction)

instead of one. The prediction accuracy got a little boost

with mean value reaching up-to 84.39%. However this gain

is not that significant given it already has very high accuracy.

Next, based on next cell HO tuple information for each UE

{CuN ,T
u
HO}, future location coordinates were estimated using
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Fig. 6. Energy Consumption Ratio (ECR)

Algorithm 1 for all UEs for one hour simulation duration after

every k′ time steps. The average estimation performance is

illustrated in Fig. 5 according to which maximum distance

error between estimated and actual coordinates was around

33 meters having mean value of around 27.5 meters. The

location estimation algorithm performed exceptionally well.

One particular reason for high accuracy is that SLAW model

is for pedestrian users. Therefore, location of user changes

slowly as function of time and thus remains relatively more

predictable. With high speed, accuracy is expected to degrade,

but then knowledge of street/road layout can be exploited

to maintain accuracy. However, this is beyond scope of this

paper and will be subject of future study. An interesting

observation stemming from the symmetric shape of Box Plot

and absence of outliers suggest that normal distribution can be

good approximation for the average location estimation error

distribution.

C. Quantifying Energy Saving Potential of AURORA Frame-

work

The Energy Consumption Ratio (ECR) of AURORA and

NARN for Low and High Traffic Demands with varying values

of Load thresholds ηT along with that of AllOn-HomNet,

AllOn-HetNet and state of the art Reactive schemes averaged

over 1 hour duration is visualized in Fig. 6. Note that for

visualizing ECR ranges for both Traffic Classes in same figure,

the y-axis has been plotted in logarithmic scale. The load

threshold range is [0.6, 1] since below 0.6 there was no

feasible point returned by the P-ES optimization algorithm

(33). It is observed that ECR values are higher for high

traffic demand scenario as more number of SCs need to be

switched ON to cater high load. Moreover AURORA exhibit

a linearly decreasing trend with increasing values of ηT . It is

significantly much less than the conventional AllOn schemes

for all load threshold values. The reason being that for AllOn

schemes, all cells are ON at all times that increases energy con-

sumption which is bound to further escalate with densification.

At lower ηT values, ECR for AURORA is higher since smaller

ηT value compels the AURORA to keep ON larger number

of underutilized SCs. For instance at ηT = 0.6, AURORA

switches ON next small cell as soon as the utilization of

current ON small cells reach 60%. Thus, on average, large

number of SCs will be turned ON for smaller ηT values

Fig. 7. Number of SCs put to Sleep Mode vs Load Threshold

thus increasing energy consumption. Moreover, with large

number of SCs turned ON, there is higher chance that location

estimation inaccuracy results in turning ON SCs with very low

or no load (i.e., very high ECR - Joules/bit). On the other

hand, larger values of ηT enables AURORA to switch OFF

large number of SCs. For instance at ηT = 1, AURORA will

switch ON next SC only when the utilization of current ON

SCs reaches 100%. As a result ECR is expected to decrease

and same trend is observed for NARN. It is interesting to

observe that on one hand with increasing value of ηT , less

number of SCs are turned ON therefore there is less chance

of any turned ON SCs with very low or no load. On the

other hand, with increasing ηT values, AURORA switches

ON smallest possible number of SCs and all of them almost

fully utilized with very few resources to spare. As a result

inaccuracy in location estimation will result in increased risk

of blocking of the UEs (hence increased number of unsatisfied

users − see Fig. 9) thereby negatively affecting QoS. However,

as number of fully utilized SCs is a more dominant factor

in determining overall ECR as compared to slight increase

in the number of unsatisfied users, therefore overall ECR

reduces. The comparison of AURORA with Reactive scheme

shows that ECR for Reactive scheme is higher as compared to

AURORA. This is because in Reactive scheme, due to delayed

user location information outdated configuration settings that

are suboptimal for current instant are applied to the network.

This increases the percentage of unsatisfied users (on average

1.85% with AURORA at ηT = 1 while 4% with Reactive

scheme at high traffic load) and hence higher ECR. Moreover,

ECR for AllOn-HomNet is slightly higher as compared to

AllOn-HetNet. This is because higher CIO values used in

AllOn-HetNet compels SCs to be more utilized and hence

reduced ECR as compared to AllOn-HomNet scheme.

Fig. 7 shows the average number of SCs put to sleep mode

with AURORA and NARN with varying values of ηT for low

and high traffic demand. It can be seen that less number of

SCs can be put to sleep mode for meeting needs of high traffic

demand. The number of SCs put to sleep mode continue to

increase with ηT . This is because with increasing values of

ηT , a SC is utilized more before turning ON next SC or

in other words more SCs are put to sleep mode at higher

values of ηT . Since load coupled interference also increases

with ηT therefore optimization algorithm returns such an

Optimization Parameters Configuration (OPC) i.e., λc, P c
CIO
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(a) Low Traffic Demand

(b) High Traffic Demand

Fig. 8. : Snapshot for Small Cells (ON/OFF) States by AURORA for (a)
Low Traffic Demand (b) High Traffic Demand. Green (Red) circles indicate
ON(OFF) SCs and UEs are illustrated by black dots.

Fig. 9. Percentage of Satisfied Users vs Load Threshold for High Traffic
Demand

that minimizes overall energy consumption ratio. A snapshot

for the SCs states with AURORA for low and high traffic

scenarios at same time instants are shown in Fig. 8. It can

be observed that for high traffic demand, majority of the SCs

are turned ON. For space limitation, results in all subsequent

figures correspond to high traffic demand scenario only that

follow same trend as that observed with low traffic demand.

The average percentage of satisfied users under AURORA

framework vs Load Threshold ηT for high traffic demand

scenario is visualized in Fig. 9 on left y-axis while Energy

Efficiency (1/ECR) is plotted on right y-axis. It can be ob-
served at low ηT values, plenty of free resources are available

in relatively more number of available BSs hence more users

are served with enough resources to meet their minimum QoS

requirements. Even with location estimation inaccuracies, the

Fig. 10. Cell Loads of ON Cells for High Traffic Demand

UEs will still have better chance to get enough resources and

be satisfied. However, more SCs are turned ON at low ηT with

more chance of being underutilized and hence lower Energy

Efficiency. As ηT value becomes higher and approaches 1,

AURORA returns such an OPC λc, P c
CIO

that results in

smallest possible number of switched ON SCs and all of

them almost fully utilized with very few resources to spare.

Hence a slight location estimation inaccuracy can result in

increased risk of blocking and hence decrease in number of

satisfied users. Contrary to that, fewer cells turned ON with

more utilization improve energy efficiency of the network. It

is interesting to observe that for high traffic demand scenario

even at ηT = 1, percentage of satisfied users is above 98%.

The cell loads of ON cells achievable with AURORA and

NARN with ηT = 0.6 and 1 alongside with AllOn schemes

for high traffic demand is plotted in Fig. 10.

It is evident from the figure that in case of AllOn-HomNet

and AllOn-HetNet, since all cells are kept ON, therefore most

of the cells are underutilized with mean utilization of 7.74%

and 8% in AllOn-HomNet and AllOn-HetNet respectively.

This results in higher ECR (see Fig. 6). With AURORA and

NARN, at lower value of ηT i.e., 0.6, some SCs are switched

OFF and thus utilization of remaining ON cells relatively in-

creases with mean utilization of 30.9% and 27.6% respectively.

At higher value of ηT i.e., 1, large no. of SCs are switched OFF

and the few ones which are ON, are relatively more utilized

with mean utilization of 55.8% and 44.2% respectively. The

average CIO values are indicated on top of each boxplot. It is

observed that at higher ηT value of 1 as compared to lower

value of 0.6, on average, relatively larger CIO values have

been leveraged. This is because when fewer cells are switched

ON, CIO values of ON SCs are boosted up to serve the users

of OFF cells. In this way CIOs complements the Proactive

Energy Consumption Optimization by serving as a guiding

parameter in directing users to suitable cells such that overall

ECR reduces while satisfying QoS requirements. The results

for average downlink SINR for AURORA and NARN with

ηT = 0.6 and 1 along with the AllOn-HomNet and AllOn-

HetNet for High Traffic Demand Scenario is shown in CDF

plot in Fig. 11. It can be observed that at higher value of ηT
i.e., 1, load coupled interference from neighboring BSs is very

high. Therefore SINR is negatively affected for AURORA and

NARN as compared to AllOn-HomNet and AllOn-HetNet. As

a matter of fact, when CIOs are leveraged, degraded SINR is

natural outcome. However it does not mean a degraded system
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Fig. 11. Average UE SINR CDF for High Traffic Demand

wide performance as long as loss in throughput caused by

lower logarithmic SINR term is offset by increased number of

PRBs allocable to users. This is how it strives to guarantees

their minimum QoS requirements as shown in Fig. 9. At

smaller ηT value of 0.6, more number of SCs are turned

ON with relatively less load. This reduces overall interference

floor in the network and hence SINR improves that is higher

than that achievable at ηT value of 1. For AllOn-HomNet and

AllOn-HetNet schemes, all SCs are ON, highly underutilized

and hence higher SINR. However, it is worth noting that this

gain in SINR comes at cost of higher energy consumption i.e.,

for AllOn-HomNet and AllOn-Hetnet, ECR is 109 mJ/bit and

107 mJ/bit respectively that is much higher as compared to

AURORA which is around 36 mJ/bit achievable at ηT = 1.
The average long term cell occupancy probability of the

users computed through (17-19) is shown in Fig. 12(a) ac-

cording to which users spend most of their time in Macro

cells 5, 1, 19, 20 and 21 (denoted by yellow stars). This

information can be utilized for validation of the proposed

AURORA Framework. The average percentage of ON Small

Cells with AURORA for one hour simulation duration is

shown in Fig. 12(b). As is evident, more number of SCs were

turned ON in Macro cells 9, 20, 5, 19 and 1 (denoted by yellow

stars). Hence on average AURORA kept more number of SCs

switched ON in cells where users had higher sojourn time.

Few discrepancies observed such as with Macrocell 21 can

be attributed to the location estimation inaccuracies as well as

rate requirement of UEs in those cells i.e., even with higher

cell occupancy probability of users in a particular macrocell,

if cumulative rate requirement of UEs is low than SCs in

that macrocell will remain switched OFF most of the time.

For higher traffic demand scenario, average percentage of ON

Small Cells with AURORA is shown in figure 12(c). As more

number of SCs were turned ON to cope with high traffic

demand therefore the plot in Fig. 12(c) is relatively more

greenish as compared to that in Fig. 12(b).
D. Quantifying Effect of Mobility Prediction Model Inaccu-

racy on Potential Energy Saving

The potential energy savings resulting from the application

of AURORA Framework can be quantified by computing

Energy Reduction Gain (ERG) [40], [41] performance metric

given as:

ERG = (
ECRBenchmark − ECRAURORA

ECRBenchmark
)×100% (34)

(a)

(b)

(c)

Fig. 12. (a) Long term Cell Occupancy probability (b) Percentage of ON
Small Cells at Low Traffic Demand (c) Percentage of ON Small Cells at
High Traffic Demand.

It is logical to anticipate that the energy saving gain of AU-

RORA i.e., ERG will depend on the accuracy of the underlying

mobility prediction model. In this section we analyze this

dependence by varying the underlying user mobility model

such that it includes varying degree of randomness and hence

predictability. To vary the degree of randomness in the mobil-

ity traces, the two key parameters of SLAW mobility model

namely variance in pause times and percentage of random

waypoints were changed from default values suggested in

[48], (and used for results in figures 3-12) to larger values

to increase randomness in the mobility trajectory of the UEs.

Four set of gradually increasing initialization parameters were

used that resulted in increasing randomness in user mobility.

Our prediction model trained on these four set of traces

exhibited average prediction accuracy of 85%, 75% , 65% and

55%. The average ERG of AURORA for these varying values

of Prediction Accuracy against AllOn-HomNet and AllOn-

HetNet schemes averaged over 1 hour duration for high traffic
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Fig. 13. Energy Reduction Gain vs Prediction Accuracy

demand scenario is plotted in Fig. 13. It is observed that as

expected the gain of AURORA decreases with decrease in

prediction accuracy. However, it is noteworthy that as long as

mobility is predictable with 55% or higher accuracy, AURORA

continues to yield Energy Reduction Gain. Given that typical

human mobility features 93% predictability when averaged

over a large real user sample space [27], AURORA is a

promising approach. However, human mobility is bound to

have some randomness that translates to prediction inaccuracy.

The high frequency periodic update aspect of the future

location probabilities is one of the possible ways to cope

with the prediction inaccuracies as the effect of the prediction

inaccuracy is only limited to the prediction interval. Another

way is to make it adaptive so that AURORA continuously

analyzes its performance and falls back to conventional AllOn

scheme when prediction accuracy drops below 55%. More-

over, selecting top-2 probable locations as shown in Fig. 3,

can also be chosen as a strategy to improve the prediction

accuracy, albeit at cost of reduced ERG.

IV. CONCLUSIONS

This paper has proposed a novel spatiotemporal mobility

prediction aware proactive sleep-mode based energy saving

optimization algorithm for cracking the future 5G ultra-dense

HetNets puzzle. The proposed AURORA framework employs

innovative concept of estimating future user locations and

leverage that to estimate future cell loads. It then devises

energy saving optimization problem for the estimated future

network scenario. The majority of the conventional reactive

style approaches are expected to solve the formulated en-

ergy saving problem dynamically in real-time as network

conditions change. However this is close to impossible even

when substantial computing power is available. Contrary to

that, the innovative proposed approach enables state-of-the-art

heuristic techniques like GA to find practically good solutions

to the formulated optimization problem predictively ahead

of time. This can be enabler for meeting 5G ambitious la-

tency and QoS requirements. Moreover, AURORA framework

considers the interplay among the three intertwined SON

functions (ES, CCO and LB) due to the overlap among their

primary optimization parameters. Therefore it employs co-

design approach wherein the joint optimization of ON/OFF

States and CIO values for SCs does not conflict with CCO

and LB objectives. Extensive simulations employing realistic

SLAW mobility model indicate that, in best case, AURORA

can achieve energy reduction gain of about 68% for high

traffic demand scenario in ultra-dense HetNets as compared to

Always On approach. Comparative performance analysis with

near-optimal performance bound indicate satisfactory robust-

ness of the proposed AURORA framework towards location

estimation accuracies. For future works, we will investigate

incorporation of user specific CIOs by considering mobility

behavior and QoS requirements of the UEs. We will also

investigate incorporating the backhaul constraint implicitly by

assigning maximum load threshold to the cells depending

upon available backhaul. Another promising research direction

is to devise energy aware association scheme and use it in

conjunction with the energy saving optimization problem.
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