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Abstract—Increased network wide energy consumption is a
paramount challenge that hinders wide scale ultra-dense net-
works (UDN) deployments. While several Energy Saving (ES)
enhancement schemes have been proposed recently, these schemes
have one common tenancy. They operate in reactive mode i.e.,
to increase ES, cells are switched ON/OFF reactively in response
to changing cell loads. Though, significant ES gains have been
reported for such ON/OFF schemes, the inherent reactiveness of
these ES schemes limits their ability to meet the extremely low
latency and high QoS expected from future cellular networks
vis-a-vis 5G and beyond. To address this challenge, in this paper
we propose a novel user mobility prediction based AUtonomous
pROactive eneRgy sAving (AURORA) framework for future
UDN. Instead of observing changes in cell loads passively and
then reacting to them, AURORA uses past hand over (HO)
traces to determine future cell loads. This prediction is then
used to proactively schedule small cell sleep cycles. AURORA
also incorporates the effect of Cell Individual Offsets (CIOs)
for balancing load among cells to ensure QoS while maximizing
ES. Extensive system level simulations leveraging realistic SLAW
model based mobility traces show that AURORA can achieve
significant energy reduction gain without noticeable impact on
QoS.

Index Terms—5G, Energy Saving, Mobility Prediction, Proac-
tive SON, Heterogeneous Networks, Sleeping Cells, ON/OFF
Small Cells, CIOs.

I. INTRODUCTION

The current exponential mobile data traffic escalation is
a precursor towards an imminent "capacity crunch". In this
backdrop, extreme network densification through deployment
of large number of Small Cells (SCs) has emerged as the
most yielding solution to achieve the 1000 fold capacity gain
goal [1]. However, the ultra-dense deployments of SCs is
on direct collision path with the economically viable and
energy efficient deployment vision of 5G. This is due to the
high aggregated network energy that "always ON" small cells
are bound to consume in an Ultra Dense Network (UDN).
In addition to higher carbon footprint, this translates into
higher OPEX. Although SCs have a relatively lower power
consumption profile, yet the always ON approach increases
overall network wide energy consumption [2]. This is because
the load independent power consumption (circuit power) com-
ponent in SCs constitutes a much larger portion of over-all
power consumption [3]. As a result, with advent of UDN, the
need for ES schemes will be even more compelling. It is a
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consensus among research community that to avert possible
energy crunch in 5G and to achieve economic viability, the
1000 x capacity increase must be achieved at a similar or lower
power consumption as legacy networks [4].

A. Related Work

Energy consumption in cellular systems can be reduced
significantly by turning OFF underutilized cells during off-
peak hours or by optimizing resource allocation such that
minimum energy is consumed per bit transmission [4]-[7].
To exploit these approaches recently ES has been adopted as
a key Self Organizing Network (SON) function by 3GPP [8§]
and has been extensively studied in literature. ES enhancement
with focus on optimizing resource allocation despite of its
relatively small gain compared to turning ON/OFF under-
utilized BSs has been studied more extensively compared to
later approach [4]. The resource allocation optimization can
reduce the energy consumption to only a limited degree for a
given system throughput target. ES of the cellular systems can
be further enhanced significantly by switching under-utilized
BSs to sleep mode or turning them OFF entirely during off-
peak time [5]-[7], [9]. In this direction of research, some
recent works show promising results in terms of potential ES
[10]-[23]. However, to the best of our knowledge, existing
ES approaches fall short of mark for 5G requirement due to
following four limitations:

1) Reactive mode of operation: Conventional ES SON
algorithms are designed to switch OFF/ON cells after
detecting network conditions that have already taken
effect. For example, when congestion is detected in
network, usually a non-convex NP-hard ES algorithm
is solved to identify certain sleeping/OFF cells, that
should be switched ON or using same process certain
cells are switched OFF, when low load is observed in
certain cells. This is an improvement over fixed timer
based switching ON/OFF [24] that can at best follow a
coarse statistical spatio-temporal traffic pattern and thus
achieves ES at cost of QoS. However, given the acute
dynamics of traffic and cellular environment, by the time
congestion or low traffic conditions are detected and a
realistic non-convex NP-hard ES algorithm is solved to
produce new network ON/OFF configuration optimal for
observed network conditions, the conditions may already
change. Thus, the newly determined switch ON/OFF
vector is likely to be suboptimal before it can be actuated.
This problem can exacerbate particularly in 5G, where a



motely of traffic and plethora of cell types means the
dynamics of cellular eco-system will be even more swift.

2) Difficulty in meeting 5G low latency: Base Stations
require a certain amount of time to wake up from sleep
cycle [25]. For a user entering a sleeping cell, this time
to wake up will add to the latency experienced by the
user. This demands paradigm shift from the conventional
reactive design of ES algorithms towards proactive char-
acteristics to cope with extreme low latency requirements
of 5G in a more agile fashion.

3) Impractical cell discovery: A key challenge in switching
OFF based ES schemes is: how to discover an OFF cell
when users enter into physical coverage area of the OFF
cell? Existing ES schemes either overlook this challenge,
or propose solutions that either exploit neighboring cells
or a master controller to wake up the cell, when enough
users enter into the coverage area of OFF cell. This
approach may work in low user density network with
large macro cells with relatively less stringent Quality of
Service (QoS) requirements such as LTE, but it may not
scale to 5G because of signaling overhead, delays and
cost of missing out OFF small cells for off-loading.

4) SON Conflict prone design: The other caveat with
conventional ES solutions is that they are oblivious of
the fact that multiple SON functions may be prone to
hidden or undesired conflict when implemented together
in a network [1], [26]. Two SON use cases that become
highly relevant to the ES in HetNets are Coverage and
Capacity Optimization (CCO) and Load Balancing (LB)
[8] because of the overlap among their optimization
parameter set: Transmission Power and Cell Individual
Offsets (CIOs). When an ES switches OFF some cells, it
may force some users to be associated to neighboring ON
cells and overload them thereby conflicting with CCO and
LB SON functions. As explicated in [26], such conflict
prone ES solution design can actually degrade network’s
performance instead of improving it.

B. Contributions and Organization

To address the aforementioned limitations, we propose
AURORA framework (Fig. 1) by building on the lines of
Big Data empowered SON framework [1]. The key idea
is to make emerging cellular systems artificially intelligent
and autonomous so that they can anticipate user mobility
behavior. This intelligence in turn is then used to formulate
a novel ES optimization problem that proactively schedules
small cell sleep cycles to divert and focus the right amount
of resources when and where needed while satisfying QoS
requirements. The contributions and organization of paper can
be summarized as follows:

1) As abuilding block of AURORA, we develop and analyze
a Semi-Markov model based spatio-temporal mobility
prediction framework. Our proposed mobility prediction
model overcomes the limitation of conventional discrete
time Markov chain based prediction models that fail
to incorporate time dimension i.e., "Time of next HO"
(Section II-B). Next, we propose a novel method to

2)

3)

4)

5)

map the next cell spatiotemporal HO information to the
estimated future location coordinates based on the idea
of Landmarks (Section II-C). This novel method further
increases the spatial resolution of the future location
estimation without requiring increase in number of states
for Semi-Markov model. The accuracy of proposed model
is quantified through extensive Monte Carlo simulations.
Based on the intelligence gained from the mobility model
i.e., future cell loads, a proactive energy saving optimiza-
tion problem is formulated to minimize the energy con-
sumption by switching OFF underutilized SCs (Section
II-D). In addition to proactivness, another key novelty
of proposed ES scheme is that it leverages CIOs as
optimization variables for balancing load among cells
while deciding which cells to switch ON/OFF. In this
way, an additional UDN specific mechanism is exploited
to ensure QoS while maximizing ES. Although the for-
mulated problem is non-convex large scale combinatorial
and NP-hard, our results show that the structure of the
problems allows heuristics such as genetic programming
to find good solutions with high ES yield. The ahead of
time estimation of cell loads allows ample time for such
heuristics to converge without jeopardizing QoS.

We conduct multi-tier system level 3GPP compliant rigor-
ous simulations for comprehensive performance analysis
of proposed AURORA (Section III). The prediction accu-
racy of the Semi-Markov based mobility prediction model
has been quantified using realistic SLAW mobility model
in HetNets environment. The average location estimation
error was found to be around 28 meters on average, while
relying only on one piece of information that is already
available in network i.e., HO trace.

We also analyze the impact of cell load thresholds on
ES gains and QoS (percentage of satisfied users) for
proactive energy saving optimization. The results of this
analysis provide actionable insights for determining cell
load thresholds that can judiciously strike the intended
balance among the conflicting goals of ES and QoS.
We perform a comparative analysis of proposed solution,
in Low and High Traffic demand scenarios with the latter
comprising of all video users, against several bench marks
including industrial practices i.e., All ON SCs without
and with fixed CIOs. AURORA achieved 68% and 99%
gain in the total network energy reduction for low and
high traffic demand scenarios respectively by putting
under-utilized SCs in sleep mode with negligible number
of unsatisfied users. Moreover, we compare AURORA
with near-optimal performance bound that is achievable
when future network load conditions can be estimated
with 100% accuracy. This comparison demonstrates that
AURORA is reasonably resilient to location estimation
inaccuracies.

II. AURORA FRAMEWORK

In this section we present the analytical model development

of AURORA Framework whose three key corner stones are:

Semi-Markov Process based Spatiotemporal Next Cell
Prediction
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Fig. 1. AURORA Framework
« Mapping of Next Cell Prediction to Future User Location

Estimation
o Proactive-Energy Saving Optimization based on Future
User Location Estimation

A. Network Model and Assumptions:

The AURORA framework proposed in this paper only
focuses on the downlink of cellular systems for the sake of
conciseness. It is assumed that all mobile devices and small
cells have omnidirectional antennas with a constant gain in
all directions while macro cells have directional antennas.
Frequency reuse of one is considered and same band is utilized
by the macrocell and the small cells. A full buffer traffic model
is used for each user, i.e., there is always data available to be
sent for a user with constant bit rate service. A centralized
C-SON architecture is assumed wherein a centralized server
in the core network performs system wide Proactive-Energy
Saving Optimization. Moreover, HO traces that include loca-
tion stamped information of past cell transitions such as cell
IDs, RSRPs and call detail records are assumed to be available
to the C-SON server.

B. Semi-Markov based Spatiotemporal Next Cell Prediction

1) Background: Our rationale to build and utilize mobil-
ity prediction as a foundation for AURORA is backed by
landmark study that analyzed real data for 10 million mobile
users [27] and showed that typical human mobility features
93% average predictability. The mobility prediction model
developed in this work builds on our recent study validated
in real network [28] that exploits following idea: transition
probability to a next cell can be predicted by modelling user
transition from one cell to another as a Markov stochastic
process and using HO history to estimate state transition
probabilities. Discrete Time Markov Chain (DTMC) has been
commonly used in the literature for mobility prediction pur-
poses [29]-[31]. As compared to more complex and more
space-consuming compression based predictors, the Markov
based scheme can yield more scalable solution as it does
not need to store users’ past movements. Instead the crux
of this information is captured by transition probabilities.
However, DTMC is memory less and assumes sojourn time is
geometrically distributed and each transition takes place in one
unit time. Considering these limitations of the DTMC model,
the aforementioned works have utilized DTMC for only the
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spatial prediction i.e., identification of future cell only without
any information about the time at which handover may take
place. Continuous Time Markov Chain (CTMC) is continuous
counter part of DTMC and can be utilized for mobility predic-
tion if the human mobility is assumed to be memory less and
cell sojourn time is assumed to be exponentially distributed. As
per [32], human mobility exhibits memory property and can be
best approximated with power law (heavy tailed) distribution
instead of memory less exponential distributions. Fortunately,
Semi-Markov is an advanced class of Markov models that
allows for arbitrary distributed sojourn times. Few recent
works have characterized prediction accuracy performance of
Semi-Markov based model for mobility prediction [33], [34].
However, to the best of our knowledge, this study is the first
of its kind that presents spatio-temporal mobility prediction
model, and a framework to transform that prediction into
future cell load estimates. It then uses those load estimates to
devise and analyze a proactive and QoS aware energy saving
solution.

2) Mobility Prediction Model: We begin by modeling user
mobility as a Semi-Markov renewal process {(X,,Ty) : n >
0} with discrete state space C = 1,2,3...,z where T), is
the time of nth transition, X,, is the state at nth transition
and total of z cells [28]. Each cell is represented by the state
of the Semi-Markov process, and a handover from one cell
to another is considered as state transition. It is assumed that
the process is time-homogeneous during the time period in
which the model is built. Fig. 2 shows state transition diagram
for the Semi-Markov model wherein p; ; is the probability of
transition from cell i to j. The associated time-homogeneous
Semi-Markov kernel for user ‘u’ which is the probability of
transition to j** cell if user has already spent time ¢ in i*" cell
is defined as:

O ()= Pr(x(%, = 5,18 — T < t|x[" =) (1)
=p{) S (1) @)
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Here p( ") is the probability of handover of user ‘u’from cell ¢

to 7, P(“) is the probability transition matrix of the embedded
Markov chain of user ‘u’given as
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and Si(f;) (t) is the sojourn time distribution of user ‘u’in cell ¢
when next cell is j. It is important to note here that handover
from cell to itself is not allowed, therefore diagonal of the
matrix P will be all zeros and the matrix will be a hollow
matrix. Furthermore, direct handovers are possible between
neighboring cells only. The probability that the user ‘u’ in
cell ¢ will leave cell ¢ before or at time ¢ regardless of the
next cell is defined as:

A (1) = Pr(T, — T < X (W =) )
=3 ) ©
Jj=1

Now the time-homogeneous Semi-Markov process of user ‘u’
is defined as X = (X;, t € Ry) with state transients as:

o) (1) =

ﬁZ/% ) (7)
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where d; jis the Kronecker function defined as:
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Integral equations (10) and (11) are Volterra equations of the
first and second kind and the 1ntegral is the convolution of
w(“)( ) and qb(u () ie., w(“) * ¢ . It gives the probability
that user ‘u’ startlng in cell ¢ will be in cell j by t. The first
part of the right-hand side is the probability that the user,
being in cell ¢, never leaves cell ¢ until the end of the period
t. The second part of the right-hand side of equation accounts
for all cases in which the transition from ¢ to j occurs via
another cell m=i applying the renewal argument. First, the
probability that the user stays in cell ¢ for a period of length
7 and then goes to cell m is given by wz(ij,)l(T) Handover to
this new cell m can be interpreted as a renewal of the process

Pr(x{" = j|Ix§ =) ©)

= (1AM (10)

qsfjjl(t —7)dr (11)

(12)

because the expected behavior of the user from then on is the
same irrespective of when the user enters cell m. Therefore,
the probability that the user which is in cell m at 7 will be in
cell j at ¢ is given by qS (t — 7). As the transition from ¢ to
m can occur anytime between 0 and t, therefore all possible
transition times are considered by the integration over 7 [35].
The numerical solution to solve evolution equations (10) and
(11) is given by [36] and we implement the same approach.
The evolution equation (10) can be re-written for discrete-time
homogeneous Semi-Markov process as:

o8 (k) = h{") (k) + Z Za(“) —7)  (13)
m=171=1

() (r

where A" (k) = (1 — A" (£))3;; and o) (k) = LenlD

can be approximated as follows assuming time step is equal
to the unit:

(u) '(/}z(jjq)m(l) k=1
Y (k) =i (k=1) k>1

As P® s right stochastic matrix therefore () (k)
and ¢ (k) will also be a right stochastic matrices i.e.,
Sl (k) = Yo, 61 (k) = 1,¥i,j € C. The 6% (k)
gives the probability that the user ‘u’ is in cell j after kK amount
of time from the time instant when he/she made transition
from somewhere to cell :. However, to predict the location
of a user at every k' time steps, we have to estimate the
probability ¢") (', s) = p(ngk, = X =ity = 9)
ie. probablhty that a user is in cell j after &’ time given that
the current cell is ¢ and user has stayed in cell ¢ for sojourn
time ¢,,; = s. It can be evaluated as [33]:

(14)
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Note that for s = 0 : ¢(u)(k/ s) = d)qu)(k) We will also
leverage steady state dlstrlbutlon of Semi-Markov model to
analyze long term cell association of the users. This can help
to identify the cells where users spend most of the time and
further can be utilized to validate our proposed framework.
The steady state distribution of the Semi-Markov i.e., (W) =

[ {u)7 5 ,Cgu), s gu)] is given as:
(u) _ (u)
u T
G =< (17)
’ D et 771( )%'( )

(w) _(u) _(u) (u)

where [m; ’, 7Ty, T3 ,...,Tx | is positive solution to follow-
ing balance equations:
=N a1 << (18)
i=1
S =1 (19)



and 73(“)71 < j < z is the mean sojourn time of user ‘u’in
cell j. Utilizing the past handover history of user ‘u’ <time,
Cell ID>, Probability transition matrix P(*) and sojourn time
distribution matrix S(*) are initialized as follows [37]:

N®
(u) i,J
Dy N® (20)
and )
N
S (k) = —Lik @1)
2, (u)
Nij

where Ni(q;-) is the number of handovers of user ‘v’ from cell ¢

to j, N, Z(l;)k is the number of handover of user ‘v’ from cell 7 to
7 with sojourn time less than or equal to k£ and Ni(”) is the total
number of handovers of user ‘v’ from cell . Whenever there
is a handover from cell i to j, it updates pgj;-) and SZ-(Z)(k:)
and computes %(l;)(k) Finally gbgj;) (k) and gisl(j})(k’, s) are
computed. The cell with highest probability is chosen as the
predicted future destination i.e., max q@f-?(k’ ,8) where N; is

JEN;
set of all neighboring cells of cell 7. In this way, after every
k' time steps, the next HO tuple information for each UE
{C%,T%} is generated wherein C%; is next probable cell of
user ‘u’ at time T%,.
C. Future Location Estimation

Let the UE’s current location coordinates at time instant k be
[} = (x},y}) and the next cell HO tuple information for each
UE be {C%;,T%} . Next task is to utilize this information
for estimating UE’s future location coordinates in next time
step k + k’. Inspired by observation [38], [39] that nodes in a
network usually move around a set of well-visited landmarks
with landmark trajectory fairly regular, we utilize past mobility
logs of UEs to estimate most probable landmarks visited by
each UE in each cell. This information is then utilized to
estimate direction of trajectory from current location while
distance to be travelled in that direction is estimated using
next cell HO time T 0. Let the coordinates of most probable
landmark for UE ‘v’ in next cell C¥, be lé}{vw = (xéy , yé%)
then a unit vector 4 originating from current coordinates in

direction of (zEM yLM) is given as:
( cy Yoy, ) is g

ey — I
u= ZLZ]\\’I — v (22)
&=
where ||.|| is Euclidian norm operator. The future coordinates
at time step k + k' can be estimated as:
\/(l‘égf Rl s e
ek = U + x k'« 0 (23)

Tiro

The pseudocode for the next location estimation algorithm
is given in Algorithm 1.
D. Proactive Energy Saving Optimization

Given the next probable HO tuple and estimated future

location [}/ ,, for all users, we devise ON-OFF sleeping
mechanism for SCs for next time step k + k' to minimize

Algorithm 1 : Future Location Estimation

u /

Input: [}, C%, }‘Io,léévw, SojournTimemax, k, k
Output: [},

for u € U
If Sojourn time of u > SojournTimemaxOR no training
sample exist for this Cy; i.e., lé}%{ ={}

ivw =1k
Else
\/<z59/’—z:>2—<y@9’—yg>2 LEM o

B =l = il kv —on "
R Tio 1QET =101
End If v

End for

network wide energy consumption. The sleeping schedule is
ensured to satisfy coverage KPI and QoS requirement of each
UE located at its estimated future location [}/, ;, as well as
satisfying maximum loading constraint for each BS. The total
instantaneous power consumption of a cell can be given by
the sum of circuit and the transmit power as [3]:

PR = X(P&p + ne.PY) (24)

where Pf¢.. is the constant circuit power which is drawn if
BS in cell ¢ is active and is significantly reduced if the BS
goes into sleep mode, Pf is the transmit power of cell c,
7. denotes the load and A° is indicator variable that will be
1(0) for ON(OFF) BS in cell c. One way to quantify Energy
Savings is to leverage the performance metric criterion of
Energy Consumption Ratio (ECR) [40], [41]. This ECR for
a cell is defined as the amount of energy consumed in Joules
per each bit of information that is reliably transmitted in that
cell calculated as:

P

e = B 108
where f(7S) is a function that returns achievable spectral
efficiency of user ‘u’ at a given SINR ~¢ and w} is the
bandwidth assigned to user ‘w’. The f(v5) can be defined
to take into account post processing diversity gains such as
the ones harnessed by MIMO and/or loss incurred by system
specific overheads using f(7S) := Alogy(1 + B(7S)). Here
A and B are constants taken as 1 in our simulations studies
without loss of generality. The SINR 4;, at an estimated user
location [}, at time step k&’ when associated with a cell ¢
is defined as the ratio of reference signal received power PS,,
by user ‘u’ from cell ¢ to the sum of reference signal received
power by user ‘u’ from all cells 4 such that Vi € C/c, and the
noise variable x:

(Joules/bit) (25)

PeG, G da(ds) "
K+ viec/e P{G,Gioa(dl,)P

Falk +F) = (26)
k+k’

where Py is the transmit power of cell ¢, G, is the gain of user
equipment, G¢, is the gain of transmitter antenna of the cell ¢
as seen by the user ‘u’, J is the shadowing observed by the
signal, « is the path loss constant, d, represents the distance
of estimated user location of ‘u’ i.e., l}j+k/ from cell ¢ and 3 is
the pathloss exponent. The time subscript on right hand side of
(26) and in rest of the paper indicates that all terms enclosed



within [.]- are considered for the next time step k + k. In
the scope of this paper, it is assumed that shadowing estimate
information for the estimated user location is available with
normally distributed error. In practical network, Channel Maps
building on the Minimization of Drive Test (MDT) reports
recently standardized by 3GPP [42] and Channel Quality
Indicator reports collected can be utilized to estimate channel
gains in estimated locations. This 4S(k + £’) is fully loaded
SINR expression and is valid only when all cells are fully
utilized. The actual interference from neighboring cells based
on their respective loads is utilized as follows to calculate the
SINR for data transmission:

PfGLGEsa(dS) P
K+ ZViEC/c ni PG, Gida(di)—P

Yulk + k) =
k+k’
(27

where n); denotes cell load in a cell ¢ at time step k + k. This
way of weighting the interference power received from each
cell with its current resource utilization yields a certain cou-
pling of the total interference with different cell utilizations.
More loaded cells contribute more interference power than less
loaded ones [43]. For LTE network, instantaneous cell load can
be defined as the ratio of Physical Resource Blocks (PRBs)
occupied in cell during a Transmission Time Interval (TTI) and
total PRBs available in the cell. This indicator is available as
a standard measurement in LTE as "UL/DL total PRB usage".
The number of PRBs allocated to each user depends on the
QoS that the user requires and achievable SINR. For instance,
if the QoS is defined in terms of the required data rate, more
PRBs are assigned to a user with higher rate requirement
and/or one with lower SINR. The total load of cell ¢ at time
step k+ k" will be the fraction of the total resources in the cell
required to achieve required rate of all users of a cell given
as:

ne(k + k) = (28)

Tu

N, %C: wplogy 1 + 5 ok
where wp is the bandwidth of one resource block, N, is the
total number of resource blocks in cell ¢, 7, is the minimum
required rate of the user and U, is the number of active
users connected to a cell c. It is a virtual load as it is
allowed to exceed one to give us a clear indication of how
overloaded a cell is. The required rate in the numerator is
the minimum bit rate required by the user depending upon
the QoS requirements of the services and user subscription
level. In LTE standard currently there does not exist an exact
method to estimate the throughput required by the user. Only
historical throughput of user can be estimated after allocation
of resources. However, 3GPP standards do define a metric
called QoS Class Identifier (QCI). The primary purpose of
QCI is to prioritize users based on their required resource
type, packet delay susceptibility and packet error loss rate.
The definition of desired throughput can build on QCI. In a
more robust approach leveraging network analytics, 7,, can be
modelled as function of subscriber behavior, subscription level,
service request patterns, as well as the applications being used
[1]. The set of users connected to cell ¢ is determined by the
user association criterion:

Uj:={VuelUl|j= arggég?é(Pﬁ;UdBm + Pérogp)) (29)

where P7, . - is the true reference signal power in dBm
received by user ‘v’ from cell ¢ and Pg;p, 5 is the bias
parameter (Cell Individual Offset - CIO). This CIO is primarily
used to offset lower transmit power of small cells to transfer
more load to them. In case some underutilized cells are turned
OFF, remaining cells need to have maximum utilization to
cater the transferred load from underutilized cells. However
the downside of biasing is that UEs are no longer necessarily
connected to the strongest cell. As a result, SINR is bound
to be lower with higher CIO values. However, CIO is still a
necessary measure to balance the loads. The capacity loss due
to drop in SINR can partially be offset if the serving cell has
more free PRBs that can be allocated to that user, compared
to PRBs in the previous serving cell to satisfy required QoS.
This highlights the importance of CIO parameter as a knob
to control the tradeoff between network load balancing, CCO
and Energy Consumption. It is important to highlight here that
in case of ES Optimization with guaranteed minimum QoS
requirements, it doesn’t make sense to look at throughputs,
since the UEs either get exactly the constant bit rate or they
are unsatisfied. Hence, more appropriate performance metric
to analyze is the number of unsatisfied or dropped users "N,;"
given as [44]:

Nus(k + k') = Zmax((), Z 1.(1— ni)) (30)
c Ue ¢

k+E'

where } ;1. sums up to total number of users in cell ¢ while
(1 — L) is modulation parameter indicating what percentage
of users in that cell are unsatisfied. Here 7. by definition from
(28) is allowed to exceed 1 to give a clear indication how
overloaded a cell is. When 7. = 1, the inner summation in
(30) will be zero meaning all users in cell ¢ are satisfied.
When 1. = 2, the inner summation will be equal to half
of the number of users of cell ¢ meaning half of the users
are satisfied. Outer summation sums up to total number of
unsatisfied users in whole network while max operator is used
since the number of unsatisfied users cannot be negative in
under loaded cells. The unsatisfied users would not be admitted
to enter the system, or they would be dropped if they are
already active.

Now we formulate the general energy consumption mini-
mization problem for time step k + k' as (31-33):

min Z [ECRC],H_k/

€2
N

The objective is to optimize the parameters A°, P&, of
SCs (SC) such that energy consumption ratio in all coffs is

minimized while ensuring coverage reliability and satisfaction
of user throughput requirements. The first two constraints
define the limits for the CIOs and ON/OFF state array re-
spectively. These are the constraints that will determine the
size of solution search space. The third constraint is to ensure
minimum coverage. Here P, is the threshold for the minimum
received power for user to be considered covered, w defines
the area coverage probability (a QoS KPI) that operator wants
to maintain, and 1(.) denotes indicator function. The fourth
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constraint ensures each users gets the required minimum bit
rate depending upon the QoS requirements of the service
and user’s subscription level. This is due to the fact that to
achieve ECR minimization objective, CIO of the remaining
ON SCs may be increased to offload users of switched OFF
cells into their coverage umbrella. The consequences are that
the received power Py, of offloaded users may become worse,
leading to degraded SINR and throughputs. The effect of
decreased SINR can be offset by allocating more resources
only if the received power by the user is above a certain thresh-
old. Therefore, this fourth constraint ensures that minimum
throughput is guaranteed for all users in all cases. However,
this can only happen when the number of resources available
in a cell are sufficient to meet user requirement, therefore,
this constraint is complemented with a constraint on cell load
N < nr (Load Threshold) with nr € (0, 1]. The formulated
combinatorial optimisation problem in (32-33) contains both
continuous P£ ., and binary A€ decision variables. It can be
identified as a mixed integer non-linear programming problem
(MINLP). The inherent coupling of ON/OFF state vector,
CIOs and cell loads indicate it is a large scale non convex
optimization problem. As we are dealing with two problem
parameters per cell whose effects on the optimization function
are not independent therefore the complexity is expected to
grow exponentially with the number of cells. Hence an exhaus-
tive search for the optimal parameters may not be practical
for large size network due to high complexity time search
that needs to be done in real time. For a practical scenario
with 50 SCs and only CIO as optimization variable with ten
possible values available at each SC, we already have 10°°
possible settings. This is approximately equal to the number
of atoms on earth. Therefore in order to solve the formulated
ES problem, we utilized Genetic Algorithm (GA) [45]. The
reason being it is considered attractive heuristic technique for
a multi-variable MINLP problems with a large variable count
and enormous search space. Due to its random nature, the
genetic algorithm significantly improves chances of finding
a global solution especially for highly non-linear objective
functions. It is also important to note that the genetic algorithm
starts from a random parameter set in the solution space,
therefore, does not require a feasible point to start search.

Consequently based on estimated network state for time step
k + k', AURORA Framework devises optimal ON/OFF state
array and CIO values for all the SCs ahead of time such that
energy consumption ratio of the whole network is minimized.
The ON/OFF state array and CIO values remain fixed from
k to k’. As in practical network, SCs need some non-zero
time in switching their state therefore the proposed strategy
gives ample time of &’ duration for SCs to switch to optimal
ON/OFF state.
ITI. PERFORMANCE ANALYSIS

In this section, we present results for our proposed AU-
RORA Framework. First we analyze the mobility predic-
tion accuracy of the Semi-Markov based model. Then we
analyze the potential energy savings resulting from the ap-
plication of AURORA Framework on HetNets. We have
benchmarked its performance against four schemes (i): Near-
Optimal Performance Bound (NARN) wherein it is assumed
that AURORA estimates future location and channel estimate
at that location with 100% accuracy, (ii): All Cell ON with
Homogeneous Network Settings (AllOn-HomNet) wherein all
cells are ON and no CIO is utilized for small cells, (iii) All Cell
On with Heterogeneous Network Settings (AllOn-HetNet)
wherein all cells are ON and fixed CIO of 10 dB is utilized
for all small cells, (iv) Reactive scheme that is simulated
by delaying user location information i.e., Optimization with
nr = 1 is done based on location information of past one
minute.

A. Simulation Settings

We generated typical macro and small cell based network
and UE distributions leveraging LTE 3GPP standard compliant
[46] network topology simulator in MATLAB. The simulation
parameters details are given in Table I. We used wrap around
model to simulate interference in an infinitely large network
thus avoiding boundary effects. To model realistic networks,
UEs were distributed non-uniformly in the coverage area
such that a fraction of UEs were clustered around randomly
located hotspots in each sector. Monte Carlo style simulation
evaluations were used to estimate average performance of the
proposed framework. The real challenge here was selection of
a mobility trace generation model that realistically represents
behavior of actual cellular network users. Several such models



TABLE I
NETWORK SCENARIO SETTINGS

System Parameters Values

Number of Macro Base Stations 7 with 3 Sectors per Base Station

Small Cells per Sector 5

Number of UEs Mobile: 84, Stationary: 336

LTE System Parameters Frequency = 2 GHz, Bandwidth = 10 MHz
Tx Power = 46 dBm, Tilt = 1020
Small Cell Tx Parameters Tx Power = 30 dBm, CIO = 0 to 10 dB

Base Station Heights Macro BS = 25m, Small BS = 10m

Area Coverage Probability 100%
Total Simulation Duration 1 hour

Macro Cell Tx Parameters
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Fig. 3. Next Cell Prediction Accuracy
have been proposed recently in literature such as SLAW,
SMOOTH, Truncated Levy Walk etc., [47]. Based on an
extensive analysis of pros and cons of these models, we
chose SLAW (Self-similar Least Action Walk) [48] mobility
model. Contrary to the conventional random walk models
where movement at each instant is completely random, chosen
randomly from set of allowed speed and angles, SLAW has
been shown to be a highly realistic mobility model. It exhibits
all the characteristics of real world human mobility i.e., (i)
truncated power-law flights and pause-times: the lengths
of human flights which are defined to be straight line trips
without directional change or pause have a truncated power-
law distribution (ii) heterogeneously bounded mobility areas:
people mostly move only within their own confined areas
of mobility and different people may have widely different
mobility areas (iii) truncated power-law inter- contact times:
the times elapsed between two successive contacts of the
same persons follows truncated power law distribution and
(iv) fractal waypoints: people are always more attracted to
more popular places. Therefore, the accuracy of AURORA
Framework tested using mobility traces generated by SLAW
is very likely to represent its true performance in real network.
The SLAW mobility model was utilized to generate HO traces
of 84 mobile users for one week. Out of which, traces for
first six days were utilized to build and train Semi-Markov
mobility model for each of the 84 UEs. Moreover, additional
336 stationary UEs (80% of total UEs [49]) were deployed
to generate additional loading on the network. For Traffic
Demand, we considered two scenarios (i) Low Traffic Demand
comprising of five different uniformly distributed UE traffic
requirement profiles corresponding to 24 kbps (voice), 56 kbps
(Text Browsing), 128 kbps (Image Browsing), 512 kbps (FTP)
and 1024 kbps (video) desired throughputs, (ii) High Traffic
Demand wherein all UEs are video users. Without loss of
generality and keeping operational complexity in mind, the
prediction interval k' was set as 1 minute in our simulation
study.
B. Mobility Prediction Accuracy

For benchmarking prediction accuracy of the Semi-Markov
based model trained on six days training data, we utilized

Mobility Prediction vs Prediction Interval
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(13) and (16) to predict serving cells of all UEs for the next
whole day after every k' time step. At each time interval
k, when the predicted future cell in next time interval k' is
same as actual future cell than score given is 1 otherwise O.
Accuracy is then calculated by summing scores for all time
instants and divided by number of observations. The next cell
prediction accuracy results are given in Fig. 3. Accordingly,
maximum prediction accuracy of 87.70% was achieved having
mean value of 81.46% when choosing the top most probable
cell among all future next cell candidates (1-Cell Prediction).
The predictor performs exceptionally well since prediction
interval is only one minute. This high prediction accuracy
is in line with our recent published study [28] on bench-
marking prediction accuracy of Semi-Markov based mobility
prediction model using Real HO measurements collected from
live LTE network. This prediction can be enhanced further by
decreasing k' interval length. Fig. 4 shows mean prediction
accuracy (denoted by dotted lines) monotonically decreases
with the increase in k’ interval length. We could not decrease
prediction interval to less than 1 minute as with computational
resources available for this study Genetic Algorithm needed at
least this minimum amount of time to find a feasible solution.
However, it is anticipated that if more powerful computational
resources are leveraged to reduce the convergence time of
Genetic algorithm, better mobility prediction accuracy may be
achieved. We also analyzed the effect of choosing the two top
most probable future next cell candidates (2-Cell Prediction)
instead of one. The prediction accuracy got a little boost
with mean value reaching up-to 84.39%. However this gain
is not that significant given it already has very high accuracy.
Next, based on next cell HO tuple information for each UE
{C%,T% o}, future location coordinates were estimated using
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Algorithm 1 for all UEs for one hour simulation duration after
every k' time steps. The average estimation performance is
illustrated in Fig. 5 according to which maximum distance
error between estimated and actual coordinates was around
33 meters having mean value of around 27.5 meters. The
location estimation algorithm performed exceptionally well.
One particular reason for high accuracy is that SLAW model
is for pedestrian users. Therefore, location of user changes
slowly as function of time and thus remains relatively more
predictable. With high speed, accuracy is expected to degrade,
but then knowledge of street/road layout can be exploited
to maintain accuracy. However, this is beyond scope of this
paper and will be subject of future study. An interesting
observation stemming from the symmetric shape of Box Plot
and absence of outliers suggest that normal distribution can be
good approximation for the average location estimation error
distribution.

C. Quantifying Energy Saving Potential of AURORA Frame-
work

The Energy Consumption Ratio (ECR) of AURORA and
NARN for Low and High Traffic Demands with varying values
of Load thresholds nr along with that of AllOn-HomNet,
AllOn-HetNet and state of the art Reactive schemes averaged
over 1 hour duration is visualized in Fig. 6. Note that for
visualizing ECR ranges for both Traffic Classes in same figure,
the y-axis has been plotted in logarithmic scale. The load
threshold range is [0.6, 1] since below 0.6 there was no
feasible point returned by the P-ES optimization algorithm
(33). It is observed that ECR values are higher for high
traffic demand scenario as more number of SCs need to be
switched ON to cater high load. Moreover AURORA exhibit
a linearly decreasing trend with increasing values of np. It is
significantly much less than the conventional AllOn schemes
for all load threshold values. The reason being that for AllOn
schemes, all cells are ON at all times that increases energy con-
sumption which is bound to further escalate with densification.
At lower n values, ECR for AURORA is higher since smaller
nr value compels the AURORA to keep ON larger number
of underutilized SCs. For instance at nr = 0.6, AURORA
switches ON next small cell as soon as the utilization of
current ON small cells reach 60%. Thus, on average, large
number of SCs will be turned ON for smaller 77 values
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thus increasing energy consumption. Moreover, with large
number of SCs turned ON, there is higher chance that location
estimation inaccuracy results in turning ON SCs with very low
or no load (i.e., very high ECR - Joules/bit). On the other
hand, larger values of nr enables AURORA to switch OFF
large number of SCs. For instance at n7 = 1, AURORA will
switch ON next SC only when the utilization of current ON
SCs reaches 100%. As a result ECR is expected to decrease
and same trend is observed for NARN. It is interesting to
observe that on one hand with increasing value of np, less
number of SCs are turned ON therefore there is less chance
of any turned ON SCs with very low or no load. On the
other hand, with increasing np values, AURORA switches
ON smallest possible number of SCs and all of them almost
fully utilized with very few resources to spare. As a result
inaccuracy in location estimation will result in increased risk
of blocking of the UEs (hence increased number of unsatisfied
users — see Fig. 9) thereby negatively affecting QoS. However,
as number of fully utilized SCs is a more dominant factor
in determining overall ECR as compared to slight increase
in the number of unsatisfied users, therefore overall ECR
reduces. The comparison of AURORA with Reactive scheme
shows that ECR for Reactive scheme is higher as compared to
AURORA. This is because in Reactive scheme, due to delayed
user location information outdated configuration settings that
are suboptimal for current instant are applied to the network.
This increases the percentage of unsatisfied users (on average
1.85% with AURORA at nr = 1 while 4% with Reactive
scheme at high traffic load) and hence higher ECR. Moreover,
ECR for AllOn-HomNet is slightly higher as compared to
AllOn-HetNet. This is because higher CIO values used in
AllOn-HetNet compels SCs to be more utilized and hence
reduced ECR as compared to AllOn-HomNet scheme.

Fig. 7 shows the average number of SCs put to sleep mode
with AURORA and NARN with varying values of nr for low
and high traffic demand. It can be seen that less number of
SCs can be put to sleep mode for meeting needs of high traffic
demand. The number of SCs put to sleep mode continue to
increase with 7. This is because with increasing values of
nr, a SC is utilized more before turning ON next SC or
in other words more SCs are put to sleep mode at higher
values of nr. Since load coupled interference also increases
with nr therefore optimization algorithm returns such an

Optimization Parameters Configuration (OPC) i.e., A¢, P&,
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Fig. 8. : Snapshot for Small Cells (ON/OFF) States by AURORA for (a)
Low Traffic Demand (b) High Traffic Demand. Green (Red) circles indicate
ON(OFF) SCs and UEs are illustrated by black dots.
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that minimizes overall energy consumption ratio. A snapshot
for the SCs states with AURORA for low and high traffic
scenarios at same time instants are shown in Fig. 8. It can
be observed that for high traffic demand, majority of the SCs
are turned ON. For space limitation, results in all subsequent
figures correspond to high traffic demand scenario only that
follow same trend as that observed with low traffic demand.
The average percentage of satisfied users under AURORA
framework vs Load Threshold nr for high traffic demand
scenario is visualized in Fig. 9 on left y-axis while Energy

Efficiency (1/ ECRP is plotted on right y-axis. It can be ob-
served at low 7 values, plenty of free resources are available

in relatively more number of available BSs hence more users
are served with enough resources to meet their minimum QoS
requirements. Even with location estimation inaccuracies, the
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UEs will still have better chance to get enough resources and
be satisfied. However, more SCs are turned ON at low np with
more chance of being underutilized and hence lower Energy
Efficiency. As nr value becomes higher and approaches 1,
AURORA returns such an OPC A€, P&, that results in
smallest possible number of switched ON SCs and all of
them almost fully utilized with very few resources to spare.
Hence a slight location estimation inaccuracy can result in
increased risk of blocking and hence decrease in number of
satisfied users. Contrary to that, fewer cells turned ON with
more utilization improve energy efficiency of the network. It
is interesting to observe that for high traffic demand scenario
even at 7 = 1, percentage of satisfied users is above 98%.
The cell loads of ON cells achievable with AURORA and
NARN with 7 = 0.6 and 1 alongside with AllOn schemes
for high traffic demand is plotted in Fig. 10.

It is evident from the figure that in case of AllOn-HomNet
and AllOn-HetNet, since all cells are kept ON, therefore most
of the cells are underutilized with mean utilization of 7.74%
and 8% in AllOn-HomNet and AllOn-HetNet respectively.
This results in higher ECR (see Fig. 6). With AURORA and
NARN, at lower value of nr i.e., 0.6, some SCs are switched
OFF and thus utilization of remaining ON cells relatively in-
creases with mean utilization of 30.9% and 27.6% respectively.
At higher value of 07 i.e., 1, large no. of SCs are switched OFF
and the few ones which are ON, are relatively more utilized
with mean utilization of 55.8% and 44.2% respectively. The
average CIO values are indicated on top of each boxplot. It is
observed that at higher 77 value of 1 as compared to lower
value of 0.6, on average, relatively larger CIO values have
been leveraged. This is because when fewer cells are switched
ON, CIO values of ON SCs are boosted up to serve the users
of OFF cells. In this way CIOs complements the Proactive
Energy Consumption Optimization by serving as a guiding
parameter in directing users to suitable cells such that overall
ECR reduces while satisfying QoS requirements. The results
for average downlink SINR for AURORA and NARN with
nr = 0.6 and 1 along with the AllOn-HomNet and AllOn-
HetNet for High Traffic Demand Scenario is shown in CDF
plot in Fig. 11. It can be observed that at higher value of np
i.e., 1, load coupled interference from neighboring BSs is very
high. Therefore SINR is negatively affected for AURORA and
NARN as compared to AllOn-HomNet and AllOn-HetNet. As
a matter of fact, when CIOs are leveraged, degraded SINR is
natural outcome. However it does not mean a degraded system
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wide performance as long as loss in throughput caused by

lower logarithmic SINR term is offset by increased number of
PRBs allocable to users. This is how it strives to guarantees
their minimum QoS requirements as shown in Fig. 9. At
smaller nr value of 0.6, more number of SCs are turned
ON with relatively less load. This reduces overall interference
floor in the network and hence SINR improves that is higher
than that achievable at 7 value of 1. For AllOn-HomNet and
AllOn-HetNet schemes, all SCs are ON, highly underutilized
and hence higher SINR. However, it is worth noting that this
gain in SINR comes at cost of higher energy consumption i.e.,
for AllOn-HomNet and AllOn-Hetnet, ECR is 109 mJ/bit and
107 ml/bit respectively that is much higher as compared to
AURORA which is around 36 mJ/bit achievable at nr = 1.
The average long term cell occupancy probability of the
users computed through (17-19) is shown in Fig. 12(a) ac-
cording to which users spend most of their time in Macro
cells 5, 1, 19, 20 and 21 (denoted by yellow stars). This
information can be utilized for validation of the proposed
AURORA Framework. The average percentage of ON Small
Cells with AURORA for one hour simulation duration is
shown in Fig. 12(b). As is evident, more number of SCs were
turned ON in Macro cells 9, 20, 5, 19 and 1 (denoted by yellow
stars). Hence on average AURORA kept more number of SCs
switched ON in cells where users had higher sojourn time.
Few discrepancies observed such as with Macrocell 21 can
be attributed to the location estimation inaccuracies as well as
rate requirement of UEs in those cells i.e., even with higher
cell occupancy probability of users in a particular macrocell,
if cumulative rate requirement of UEs is low than SCs in
that macrocell will remain switched OFF most of the time.
For higher traffic demand scenario, average percentage of ON
Small Cells with AURORA is shown in figure 12(c). As more
number of SCs were turned ON to cope with high traffic
demand therefore the plot in Fig. 12(c) is relatively more

greenish as compared to that in Fig. 12(b).
D. Quantifying Effect of Mobility Prediction Model Inaccu-
racy on Potential Energy Saving

The potential energy savings resulting from the application
of AURORA Framework can be quantified by computing
Energy Reduction Gain (ERG) [40], [41] performance metric
given as:
ECR enchmar - ECR
ERG = ( Benchmark AURORA

ECRBenchmark

)x100%  (34)
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Fig. 12. (a) Long term Cell Occupancy probability (b) Percentage of ON
Small Cells at Low Traffic Demand (c) Percentage of ON Small Cells at
High Traffic Demand.

It is logical to anticipate that the energy saving gain of AU-
RORA i.e., ERG will depend on the accuracy of the underlying
mobility prediction model. In this section we analyze this
dependence by varying the underlying user mobility model
such that it includes varying degree of randomness and hence
predictability. To vary the degree of randomness in the mobil-
ity traces, the two key parameters of SLAW mobility model
namely variance in pause times and percentage of random
waypoints were changed from default values suggested in
[48], (and used for results in figures 3-12) to larger values
to increase randomness in the mobility trajectory of the UEs.
Four set of gradually increasing initialization parameters were
used that resulted in increasing randomness in user mobility.
Our prediction model trained on these four set of traces
exhibited average prediction accuracy of 85%, 75% , 65% and
55%. The average ERG of AURORA for these varying values
of Prediction Accuracy against AllOn-HomNet and AllOn-
HetNet schemes averaged over 1 hour duration for high traffic
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demand scenario is plotted in Fig. 13. It is observed that as
expected the gain of AURORA decreases with decrease in
prediction accuracy. However, it is noteworthy that as long as
mobility is predictable with 55% or higher accuracy, AURORA
continues to yield Energy Reduction Gain. Given that typical
human mobility features 93% predictability when averaged
over a large real user sample space [27], AURORA is a
promising approach. However, human mobility is bound to
have some randomness that translates to prediction inaccuracy.
The high frequency periodic update aspect of the future
location probabilities is one of the possible ways to cope
with the prediction inaccuracies as the effect of the prediction
inaccuracy is only limited to the prediction interval. Another
way is to make it adaptive so that AURORA continuously
analyzes its performance and falls back to conventional AllOn
scheme when prediction accuracy drops below 55%. More-
over, selecting top-2 probable locations as shown in Fig. 3,
can also be chosen as a strategy to improve the prediction
accuracy, albeit at cost of reduced ERG.

IV. CONCLUSIONS

This paper has proposed a novel spatiotemporal mobility
prediction aware proactive sleep-mode based energy saving
optimization algorithm for cracking the future 5G ultra-dense
HetNets puzzle. The proposed AURORA framework employs
innovative concept of estimating future user locations and
leverage that to estimate future cell loads. It then devises
energy saving optimization problem for the estimated future
network scenario. The majority of the conventional reactive
style approaches are expected to solve the formulated en-
ergy saving problem dynamically in real-time as network
conditions change. However this is close to impossible even
when substantial computing power is available. Contrary to
that, the innovative proposed approach enables state-of-the-art
heuristic techniques like GA to find practically good solutions
to the formulated optimization problem predictively ahead
of time. This can be enabler for meeting 5G ambitious la-
tency and QoS requirements. Moreover, AURORA framework
considers the interplay among the three intertwined SON
functions (ES, CCO and LB) due to the overlap among their
primary optimization parameters. Therefore it employs co-
design approach wherein the joint optimization of ON/OFF
States and CIO values for SCs does not conflict with CCO
and LB objectives. Extensive simulations employing realistic
SLAW mobility model indicate that, in best case, AURORA

can achieve energy reduction gain of about 68% for high
traffic demand scenario in ultra-dense HetNets as compared to
Always On approach. Comparative performance analysis with
near-optimal performance bound indicate satisfactory robust-
ness of the proposed AURORA framework towards location
estimation accuracies. For future works, we will investigate
incorporation of user specific CIOs by considering mobility
behavior and QoS requirements of the UEs. We will also
investigate incorporating the backhaul constraint implicitly by
assigning maximum load threshold to the cells depending
upon available backhaul. Another promising research direction
is to devise energy aware association scheme and use it in
conjunction with the energy saving optimization problem.
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