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Abstract—Ambitious targets for aggregate throughput, energy
efficiency and ubiquitous user experience are propelling the advent
of ultra-dense networks. Intercell interference and high energy
consumption in an ultra-dense network are the prime hindering
factors in pursuit of these goals. To address the aforementioned
challenges, in this paper, we propose a novel user-centric network
orchestration solution for Cloud RAN based ultra-dense deploy-
ments. In this solution, a cluster (virtual disc) is created around
users depending on their service priority. Within the cluster
radius, only the best remote radio head (RRH) is activated to
serve the user, thereby decreasing interference and saving energy.
We follow a stochastic geometry based approach to quantify
the area spectral efficiency (ASE) and RRH power consumption
models to quantity energy(EE) efficiency of the proposed user-
centric Cloud RAN (UCRAN). Through extensive analysis, we
observe that the cluster sizes that yield optimal ASE and EE are
quite different. Subsequently, we propose a game theoretic self-
organizing network (GT-SON) framework that can orchestrate
the network between ASE and EE focused operational modes in
real-time in response to changes in network conditions and the
operator’s revenue model, to achieve a Pareto optimal solution. A
bargaining game is modeled to investigate the ASE-EE tradeoff
through adjustment in the exponential efficiency weightage in the
Nash bargaining solution (NBS). Results show that compared to
current non user-centric network design, the proposed solution
offers the flexibility to operate the network at multiple folds higher
ASE or EE along with significant improvement in user experience.

Index Terms—User-centric architectures, Cloud RAN, Poisson
Point Process, Area Spectral Efficiency, Energy Efficiency, Nash
Bargaining Solution

I. INTRODUCTION

Cell-free user-centric networks are envisioned as enablers
for interference management in ultra-dense 5th generation (5G)
cellular networks. In particular, signal degradation for cell-edge
users that is considered a limiting factor in LTE is addressed
by structural evolution of the 5G networks designed from the
users’ (rather than base stations’) perspective [1]. Operationally,
each served user within a user-centric network is connected to
one or more small cells in the vicinity defined by an elastic
virtual user-centric cell boundary [2][3]. The virtual user-centric
cell size is adaptable with respect to user traffic, channel
environment and quality of service (QoS) requirements.

While the 5G systems target multiple fold increase in data
rate, millisecond level latency and support for up to 500 km/hr
user mobility; all this must be achieved with an improvement
in spectral efficiency and reduced operational costs [4]. One
enabling technology to meet these goals is Cloud-RAN (C-
RAN) which is based on separating Baseband Units (BBUs)
from the radio access units [5][6]. The BBUs are migrated to
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Fig. 1. User-centric C-RAN architecture

the cloud forming a BBU pool for centralized processing and
resource allocation. C-RAN provides the network scalability
for large scale remote radio head (RRH) deployment in dense
networks at lower operational costs.

User-centric virtual cell approach coupled with centralized
baseband processing via C-RAN deployment is an ideal merger
to meet 5G’s ubiquitous user experience targets within realistic
energy and cost constraints. Fig.1 provides a graphical illus-
tration of a User-centric Cloud RAN (UCRAN) network with
virtual user-centric cell boundaries. The RRHs are connected
to the pool of BBUs via flexible front haul. The front haul is
usually an optical fiber where signaling is done using radio-
over-fiber (RoF) or common public radio interface (CPRI) [6].
Most of the signal processing at baseband level is delegated
to the BBUs. The key idea here is to dynamically select the
best RRH within a circular area (virtual cell) with a pre-defined
radius Ropr around users selected for downlink transmission
during each scheduling interval (used interchangeably with time
slot and TTI). All other RRHs within the circle here after
called cluster are kept OFF thereby minimizing the interference.
The aforementioned UCRAN architecture provides two-fold
benefits: i) on-demand centralized processing at the BBU pools
caters to non-uniform user traffic that subsequently enables
OPEX reduction by as much as 30% [7], ii) user-centric RRH
clustering reduces the number of nearby interfering RRHs
and eliminates cell-edge coverage issues, hence improving
the overall user experience regardless of user location and
movement [8]. The game theoretic self-organizing (GT-SON)
engine in fig.1 enables dynamic adaptation of Rcpr in order
to either enhance the overall system throughput or the energy
efficiency (EE). The cluster size selection is dependent upon the
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network operator’s spatio-temporal revenue model which may
include traffic intensity, time of the day and hotspot locations
(e.g. cafes, stadiums) [9].

The key research question at hand is determining the op-
timal cluster size around a scheduled user. The cluster size
C = mRZ%, , determines the interference free region around
each scheduled user. Increasing the RRH cluster size offers
the following gains: 1) larger distances between MUs and
interfering RRHs results in larger link SINR and thus, better
link throughput, and 2) a larger RRH cluster size yields more
macro diversity gain or cooperative gain through selection or
cooperation among larger number of RRHs in the cluster,
respectively. However, the downside of a larger RRH cluster
size is reduced spectrum reuse and reduced number of MUs that
can be served simultaneously which, in turn, reduces system
level capacity. Hence with a larger cluster, there are fewer high
quality links as opposed to many low bit-rate links (which occur
with a smaller cluster).

In the back drop of these insights the goal of this paper is
to investigate following research questions: 1) What are the
optimal RRH cluster sizes that maximize KPIs of capacity (in
terms of area spectral efficiency (ASE)), energy efficiency (EE)
and the user quality of experience (QoE)? 2) Given that the
optimal RRH cluster sizes for all the three KPIs is expected
to be different, how to design the pareto-optimal solution that
achieves the desired balance among aforementioned KPIs?

Related works address transmit power control [10], interfer-
ence alignment [11], dynamic load balancing [12] and optimal
cluster dimensioning strategies [8][13] in user-centric networks.
[14] proposes a learning based approach to cluster RRHs within
BBUs with the aim to enhance utilization rate and energy
efficiency in C-RANs. Similarly, [15] adapts an efficient re-
source allocation scheme to improve energy efficiency in large
scale C-RAN deployments. Through this work, we add another
dimension to existing literature by simultaneously investigating
the intertwined KPIs, i.e. ASE, EE and QoE in ultra-dense user-
centric networks. The contributions and findings of this work
are summarized as follows:

A. Contributions and Organization

« By employing well established stochastic geometry prin-
ciples [16], we characterize the ASE and EE of a UCRAN
system as a function of the mobile user (MU) and RRH
deployment distributions. The analytical model takes into
account both MU and RRH thinning arising from the user-
centric RRH clustering performed in the centralized BBU
pools during each TTL

o The ASE-EE tradeoff in a UCRAN is modeled through a
two-player bargaining problem. The performance metrics
are modeled as virtual game players and a Nash bargaining
solution is found that corresponds to a unique optimal
cluster radius for a given set of network parameters.

« Based on our analysis, we advocate the gains of dynamic
adaptation of the ASE-EE tradeoff by integrating a GT-
SON engine within the BBU pools. Through an expo-
nential weightage parameter, the GT-SON engine shifts

the operator’s preference between ASE and EE while
ensuring higher SINR gains within a particular spatio-
temporal zone.

The rest of the paper organization is as follows: in section
II, we describe the spatial model, user-centric RRH clustering
and the radio propagation model assumed in this work. Section
IIT focuses on the analytical derivation of the ASE and EE
of the UCRAN. In section IV, we present the proposed GT-
SON model for adaptive cluster size adjustment based on net-
work parameters and the operators’ revenue model. Efficiency
tradeoff analysis is performed through extensive simulations
in section V. The paper closes with conclusions and future
research directions in Section VI

II. SYSTEM MODEL
A. Spatial Model

We consider the downlink of a two-tier UCRAN consisting
of one central macro base station (MBS) that has RRHs and
MUs spatially distributed across its foot-prints. We model the
spatial distributions of RRHs and MUs using two independent
stationary Poisson point processes (SPPPs) Agry € R? and
Ayy € R? with intensities Apry and Ap;p respectively.
Specifically, at an arbitrary time instant, the probability of
finding n; € N,i € {RRH,MU} RRHs / MUs inside a
typical macro-cell with area foot-print A C R? follows the
Poisson law with mean measure \;v2(A). The mean measure
is characterized by the average number of RRHs / MUs per
unit area (i.e., Agrg \A\ymu) and the Lebesgue measure [18]
vz(A) = [, dx on R?, where if A is a disc of radius 7 then
va(A) = mr? is the area of the disc.

B. Channel Model

We model hgyl(||z—1y||) as the channel between an arbitrary
MU « € Ay and an RRH y € Aggry . Here hyy ~ (1)
is a unit mean exponential random variable that captures the
effect of the small-scale fading between the MU and RRH as
Rayleigh-distributed fading channel. In order to account for the
large-scale fading we denote I(|x — y|) = |x — y|~ where
|z — y| is the distance between x and y and o > 2 is the
path loss exponent. It is assumed that the same transmit power
Prrpy is used for all RRHs.

C. User-centric RRH Clustering

The RRH clustering mechanism in the user-centric C-RAN
is envisioned on a scenario where a high service priority MU
is served by a RRH that provides the largest signal-to-noise-
plus-interference ratio (SINR) within its cluster. Service priority
to each MU is assigned using a random probability pyy ~
U (0, 1) which is incremented after every time slot during which
the service is deferred to the MU because of presence of
one or more higher preference MUs in the surroundings. For
simplicity, we assume that each MU in our model is requesting
service during all time slots (or TTIs). During each TTI, the
GT-SON engine in the centralized BBU pools determines the
optimal cluster radius "R r" for existing network parameters
and the operator’s business specifications (e.g. high data rate
or high energy efficiency). To avoid interference caused by
simultaneous transmissions to nearby MUs, the user-centric



RRH clustering creates repulsion by avoiding spatial overlap
between clusters. This implies that during a particular TTI,
a scheduled UE will not have any other UE with higher
service priority within a radial distance of 2R r . The joint
RRH clustering and user scheduling scheme is summarized
as algorithm 1. The symbol b(x, r) denotes a ball of radius
r centered at a point X.

Algorithm 1 RRH clustering and MU scheduling algorithm

Inputs: Agry, Avu, RoLr

Outputs: A'rpy, Ay

1: Initialize the set of scheduled MUs and the RRHs serving
within the user-centric clusters at any given time slot as A’ .
Appy < 0.

2: Update Ay, and A’;p for the current time slot using the
following conditions:

foreach x € Ay do

if y € b(x,2RcLr) and p}{;[}} > p}{v?}'g,, Yy € Apu,y # @

then
Ay U {2}
foreach r € Arry do
if » € b(xz, Rcrr) then
if heol()|r — x|]) > hed(||7 — x|]), V' €
Arru,r € b(x,Rorr),r’ # r then
| Arru Y{T}
end
end
end

else
| continue.
end

end

3: Serve all the scheduled users A’ ;;; from the associated RRHs
and update scheduling priorities pﬁj\%{}] for all x € Apy, ie.
increment p}{;g if ¢ € A, and decrement pj\;[]} if ¢ & Ay
4: Go to step 1.

III. EFFICIENCY METRICS IN USER-CENTRIC C-RAN
A. Area Spectral Efficiency

Consider a scheduled user @ € A, Let Seop(@, RoLr) =
Appy Nb(x, Rorr) be the singleton set containing the RRH
selected to serve x on the basis of the scheduling criteria
(Algorithm 1). Furthermore, let A; = A gy \Scop(®, RoLR)
be the set of RRHs which are concurrently scheduled to serve
y # x,Yy € A)yy. Let s, and s, be the desired and
interference signals respectively at an arbitrary MU x , then
the received signal at  will be

I = \/PRRH max higl(||lz — 1)) set
1€Scop

3 VPRRH' Comax  hgal(llz — gl)sy+ea, (1)
v, e JEMNR RN (W, RcLR)

where  maxjes,,, hiel(|[x — 4|[) is the channel
gain between the serving RRH ¢ and the MU =z,
maxjear - (yRerr) Rajl(|[ — Jl|) is the interference
experienced at = due to a RRH j serving another MU vy,

Prry is the transmit power employed by the RRHs and ¢,
is the additive white Gaussian noise (AWGN) at x’s receiver
front end. Without loss of generality, we use the Silvnyak’s

theorem [16] and focus our analysis on the arbitrary MU =z
assumed to be located at the origin. Since ultra dense small cell
networks are generally considered to be interference-limited,
we may ignore the AWGN for our analytical analysis and
express the signal-to-interference ratio (SIR) at MU « as

Fm _ maxiescop h,,,l('r',)
2 jen; hal(rs)

where r; and r; are the relative distances of MU x with its

DL scheduled and interfering RRHs respectively.

The primary hurdle in characterizing the SINR in a UCRAN
arises from the fact that unlike A7, the point process of the
scheduled MUs A, is non-stationary. A closer inspection of
Ay reveals that it is a modified version of Type II Matern
Hard Core process [16]. Therefore, it can be approximated by
an equidense SPPP with appropriate modified intensity [17][18]
given by
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Once the A, distribution is characterized, the next step is
to characterize the aggregate interference experienced by an
arbitrary MU from the activated RRHs outside its user-centric
cluster area.

Proposition 1. The mean of the aggregate interference
experienced by a typical MU under user-centric RRH clustering
can be approximated as follows:

B(1) = 27 Arra([1 — exp(—[1 — exp(—47mAmu R LR)]/4)]
(a = 2)(RoLr)* *(ArraTRE L )

where « is the terrain dependent pathloss exponent.

Proof: Consider the SPPP Aggrpy, then under the user-
centric RRH clustering algorithm, for each scheduled MU,
only a single RRH which resides in the vicinity as well as
provides maximum channel gain to that MU is activated by the
MBS. A natural implication of this policy is that the resulting
PPP A’;,y is non-stationary. However, like A’ it can be
approximated with an equivalent SPPP with modified density
ArrHDACT- Here pacr is the activation probability for the
RRH and can be computed as follows:

pacr & Pr{Ayu Nb(r, RoLr) # Olr € Arpa}-
Pr{hol(ry) > hjl(r5)|j € Npru,d # 7},
= [1 = Pr{Ayu Nb(r, RoLr) = 0|r € Arru}].
Prihel(rr) > hil(r;)|3 € Nrgu,J # 73, ®
= [1 — eXp(—X\JVIUTFR%LR)} -(U[ARRHWRQCLR])’
_ Ll—exp (—[1 — exp (=47 v RELR)]/4)
ArrRHTRE g

, (4)

I

where (a) follows from the fact that a RRH is only activated

if: 1) there is a scheduled user within a distance of Rcp g,
and 1ii) there is no other RRH within a distance of Rcpp
from that user providing better channel gain. Now noticing
that A; = Agpy\Scop(0, Rorr), we can precisely describe
Ar = Ay \b(o, Rorr). Hence the mean interference can be
computed using Campbell’s theorem [16] as follows

E(I) =E(I) =E ( > hﬂ(w)) ;
JEAR R \b(O,RCLR) (6)
= 27r)\RRHpACT E(H)Tl_adr.
RCLR
Substituting E(H) = 1 in (6) concludes the proof. ]



Once the interference is characterized, we can approximate
the link success probability which represents the percentage of
users with adequate link channel quality with the connected

RRHs for DL.

Proposition 2. The link success probability of the probe
MU served under the proposed user-centric clustering and RRH
selection scheme algorithm can be lower-bound as

7(2/06>“/thmE(I)R%LR)> ;
7

where vin is the MU a’s SIR threshold for reliable DL
transmission and y(a,b) = fob t*Lexp(—t)dt is the lower
incomplete Gamma function. Pyyeq; = Pr{l's > vy} is
a’s successful transmission probability, i.e. probability that the
received SIR at « is higher than ;. The derivation of coverage
probability is in same spirit as [13] and in the interest of space

left for the journal version of the paper.

Considering a constant bitrate system, the system wide
ASE can simply be lower bounded using transmission success
probability as

AS(C/‘(RCLR) 2 5\MU logg(l + ’Yth)IP)suc(’Ythy R%LR)' (8)

2TARRH

Psucm 2 1 —Xp | Vo
a“/thi/aE(I)Q/a

A thorough investigation of (8) reveals that the effective
number of scheduled users will increase as cluster size shrinks.
On the other hand, increasing the cluster size decreases co-tier
interference and thus enhances I',,. This discussion implies that
there exists an optimal cluster radius that maximizes system
wide ASE.

B. Energy Efficiency

The power consumption of a stand-alone small cell was
investigated in the award winning project EARTH [19]. The
model was extended by parameterization for C-RAN [20].
Taking inspiration from [21] and [20], the power consumption
per unit area can be written in simplified form as

Popan = ArruPacT (MOPy + Ay P,), ©)

where M is the mean RRH activation per cluster, Py is
the fixed power consumption of an active RRH, A, is the
coefficient that lumps together frequency dependent response
of a power amplifier and several other factors, and P, denotes
the load (active MU density) dependent RRH transmit power.
0 < 6 < 1 parameterizes the UCRAN implementation effi-
ciency with @ = 1 indicating least energy efficienct deployment.
The mathematical expression for determining average number
of RRHs in each cluster (M) is given in Lemma 1.

Lemma I: The average number of activated RRHs within an
arbitrary user-centric cluster, i.e. M, is the complement of the
void probability of the RRHs, i.e. M = 1 — e~ rrumRELp,

Proof: Consider that Agrry is a SPPP with intensity
ArrH, then under user-centric scheme, the average number
of RRHs within a circular area of radius Rorpr is given by
A RRHWR% .- Since each user-centric cluster can have at most
one activated RRH, the average number of activated RRHs
is the complement of the probability that an arbitrary cluster
would at least one RRH within its foot-prints, i.e.

M = Pr{Arru Nb(x, RoLr) # Ol € A?vw},

=1— Pr{Arra Nb(x,Rcrr) = 0|z € Ayuts
=1—exp{—mArru RS LR} [

Considering unity bandwidth, the system energy efficiency
*EE(ReorLr)’ (bits/s/Joule) for a UCRAN system can be ex-
pressed as the ratio of sustainable system throughput (8) and
the total power consumed by the activated RRHs (9).
IV. GT-SON FRAMEWORK FOR RRH CLUSTER SIZE
OPTIMIZATION

The GT based SON engine is embedded within the central-
ized BBU pool for real-time adjustment of Rcrr to optimize
a system level efficiency parameter of interest with respect
to terrain environment, user demographics, RRH deployment
scenario and network operator’s spatio-temporal revenue model
(see fig.2). The variation in the cluster size models the dynamic
tradeoff between ASE and EE in our bargaining game model.
The proposed GT-SON framework with the sequence of steps
in dynamic cluster size adjustment for modeling the ASE-EE
tradeoff is given in fig. 2.

To analytically express the ASE-EE tradeoff, we formulate a
two-player cooperative bargaining game where both ASE and
EE are modelled as virtual game players that independently
estimate the best cluster size for maximizing their respective
utility functions. We will see later that due to a large dissim-
ilarity in cluster size preferences of the players, each player’s
payoff is affected by the cluster size selection made by the other
player. However, both players can mutually benefit through
the cooperative game where they negotiate for the Ropr that
achieves optimal ASE-EE tradeoff. Using Nash’s axiomatic
model, it is well known that the Nash bargaining solution (NBS)
achieves a pareto-optimal solution, i.e. the optimal tradeoff in
the utilities of the players in such cooperative games [22]. If

Network parameters
(e-g Amu, ArrH, @, 6)

1a - Real-time network parameters in a given

pati poral region including number of
active users, RRHs deployed, mean path
loss, SIR threshold and C-RAN efficiency
parameter updated during every TTI.

Network Operator’s
revenue model

1b - Spatio-temporal revenue model of the
network operator modeled by variations in g
value.

engine

2 - Cluster size adjusted by GT-SON
engine in real-time from the inputs in step 1.

3- The ASE, EE values are computed and
evaluated by the network operator for
adjustment in g value for subsequent TTI.

User-Centric
Clusters re-adjusted
according to Reir

Fig. 2. GT-SON Framework in UCRAN

the players can be denoted by the set N = {1, 2}, where player
i = 1 denotes ASE, player ¢ = 2 denotes EE and S; denotes
the set of all feasible payoffs to an arbitrary MU i as

S; ={Ui|U; = Ui(RcLr), ReLr € R: Repr > 0}. (10)

Let us define the space S as the set of all feasible payoffs that
players ¢« € N can achieve when they collaborate, i.e.

SZ{U:(U17’LL2)|’LL1 651,UQ€SQ} (11)

where w1 (1) is the utility of the first player and uz(z2) is the utility
of the second player such that

s1 = w(n) = [ASE(Rerr))’,
s2 = us(w2) = [EE(Rerr)]) "

(12)
13)



and 21 = 2 = Recrr € R : Rerr > 0. B € [0,1] is
the exponential bias factor in NBS that defines the bargaining
power (or the tradeoff) division between the two players. We
also define the disagreement space D € S as the set of the
two disagreement points d = (dy, ds) where d; = uq(D) and
do = ug(D) represent the payoffs for the two players if the
bargaining process fails and no outcome is reached. For our
game, we set d = (0,0) thus giving both players uniform
leeway to improve their utilities. [23] shows that the NBS in
such parametric cooperative games exists only if the utility
functions for the players form convex and compact sets.

Proposition 3. The utility and disagreement spaces in the
proposed GT-SON framework constitute a two-player bargain-
ing problem defined by (S,d) where S € R?, d € S and the
resulting unique bargaining outcome is pareto-optimal.

Proof: A bargaining problem can be defined as the pair (S, d)
if: i) S is a convex and compact set, ii) There exists some s € S
such that s > d, i.e. s;1 > d; and sy > ds. It is quite obvious
that S is compact and since d = (0,0), positive utilities for
our players satisfies the 2nd condition. This leaves behind the
question whether S is convex which holds true if: Ve : 0 <
€ < 1,if U* = (u$,ug) € Sy and U® = (ub,ul) € Sy, then
€U+ (1—€)U® € S. From (8), we see that eu$ + (1 —e)ul =
[t 1ogs(1+764)P)? where P = [e(B2,,)° +(1—€)(PL,,.)"]
and since we know that 0 < P2, ., P% 3 <1, the sum in (14)
forms a convex set, i.e.

eud + (1 —e)ul € ;. (14)

Similarly, from (9), we see that eu§ + (1 — e)u} =

Anu logy (1+7en) P (1-B) : _
[ARRHPA’CT MGPMA“P”” 7 where the numerator 175 con
vex from (14) and denominator is convex since pscr =

ePhor) P+ (1= (Phor)' P and 0 < phor, Paor, B < 1.
Therefore,

eud + (1 — e)ub € Ss. (15)

From (14) and (15), we conclude that eU® + (1 — €)U® € S
which satisfies the conditions for convexity for set S. Accord-
ing to Nash’s axiomatic approach [22], there exists a unique
solution for the two-player bargaining problem which is the
pair of utilities (s7, s3) that solves the following optimization
problem:

max (51 — dl)(SQ — dz), (81782) <) > (d1,d2).

(s1,82)

(16)

]
Proposition 3 implies that for an arbitrary MU «, the optimal
cluster size "RZ?Lt R 18 obtained through the solution of a
convex optimization problem (also known as Nash Product
(NP)) which for our model can be given by

R pq = nax [ASE(Rovra)’[E€(Rorra))' ™. (17)

Notice that the computational complexity of the GT-SON en-
gine is a function of the cluster size granularity, i.e. O(N¢oR)
where No g denotes the number of distinct cluster sizes over
which the optimization in (17) is performed. As the processing
times are independent of MU or RRH densities, real-time
implementation of the GT-SON optimization framework is
practically realizable and scalable throughout the network.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the analytical trends and Monte
Carlo simulation results by employing a 3GPP standard com-
pliant LTE network simulator. For simulation, we consider a
two tier HetNet with a tri-sector hexagonal MBS of radius 500
m. We consider a single sector of the MBS covering an area
of 73850 m? where MUs and small cell RRHs are uniformly
distributed according to their independent SPPPs. Without loss
of generality, the channel power gains between all MUs and
RRHs are assumed unity. We assume uniform transmit power
of 30 dBm for all RRHs. Other power consumption parameters
are taken from [23]. Simulation results are averaged over 1000
Monte Carlo trials.
A. Impact of 5 on ASE, EE in a UCRAN

From the analytical results in (8), (9) and (17), we investigate
the variation in the optimal cluster size and the efficiency
metrics as [ is shifted between ASE-optimal (5 = 1) and EE-
optimal (8 = 0) points. The GT-SON engine optimizes Ropr
on the following fixed network parameters: \p;r = 1072 /m?,
0 =0.5,v,=4dB,and 0 < Ropr < 100 m. The ASE results
in fig. 3a indicate around the same ASE-optimal cluster size of
Sm for variations in pathloss exponent and RRH deployment
densities. It is seen that higher RRH densities yield superior
system throughput which is understandable considering p acr
is expected to increase with Aggrz. It is also noted that o = 4
yields more than two-fold increase in ASE as compared to
o = 3. Since mmWave network propagation studies [24] have
indicated higher pathloss due to blocking effects, the UCRAN is
expected to yield more system capacity at mmWave spectrum
by virtue of relatively larger MU-interfering RRH distances.
EE results in fig. 3b indicate optimal R to be the highest
possible cluster size because of the combined effect of inreased
throughput and reduced power consumption with increase in
Rergr. Like ASE, the maximum EE is achieved at higher RRH
density and pathloss exponents. This implies that the GT-SON
engine will most effectively utilize the ASE-EE tradeoff with
gain variations of over 100% through appropriate 5 adjustment
in ultra-dense mmWave networks.
B. User QoE Analysis in a UCRAN

Users’ QoE analysis is conducted through SINR distribution
between MUs with network parameters: Ay = 10—2 /m2,
Arrr = 1073/m?, a=4, § = 0.5, v, = 4 dB and bandwidth
B=1 Hz. Both the MU and RRH deployments are performed
using uniform PPPs and average performance results are ob-
tained via Monte Carlo simulations. We use two variants of the
proposed user-centric approach: i) RRH cluster size deployment
that maximizes ASE henceforth referred as UC(ASE), and ii)
cluster size deployment that maximizes EE henceforth referred
as UC(EE). To compare the performance with a standard non
user-centric PPP deployment, we follow the approach in [25]
and represent it as NUC. Results in fig.4 show that even with
the most data throughput efficient user-centric design, we obtain
a SINR gain of over 20 dB for almost 50% of the users.
The ruggedness in the cdf graph of UC(EE) in comparison
to the other two CDFs is because of lower number of users
in the thinned PPP \p;y which is a direct consequence of
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centric approaches

the larger cluster sizes in EE optimization. The 5 percentile
SINR performance (for the cell-edge users with worst SINR in
conventional networks) is also significantly improved for user-
centric approaches with about 20 dB and 40 dB gain with
UC(ASE) and UC(EE) respectively. Clearly the user-centric
approach eliminates cell-edge degradation and guaranteed high
QoE for every user regardless of its physical location.
C. ASE, EE v/s Arry in a UCRAN

Fig. 5 compares the system wide ASE and EE of the user-
centric approaches with the baseline scheme at different RRH
densities and Ay = 1072 /m?, a=4, § = 0.5 and ;;, = 4 dB.
Fig. 5a reveals that as the RRH deployment density increases,
UC(ASE) emerges as the most data efficient scheme. While
NUC exhibits uniform ASE, UC(ASE) by virtue of increased

, ¥ and M respectively.

P, exhibits highest system capacity. On the other hand,
UC(EE), though not throughput efficient by any regards, yields
more than 5 times power efficient network as compared to NUC
approach (fig. 5b). This observation highlights the inherent
ASE-EE tradeoff available to the network operator by adjusting
[ via the GT-SON and choosing the appropriate RRH cluster
size.

VI. CONCLUSION

In this paper, we proposed a user-centric Cloud RAN orches-
tration framework capable of offering higher system capacity,
better energy efficiency and improved received signal quality in
dense deployment scenarios, compared to non user-centric con-
ventional Cloud RAN architectures. We derived expressions for
the area spectral and energy efficiency parameters as a function
of system wide RRH cluster size in the user-centric network.
Analytical results revealed that while ASE is optimized at low
cluster sizes, EE becomes optimal at a large cluster size as
large cluster sizes ensure lower interference and reduced power
consumption through smaller number of activated RRH. Con-
sequentially, the ASE-EE tradeoff manifests itself in terms of
dimensioning of the cluster radius in UCRAN. We then propose
a game theoretic framework to achieve Pareto optimal solution
and show that a SON engine within the centralized BBU pools
can be used to dynamically configure the optimal cluster size.
Simulation results indicate that: i) the SON mechanism allows
more than 100% efficiency variation particularly at dense RRH
deployments and high pathloss exponents, and ii) significant
SINR gains can be realized in both ASE and EE operating
modes by virtue of interference-free RRH cluster zones around
each scheduled user. Future directions include investigations of
methods to group multiple users into clusters based on their
spatial proximity and service class.
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