


network operator’s spatio-temporal revenue model which may

include traffic intensity, time of the day and hotspot locations

(e.g. cafes, stadiums) [9].

The key research question at hand is determining the op-

timal cluster size around a scheduled user. The cluster size

C = πR2
CLR determines the interference free region around

each scheduled user. Increasing the RRH cluster size offers

the following gains: 1) larger distances between MUs and

interfering RRHs results in larger link SINR and thus, better

link throughput, and 2) a larger RRH cluster size yields more

macro diversity gain or cooperative gain through selection or

cooperation among larger number of RRHs in the cluster,

respectively. However, the downside of a larger RRH cluster

size is reduced spectrum reuse and reduced number of MUs that

can be served simultaneously which, in turn, reduces system

level capacity. Hence with a larger cluster, there are fewer high

quality links as opposed to many low bit-rate links (which occur

with a smaller cluster).

In the back drop of these insights the goal of this paper is

to investigate following research questions: 1) What are the

optimal RRH cluster sizes that maximize KPIs of capacity (in

terms of area spectral efficiency (ASE)), energy efficiency (EE)

and the user quality of experience (QoE)? 2) Given that the

optimal RRH cluster sizes for all the three KPIs is expected

to be different, how to design the pareto-optimal solution that

achieves the desired balance among aforementioned KPIs?

Related works address transmit power control [10], interfer-

ence alignment [11], dynamic load balancing [12] and optimal

cluster dimensioning strategies [8][13] in user-centric networks.

[14] proposes a learning based approach to cluster RRHs within

BBUs with the aim to enhance utilization rate and energy

efficiency in C-RANs. Similarly, [15] adapts an efficient re-

source allocation scheme to improve energy efficiency in large

scale C-RAN deployments. Through this work, we add another

dimension to existing literature by simultaneously investigating

the intertwined KPIs, i.e. ASE, EE and QoE in ultra-dense user-

centric networks. The contributions and findings of this work

are summarized as follows:

A. Contributions and Organization

• By employing well established stochastic geometry prin-

ciples [16], we characterize the ASE and EE of a UCRAN

system as a function of the mobile user (MU) and RRH

deployment distributions. The analytical model takes into

account both MU and RRH thinning arising from the user-

centric RRH clustering performed in the centralized BBU

pools during each TTI.

• The ASE-EE tradeoff in a UCRAN is modeled through a

two-player bargaining problem. The performance metrics

are modeled as virtual game players and a Nash bargaining

solution is found that corresponds to a unique optimal

cluster radius for a given set of network parameters.

• Based on our analysis, we advocate the gains of dynamic

adaptation of the ASE-EE tradeoff by integrating a GT-

SON engine within the BBU pools. Through an expo-

nential weightage parameter, the GT-SON engine shifts

the operator’s preference between ASE and EE while

ensuring higher SINR gains within a particular spatio-

temporal zone.

The rest of the paper organization is as follows: in section

II, we describe the spatial model, user-centric RRH clustering

and the radio propagation model assumed in this work. Section

III focuses on the analytical derivation of the ASE and EE

of the UCRAN. In section IV, we present the proposed GT-

SON model for adaptive cluster size adjustment based on net-

work parameters and the operators’ revenue model. Efficiency

tradeoff analysis is performed through extensive simulations

in section V. The paper closes with conclusions and future

research directions in Section VI.

II. SYSTEM MODEL

A. Spatial Model

We consider the downlink of a two-tier UCRAN consisting

of one central macro base station (MBS) that has RRHs and

MUs spatially distributed across its foot-prints. We model the

spatial distributions of RRHs and MUs using two independent

stationary Poisson point processes (SPPPs) ΛRRH ∈ R
2 and

ΛMU ∈ R
2 with intensities λRRH and λMU respectively.

Specifically, at an arbitrary time instant, the probability of

finding ni ∈ N, i ∈ {RRH,MU} RRHs / MUs inside a

typical macro-cell with area foot-print A ⊆ R
2 follows the

Poisson law with mean measure λiv2(A). The mean measure

is characterized by the average number of RRHs / MUs per

unit area (i.e., λRRH\λMU ) and the Lebesgue measure [18]

v2(A) =
∫
A
dx on R

2, where if A is a disc of radius r then

v2(A) = πr2 is the area of the disc.

B. Channel Model

We model hxyl(‖x−y‖) as the channel between an arbitrary

MU x ∈ ΛMU and an RRH y ∈ ΛRRH . Here hxy ∼ ε(1)
is a unit mean exponential random variable that captures the

effect of the small-scale fading between the MU and RRH as

Rayleigh-distributed fading channel. In order to account for the

large-scale fading we denote l(|x − y|) = |x − y|−α where

|x − y| is the distance between x and y and α ≥ 2 is the

path loss exponent. It is assumed that the same transmit power

PRRH is used for all RRHs.

C. User-centric RRH Clustering

The RRH clustering mechanism in the user-centric C-RAN

is envisioned on a scenario where a high service priority MU

is served by a RRH that provides the largest signal-to-noise-

plus-interference ratio (SINR) within its cluster. Service priority

to each MU is assigned using a random probability pMU ∼
U(0, 1) which is incremented after every time slot during which

the service is deferred to the MU because of presence of

one or more higher preference MUs in the surroundings. For

simplicity, we assume that each MU in our model is requesting

service during all time slots (or TTIs). During each TTI, the

GT-SON engine in the centralized BBU pools determines the

optimal cluster radius "RCLR" for existing network parameters

and the operator’s business specifications (e.g. high data rate

or high energy efficiency). To avoid interference caused by

simultaneous transmissions to nearby MUs, the user-centric



RRH clustering creates repulsion by avoiding spatial overlap

between clusters. This implies that during a particular TTI,

a scheduled UE will not have any other UE with higher

service priority within a radial distance of 2RCLR . The joint

RRH clustering and user scheduling scheme is summarized

as algorithm 1. The symbol b(x, r) denotes a ball of radius

r centered at a point x.

Algorithm 1 RRH clustering and MU scheduling algorithm

Inputs: ΛRRH , ΛMU , RCLR

Outputs: Λ′
RRH , Λ′

MU

1: Initialize the set of scheduled MUs and the RRHs serving

within the user-centric clusters at any given time slot as Λ′
MU ,

Λ′
RRH ← ∅.

2: Update Λ′
MU and Λ′

RRH for the current time slot using the

following conditions:

foreach x ∈ ΛMU do

if y ∈ b(x, 2RCLR) and p
{x}
MU > p

{y}
MU , ∀y ∈ ΛMU ,y 6= x

then
Λ′
MU ∪ {x}

foreach r ∈ ΛRRH do

if r ∈ b(x, RCLR) then
if hrxl(||r − x||) > hr′xl(||r

′ − x||), ∀r′ ∈
ΛRRH , r′ ∈ b(x, RCLR), r

′ 6= r then
Λ′
RRH ∪ {r}

end

end

end

else
continue.

end

end

3: Serve all the scheduled users Λ′
MU from the associated RRHs

and update scheduling priorities p
{x}
MU for all x ∈ ΛMU , i.e.

increment p
{x}
MU if x ∈ Λ′

MU and decrement p
{x}
MU if x /∈ Λ′

MU .

4: Go to step 1.

III. EFFICIENCY METRICS IN USER-CENTRIC C-RAN
A. Area Spectral Efficiency

Consider a scheduled user x ∈ Λ′
MU . Let Scop(x, RCLR) =

Λ′
RRH ∩ b(x, RCLR) be the singleton set containing the RRH

selected to serve x on the basis of the scheduling criteria
(Algorithm 1). Furthermore, let ΛI = Λ′

RRH\Scop(x, RCLR)
be the set of RRHs which are concurrently scheduled to serve
y 6= x, ∀y ∈ Λ′

MU . Let sx and sy be the desired and
interference signals respectively at an arbitrary MU x , then
the received signal at x will be

rx =
√

PRRH max
i∈Scop

hixl(||x− i||)sx+

∑

y∈Λ′

MU
,y 6=x

√

PRRH max
j∈Λ′

RRH
∩(y,RCLR)

hjxl(||x− j||)sy+ϕx, (1)

where maxi∈Scop
hixl(||x − i||) is the channel

gain between the serving RRH i and the MU x,
maxj∈Λ′

RRH
∩(y,RCLR) hxj l(||x − j||) is the interference

experienced at x due to a RRH j serving another MU y,
PRRH is the transmit power employed by the RRHs and ϕx

is the additive white Gaussian noise (AWGN) at x’s receiver
front end. Without loss of generality, we use the Silvnyak’s

theorem [16] and focus our analysis on the arbitrary MU x
assumed to be located at the origin. Since ultra dense small cell
networks are generally considered to be interference-limited,
we may ignore the AWGN for our analytical analysis and
express the signal-to-interference ratio (SIR) at MU x as

Γx =
maxi∈Scop hil(ri)
∑

j∈ΛI
hj l(rj)

, (2)

where ri and rj are the relative distances of MU x with its

DL scheduled and interfering RRHs respectively.
The primary hurdle in characterizing the SINR in a UCRAN

arises from the fact that unlike ΛMU , the point process of the
scheduled MUs Λ′

MU is non-stationary. A closer inspection of
Λ′
MU reveals that it is a modified version of Type II Matern

Hard Core process [16]. Therefore, it can be approximated by
an equidense SPPP with appropriate modified intensity [17][18]
given by

λ̄MU =
1− e−4πλ2

MU

4πR2
CLR

. (3)

Once the Λ′
MU distribution is characterized, the next step is

to characterize the aggregate interference experienced by an

arbitrary MU from the activated RRHs outside its user-centric

cluster area.
Proposition 1. The mean of the aggregate interference

experienced by a typical MU under user-centric RRH clustering
can be approximated as follows:

E(I) =
2πλRRH [1− exp(−[1− exp(−4πλMUR

2
CLR)]/4)]

(α− 2)(RCLR)α−2(λRRHπR2
CLR)

, (4)

where α is the terrain dependent pathloss exponent.
Proof: Consider the SPPP ΛRRH , then under the user-

centric RRH clustering algorithm, for each scheduled MU,
only a single RRH which resides in the vicinity as well as
provides maximum channel gain to that MU is activated by the
MBS. A natural implication of this policy is that the resulting
PPP Λ′

RRH is non-stationary. However, like Λ′
MU , it can be

approximated with an equivalent SPPP with modified density
λRRHpACT . Here pACT is the activation probability for the
RRH and can be computed as follows:

pACT

(a)
= Pr{Λ′

MU ∩ b(r, RCLR) 6= ∅|r ∈ Λ′
RRH}.

P r{hrl(rr) > hj l(rj)|j ∈ Λ′
RRH , j 6= r},

=
[

1− Pr{Λ′
MU ∩ b(r, RCLR) = ∅|r ∈ Λ′

RRH}
]

.

P r{hrl(rr) > hj l(rj)|j ∈ Λ′
RRH , j 6= r},

=
[

1− exp(−λ̄MUπR
2
CLR)

]

.(1/[λRRHπR2
CLR]),

=
1− exp (−[1− exp (−4πλMUR

2
CLR)]/4)

λRRHπR2
CLR

,

(5)

where (a) follows from the fact that a RRH is only activated
if: i) there is a scheduled user within a distance of RCLR,
and ii) there is no other RRH within a distance of RCLR

from that user providing better channel gain. Now noticing
that ΛI = Λ′

RRH\Scop(o, RCLR), we can precisely describe
ΛI = Λ′

RRH\b(o, RCLR). Hence the mean interference can be
computed using Campbell’s theorem [16] as follows

E(I) = E(I) = E





∑

j∈Λ′

RRH
\b(o,RCLR)

hj l(rj)



 ,

= 2πλRRHpACT

∫ ∞

RCLR

E(H)r1−αdr.

(6)

Substituting E(H) = 1 in (6) concludes the proof. �





and x1 = x2 = RCLR ∈ R : RCLR > 0. β ∈ [0, 1] is

the exponential bias factor in NBS that defines the bargaining

power (or the tradeoff) division between the two players. We

also define the disagreement space D ∈ S as the set of the

two disagreement points d = (d1, d2) where d1 = u1(D) and

d2 = u2(D) represent the payoffs for the two players if the

bargaining process fails and no outcome is reached. For our

game, we set d = (0, 0) thus giving both players uniform

leeway to improve their utilities. [23] shows that the NBS in

such parametric cooperative games exists only if the utility

functions for the players form convex and compact sets.

Proposition 3. The utility and disagreement spaces in the

proposed GT-SON framework constitute a two-player bargain-

ing problem defined by (S, d) where S ∈ R
2, d ∈ S and the

resulting unique bargaining outcome is pareto-optimal.

Proof: A bargaining problem can be defined as the pair (S, d)
if: i) S is a convex and compact set, ii) There exists some s ∈ S
such that s > d, i.e. s1 > d1 and s2 > d2. It is quite obvious

that S is compact and since d = (0, 0), positive utilities for

our players satisfies the 2nd condition. This leaves behind the

question whether S is convex which holds true if: ∀ε : 0 ≤
ε ≤ 1, if Ua = (ua

1 , u
a
2) ∈ S1 and U b = (ub

1, u
b
2) ∈ S2, then

εUa+(1− ε)U b ∈ S . From (8), we see that εua
1 +(1− ε)ub

1 =
[λ̄MU log2(1+γth)P̄ ]β where P̄ = [ε(Pa

suc)
β+(1−ε)(Pb

suc)
β ]

and since we know that 0 ≤ P
a
suc, Pb

suc, β ≤ 1, the sum in (14)

forms a convex set, i.e.

εua
1 + (1− ε)ub

1 ∈ S1. (14)

Similarly, from (9), we see that εua
2 + (1 − ε)ub

2 =

[ λ̄MU log
2
(1+γth)P̄

λRRH ¯pACT (MθP0+∆uPu)
](1−β), where the numerator is con-

vex from (14) and denominator is convex since ¯pACT =
ε(paACT )

1−β+(1−ε)(pbACT )
1−β and 0 ≤ paACT , pbACT , β ≤ 1.

Therefore,

εua
2 + (1− ε)ub

2 ∈ S2. (15)

From (14) and (15), we conclude that εUa + (1 − ε)U b ∈ S
which satisfies the conditions for convexity for set S . Accord-
ing to Nash’s axiomatic approach [22], there exists a unique
solution for the two-player bargaining problem which is the
pair of utilities (s∗1, s

∗
2) that solves the following optimization

problem:

max
(s1,s2)

(s1 − d1)(s2 − d2), (s1, s2) ∈ S ≥ (d1, d2). (16)

�
Proposition 3 implies that for an arbitrary MU x, the optimal

cluster size "Ropt
CLR,x" is obtained through the solution of a

convex optimization problem (also known as Nash Product

(NP)) which for our model can be given by

Ropt
CLR,x = max

RCLR,x

[ASE(RCLR,x)]
β [EE(RCLR,x)]

1−β . (17)

Notice that the computational complexity of the GT-SON en-

gine is a function of the cluster size granularity, i.e. O(NCLR)
where NCLR denotes the number of distinct cluster sizes over

which the optimization in (17) is performed. As the processing

times are independent of MU or RRH densities, real-time

implementation of the GT-SON optimization framework is

practically realizable and scalable throughout the network.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the analytical trends and Monte

Carlo simulation results by employing a 3GPP standard com-

pliant LTE network simulator. For simulation, we consider a

two tier HetNet with a tri-sector hexagonal MBS of radius 500

m. We consider a single sector of the MBS covering an area

of 73850 m2 where MUs and small cell RRHs are uniformly

distributed according to their independent SPPPs. Without loss

of generality, the channel power gains between all MUs and

RRHs are assumed unity. We assume uniform transmit power

of 30 dBm for all RRHs. Other power consumption parameters

are taken from [23]. Simulation results are averaged over 1000

Monte Carlo trials.

A. Impact of β on ASE, EE in a UCRAN
From the analytical results in (8), (9) and (17), we investigate

the variation in the optimal cluster size and the efficiency

metrics as β is shifted between ASE-optimal (β = 1) and EE-

optimal (β = 0) points. The GT-SON engine optimizes RCLR

on the following fixed network parameters: λMU = 10−2/m2,

θ = 0.5, γth = 4 dB, and 0 < RCLR ≤ 100 m. The ASE results

in fig. 3a indicate around the same ASE-optimal cluster size of

5m for variations in pathloss exponent and RRH deployment

densities. It is seen that higher RRH densities yield superior

system throughput which is understandable considering pACT

is expected to increase with λRRH . It is also noted that α = 4
yields more than two-fold increase in ASE as compared to

α = 3. Since mmWave network propagation studies [24] have

indicated higher pathloss due to blocking effects, the UCRAN is

expected to yield more system capacity at mmWave spectrum

by virtue of relatively larger MU-interfering RRH distances.

EE results in fig. 3b indicate optimal RCLR to be the highest

possible cluster size because of the combined effect of inreased

throughput and reduced power consumption with increase in

RCLR. Like ASE, the maximum EE is achieved at higher RRH

density and pathloss exponents. This implies that the GT-SON

engine will most effectively utilize the ASE-EE tradeoff with

gain variations of over 100% through appropriate β adjustment

in ultra-dense mmWave networks.

B. User QoE Analysis in a UCRAN
Users’ QoE analysis is conducted through SINR distribution

between MUs with network parameters: λMU = 10−2/m2,

λRRH = 10−3/m2, α=4, θ = 0.5, γth = 4 dB and bandwidth

B=1 Hz. Both the MU and RRH deployments are performed

using uniform PPPs and average performance results are ob-

tained via Monte Carlo simulations. We use two variants of the

proposed user-centric approach: i) RRH cluster size deployment

that maximizes ASE henceforth referred as UC(ASE), and ii)

cluster size deployment that maximizes EE henceforth referred

as UC(EE). To compare the performance with a standard non

user-centric PPP deployment, we follow the approach in [25]

and represent it as NUC. Results in fig.4 show that even with

the most data throughput efficient user-centric design, we obtain

a SINR gain of over 20 dB for almost 50% of the users.

The ruggedness in the cdf graph of UC(EE) in comparison

to the other two CDFs is because of lower number of users

in the thinned PPP λ̄MU which is a direct consequence of
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the larger cluster sizes in EE optimization. The 5 percentile

SINR performance (for the cell-edge users with worst SINR in

conventional networks) is also significantly improved for user-

centric approaches with about 20 dB and 40 dB gain with

UC(ASE) and UC(EE) respectively. Clearly the user-centric

approach eliminates cell-edge degradation and guaranteed high

QoE for every user regardless of its physical location.

C. ASE, EE v/s λRRH in a UCRAN

Fig. 5 compares the system wide ASE and EE of the user-

centric approaches with the baseline scheme at different RRH

densities and λMU = 10−2/m2, α=4, θ = 0.5 and γth = 4 dB.

Fig. 5a reveals that as the RRH deployment density increases,

UC(ASE) emerges as the most data efficient scheme. While

NUC exhibits uniform ASE, UC(ASE) by virtue of increased

Psuc exhibits highest system capacity. On the other hand,

UC(EE), though not throughput efficient by any regards, yields

more than 5 times power efficient network as compared to NUC

approach (fig. 5b). This observation highlights the inherent

ASE-EE tradeoff available to the network operator by adjusting

β via the GT-SON and choosing the appropriate RRH cluster

size.

VI. CONCLUSION

In this paper, we proposed a user-centric Cloud RAN orches-

tration framework capable of offering higher system capacity,

better energy efficiency and improved received signal quality in

dense deployment scenarios, compared to non user-centric con-

ventional Cloud RAN architectures. We derived expressions for

the area spectral and energy efficiency parameters as a function

of system wide RRH cluster size in the user-centric network.

Analytical results revealed that while ASE is optimized at low

cluster sizes, EE becomes optimal at a large cluster size as

large cluster sizes ensure lower interference and reduced power

consumption through smaller number of activated RRH. Con-

sequentially, the ASE-EE tradeoff manifests itself in terms of

dimensioning of the cluster radius in UCRAN. We then propose

a game theoretic framework to achieve Pareto optimal solution

and show that a SON engine within the centralized BBU pools

can be used to dynamically configure the optimal cluster size.

Simulation results indicate that: i) the SON mechanism allows

more than 100% efficiency variation particularly at dense RRH

deployments and high pathloss exponents, and ii) significant

SINR gains can be realized in both ASE and EE operating

modes by virtue of interference-free RRH cluster zones around

each scheduled user. Future directions include investigations of

methods to group multiple users into clusters based on their

spatial proximity and service class.
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