
PetIBM: toolbox and applications of the
immersed-boundary method on distributed-memory
architectures
Pi-Yueh Chuang1, Olivier Mesnard1, Anush Krishnan2, and Lorena A.
Barba1

1 Department of Mechanical and Aerospace Engineering, The George Washington University,
Washington, DC, USA 2 nuTonomy Inc., Cambridge, MA, USA (previously at Boston University)DOI: 10.21105/joss.00558

Software
• Review
• Repository
• Archive

Submitted: 26 January 2018
Published: 29 May 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

PetIBM is a C++ library with ready-to-use application codes to solve the two- and
three-dimensional incompressible Navier-Stokes equations on fixed structured Cartesian
grids with an immersed-boundary method (IBM). PetIBM runs on distributed-memory
architectures and can be used to compute the flow around multiple moving rigid immersed
boundaries (with prescribed kinematics).
In the IBM framework, a collection of Lagrangian markers defines the immersed bound-
ary (where boundary conditions are enforced) and the fluid equations are solved over
the extended domain (including the body domain). The Eulerian mesh remains unmod-
ified when computing the flow around multiple moving immersed bodies, which removes
the need for remeshing at every time step. PetIBM discretizes the fluid equations us-
ing a second-order finite-difference scheme, various optional time-integrators, and a fully
discrete projection method (Perot (1993)). It implements two immersed-boundary algo-
rithms: the immersed-boundary projection method (Taira and Colonius (2007)) and its
decoupled version (Li et al. (2016)).
Other open-source software packages offer immersed-boundary solvers: for example,
IBAMR (Griffith et al. (2007), Bhalla et al. (2013)) is a long-standing C++ library
with MPI parallelization that also provides adaptive mesh refinement. It can handle
deforming immersed bodies and has been used in a variety of scenarios, including
cardiac fluid dynamics, swimming, insect flight, and others. PetIBM and IBAMR use
different immersed-boundary schemes, however. We developed PetIBM to work with the
immersed-boundary projection method, which is based on the fully discrete formulation
of Perot on staggered grids and thus eliminates the need for pressure boundary conditions,
which have caused many headaches for CFD practitioners (Gresho and Sani (1987),
Sani and Gresho (1994)). PetIBM features an operator-based design, providing routines
to create and manipulate discrete operators (e.g., gradient, divergence, Laplacian,
convection, diffusion, etc.), so it can be used as a toolbox for researching new solution
methods. It is also capable of using graphics processing unit (GPU) architectures, a
feature missing from other software, as far as we know. A previous project implementing
immersed-boundary methods on GPU architecture is cuIBM (Krishnan, Mesnard, and
Barba (2017)), but it is limited to two-dimensional problems that fit on a single GPU
device.
PetIBM is written in C++ and relies on the PETSc library (Balay et al. (1997), Balay et
al. (2017)) for data structures and parallel routines to run on memory-distributed archi-
tectures. PetIBM can solve one or several linear systems on multiple distributed CUDA-
capable GPU devices with the NVIDIA AmgX library and AmgXWrapper (Chuang and

Chuang et al., (2018). PetIBM: toolbox and applications of the immersed-boundary method on distributed-memory architectures. Journal of
Open Source Software, 3(25), 558. https://doi.org/10.21105/joss.00558

1

https://doi.org/10.21105/joss.00558
https://github.com/openjournals/joss-reviews/issues/558
https://github.com/barbagroup/PetIBM
http://dx.doi.org/10.5281/zenodo.1255132
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00558


Barba (2017)). The software package includes extended documentation as well as many
examples to guide users.
PetIBM has already been used to generate results published in Mesnard and Barba (2017),
a full replication of a study on the aerodynamics of a gliding snake species (Krishnan et
al. (2014)). PetIBM is currently used to compute the three-dimensional flow of a gliding-
snake model on the cloud platform Microsoft Azure.

Appendix: mathematical formulation

PetIBM solves the Navier-Stokes equations on an extended discretization grid that in-
cludes the interior of the immersed boundary. To model the presence of the boundary, a
forcing term is added to the momentum equation and an additional equation for the no-
slip condition completes the system. Variants of the immersed-boundary method (IBM)
depend on how one models the forcing. In PetIBM, we use regularized-delta functions to
transfer data between the Eulerian grid and the Lagrangian boundary points. The system
of equations is:




∂u
∂t + u · ∇u = −∇p+ 1

Re∇
2u+

∫
s
f (ξ (s, t)) δ (ξ − x)ds

∇ · u = 0

u (ξ (s, t)) =
∫
x
u (x)δ (x− ξ) dx

(1)

where u is the velocity field, p is the fluid pressure, and Re is the Reynolds number.
Currently, PetIBM provides two application codes implementing different versions of the
IBM: (1) an immersed-boundary projection method (IBPM) based on the work of Taira
and Colonius (2007) and (2) a decoupled version of the IBPM proposed by Li et al. (2016).
Those two methods fit into the framework of the projection approach of Perot (1993). The
equations are fully discretized (space and time) to form an algebraic system to be solved
for the velocity un+1, the pressure field φ, and the Lagrangian forces f̃ . The discretized
system is:



A G H
D 0 0
E 0 0





un+1

φ

f̃


 =




rn

0
un+1
B


+



bc1
bc2
0


 (2)

where D, G, and A are the divergence, gradient, and implicit operators, respectively.
E and H are the interpolation and spreading operators, respectively, used to transfer
the data between the Eulerian grid and the Lagrangian boundary points. On the right-
hand side, rn gathers all the explicit terms and un+1

B is the known (prescribed) boundary
velocity; bc1 and bc2 contain the boundary terms that arise from the discretization of
momentum and continuity equations, respectively.
In the IBPM, we solve a modified Poisson system for the pressure field and Lagrangian
forces, coupled together. This way, the divergence-free condition and no-slip constraint
are simultaneously enforced on the velocity field at the end of the time step. The fully
discretized system can be cast into the following:

[
A Q2

Q1 0

](
un+1

λ

)
=

(
r1
r2

)
(3)

with

Q1 ≡
[
D
E

]
; Q2 ≡ [G,H] ; λ ≡

(
φ

f̃

)
; r1 ≡ rn + bc1; r2 ≡

(
bc2
un+1
B

)

Chuang et al., (2018). PetIBM: toolbox and applications of the immersed-boundary method on distributed-memory architectures. Journal of
Open Source Software, 3(25), 558. https://doi.org/10.21105/joss.00558

2

https://doi.org/10.21105/joss.00558


In practice, we never form the full system. Instead, we apply a block-LU decomposition
as follows:

[
A 0
Q1 −Q1A

−1Q2

] [
I A−1Q2

0 I

](
un+1

λ

)
=

[
A 0
Q1 −Q1A

−1Q2

](
u∗

λ

)
=

(
r1
r2

)
(4)

Thus, we retrieve the sequence of operations of the traditional projection method. We
solve a system for an intermediate velocity field that is corrected, after solving a modified
Poisson system for the variable λ, to enforce the divergence-free condition and the no-slip
constraint at the location of the immersed boundary. The sequence is:

Au∗ = r1 (5)
Q1A

−1Q2λ = Q1u
∗ − r2 (6)

un+1 = u∗ −A−1Q1λ (7)

The IBPM implemented in PetIBM solves, at every time step, Equations (5) to (6). (Note:
the inverse of the implicit operator A−1 is approximated by a finite Taylor series expan-
sion.)
The IBPM requires solving, at each time step, an expensive modified Poisson system,
Q1A

−1Q2, whose non-zero structure changes when the location of the immersed boundary
is moving. In the PetIBM implementation of the decoupled IBPM, we apply a second
block-LU decomposition to decouple the pressure field from the Lagrangian forces and
recover a classical Poisson system. The fully discretized algebraic system can be cast
into:



A H G
E 0 0
D 0 0





un+1

f̃
φ


 =




rn

un+1
B

0


+



bc1
0
bc2


 (8)

The velocity un+1 and the Lagrangian forces f̃ are coupled together to form a new un-
known γn+1, as follows:

[
Ā Ḡ
D̄ 0

](
γn+1

φ

)
=

(
r̄1
r̄2

)
(9)

where

Ā ≡
[
A H
E 0

]
; Ḡ ≡

[
G
0

]
; D̄ ≡

[
D 0

]

and

γn+1 ≡
(
un+1

f̃

)
; r̄1 ≡

(
rn + bc1
un+1
B

)
; r̄2 ≡ bc2

Two successive block-LU decompositions are applied to decouple the Lagrangian forces f̃
from γn+1 and to decouple the velocity from the pressure field.

Chuang et al., (2018). PetIBM: toolbox and applications of the immersed-boundary method on distributed-memory architectures. Journal of
Open Source Software, 3(25), 558. https://doi.org/10.21105/joss.00558

3

https://doi.org/10.21105/joss.00558


The first block-LU decomposition decouples the pressure field from the new unknown
γn+1:

[
Ā 0
D̄ −D̄Ā−1Ḡ

] [
I Ā−1Ḡ
0 I

](
γn+1

φ

)
=

[
Ā 0
D̄ −D̄Ā−1Ḡ

](
γ∗

φ

)
=

(
r̄1
r̄2

)
(10)

which leads to the following sequence of operations:

Āγ∗ = r̄1 (11)
D̄Ā−1Ḡφ = D̄γ∗ − r̄2 (12)
γn+1 = γ∗ − Ā−1Ḡφ (13)

A second block-LU decomposition is applied to the first equation above:

[
A 0
E −EA−1H

] [
I A−1H
0 I

](
u∗

f̃

)
=

[
A 0
E −EA−1H

](
u∗∗

f̃

)
=

(
rn + bc1
un+1
B

)
(14)

and we end up with the following sequence:

Au∗∗ = rn + bc1 (15)
EA−1Hf̃ = Eu∗∗ − un+1

B (16)
u∗ = u∗∗ −A−1Hf̃ (17)

The decoupled version of the IBPM implemented in PetIBM solves, at every time step,
Equations (15) to (17) followed by Equations (12) and (13).

References

Balay, Satish, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, et al. 2017. “PETSc Users Manual.” ANL-95/11 - Re-
vision 3.8. Argonne National Laboratory.
Balay, Satish, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. 1997.
“Efficient Management of Parallelism in Object Oriented Numerical Software Libraries.”
In Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and
H. P. Langtangen, 163–202. Birkhäuser Press.
Bhalla, Amneet Pal Singh, Rahul Bale, Boyce E Griffith, and Neelesh A Patankar. 2013.
“A Unified Mathematical Framework and an Adaptive Numerical Method for Fluid–
Structure Interaction with Rigid, Deforming, and Elastic Bodies.” Journal of Compu-
tational Physics 250. Elsevier:446–76. https://doi.org/10.1016/j.jcp.2013.04.033.
Chuang, Pi-Yueh, and Lorena A. Barba. 2017. “AmgXWrapper: An Interface Between
PETSc and the NVIDIA AmgX Library.” The Journal of Open Source Software 2 (16).
The Open Journal:280. https://doi.org/10.21105/joss.00280.
Gresho, Philip M, and Robert L Sani. 1987. “On Pressure Boundary Conditions for the
Incompressible Navier-Stokes Equations.” International Journal for Numerical Methods
in Fluids 7 (10). Wiley Online Library:1111–45. https://doi.org/10.1002/fld.1650071008.

Chuang et al., (2018). PetIBM: toolbox and applications of the immersed-boundary method on distributed-memory architectures. Journal of
Open Source Software, 3(25), 558. https://doi.org/10.21105/joss.00558

4

https://doi.org/10.1016/j.jcp.2013.04.033
https://doi.org/10.21105/joss.00280
https://doi.org/10.1002/fld.1650071008
https://doi.org/10.21105/joss.00558


Griffith, Boyce E, Richard D Hornung, David M McQueen, and Charles S Peskin.
2007. “An Adaptive, Formally Second Order Accurate Version of the Immersed
Boundary Method.” Journal of Computational Physics 223 (1). Elsevier:10–49.
https://doi.org/10.1016/j.jcp.2006.08.019.
Krishnan, Anush, Olivier Mesnard, and Lorena A. Barba. 2017. “cuIBM: A GPU-Based
Immersed Boundary Method Code.” The Journal of Open Source Software 2 (15). The
Open Journal:301. https://doi.org/10.21105/joss.00301.
Krishnan, Anush, John J Socha, Pavlos P Vlachos, and LA Barba. 2014. “Lift and
Wakes of Flying Snakes.” Physics of Fluids 26 (3). AIP:031901. https://doi.org/10.1063/
1.4866444.
Li, Ru-Yang, Chun-Mei Xie, Wei-Xi Huang, and Chun-Xiao Xu. 2016. “An Efficient Im-
mersed Boundary Projection Method for Flow over Complex/Moving Boundaries.” Com-
puters & Fluids 140. Elsevier:122–35. https://doi.org/10.1016/j.compfluid.2016.09.017.
Mesnard, Olivier, and Lorena A Barba. 2017. “Reproducible and Replicable Computa-
tional Fluid Dynamics: It’s Harder Than You Think.” Computing in Science & Engineer-
ing 19 (4). IEEE:44–55. https://doi.org/10.1109/MCSE.2017.3151254.
Perot, J Blair. 1993. “An Analysis of the Fractional Step Method.” Journal of Computa-
tional Physics 108 (1). Elsevier:51–58. https://doi.org/10.1006/jcph.1993.1162.
Sani, Robert L, and Philip M Gresho. 1994. “Résumé and Remarks on the Open Bound-
ary Condition Minisymposium.” International Journal for Numerical Methods in Fluids
18 (10). Wiley Online Library:983–1008. https://doi.org/10.1002/fld.1650181006.
Taira, Kunihiko, and Tim Colonius. 2007. “The Immersed Boundary Method: A Pro-
jection Approach.” Journal of Computational Physics 225 (2). Elsevier:2118–37. https:
//doi.org/10.1016/j.jcp.2007.03.005.

Chuang et al., (2018). PetIBM: toolbox and applications of the immersed-boundary method on distributed-memory architectures. Journal of
Open Source Software, 3(25), 558. https://doi.org/10.21105/joss.00558

5

https://doi.org/10.1016/j.jcp.2006.08.019
https://doi.org/10.21105/joss.00301
https://doi.org/10.1063/1.4866444
https://doi.org/10.1063/1.4866444
https://doi.org/10.1016/j.compfluid.2016.09.017
https://doi.org/10.1109/MCSE.2017.3151254
https://doi.org/10.1006/jcph.1993.1162
https://doi.org/10.1002/fld.1650181006
https://doi.org/10.1016/j.jcp.2007.03.005
https://doi.org/10.1016/j.jcp.2007.03.005
https://doi.org/10.21105/joss.00558

	Summary
	Appendix: mathematical formulation

	References



