
Towards Certified Meta-Programming

with Typed Template-Coq

Abhishek Anand1, Simon Boulier2, Cyril Cohen3,
Matthieu Sozeau4 and Nicolas Tabareau2

1 Cornell University, Ithaca, NY U.S.A.
2 Gallinette Project-Team, Inria Nantes, France

3 Université Côte d’Azur, Inria, France
4 Pi.R2 Project-Team, Inria Paris and IRIF, France

Abstract. Template-Coq5 is a plugin for Coq, originally implemented
by Malecha [18], which provides a reifier for Coq terms and global declara-
tions, as represented in the Coq kernel, as well as a denotation command.
Initially, it was developed for the purpose of writing functions on Coq’s
AST in Gallina. Recently, it was used in the CertiCoq certified compiler
project [4], as its front-end language, to derive parametricity properties [3],
and to extract Coq terms to a CBV λ-calculus [13]. However, the syntax
lacked semantics, be it typing semantics or operational semantics, which
should reflect, as formal specifications in Coq, the semantics of Coq’s
type theory itself. The tool was also rather bare bones, providing only
rudimentary quoting and unquoting commands. We generalize it to han-
dle the entire Calculus of Inductive Constructions (CIC), as implemented
by Coq, including the kernel’s declaration structures for definitions and
inductives, and implement a monad for general manipulation of Coq’s
logical environment. We demonstrate how this setup allows Coq users to
define many kinds of general purpose plugins, whose correctness can be
readily proved in the system itself, and that can be run efficiently after
extraction. We give a few examples of implemented plugins, including a
parametricity translation. We also advocate the use of Template-Coq

as a foundation for higher-level tools.

1 Introduction

Meta-programming is the art of writing programs (in a meta-language) that
produce or manipulate programs (written in an object language). In the setting of
dependent type theory, the expressivity of the language permits to consider the
case were the meta and object languages are actually the same, accounting for

well-typedness. This idea has been pursued in the work on inductive-recursive (IR)
and quotient inductive-inductive types (QIIT) in Agda to reflect a syntactic model
of a dependently-typed language within another one [9,2]. These term encodings
include type-correcteness internally by considering only well-typed terms of the
syntax, i.e. derivations. However, the use of IR or QIITs complicates considerably

5 https://template-coq.github.io/template-coq

the meta-theory of the meta-language which makes it difficult to coincide with
the object language represented by an inductive type. More problematically
in practice, the concision and encapsulation of the syntactic encoding has the
drawback that it is very difficult to use because any function from the syntax
can be built only at the price of a proof that it respects typing, conversion or
any other features described by the intrinsically typed syntax right away.

Other works have taken advantage of the power of dependent types to do
meta-programming in a more progressive manner, by first defining the syntax of
terms and types; and then defining out of it the notions of reduction, conversion
and typing derivation [11,26] (the introduction of [11] provides a comprehensive
review of related work in this area). This can be seen as a type-theoretic version of
the functional programming language designs such as Template Haskell [22] or
MetaML [24]. This is also the approach taken by Malecha in his thesis [18], where
he defined Template-Coq, a plugin which defines a correspondence—using
quoting and unquoting functions—between Coq kernel terms and inhabitants of
an inductive type representing internally the syntax of the calculus of inductive
constructions (CIC), as implemented in Coq. It becomes thus possible to define
programs in Coq that manipulate the representation of Coq terms and reify
them as functions on Coq terms. Recently, its use was extended for the needs
of the CertiCoq certified compiler project [4], which uses it as its front-end
language. It was also used by Anand and Morissett [3] to formalize a modified
parametricity translation, and to extract Coq terms to a CBV λ-calculus [13].
All of these translations however lacked any means to talk about the semantics
of the reified programs, only syntax was provided by Template-Coq. This is
an issue for CertiCoq for example where both a non-deterministic small step
semantics and a deterministic call-by-value big step semantics for CIC terms had
to be defined and preserved by the compiler, without an “official” specification
to refer to.

This paper proposes to remedy this situation and provides a formal semantics
of Coq’s implemented type theory, that can independently be refined and studied.
The advantage of having a very concrete untyped description of Coq terms (as
opposed to IR or QIITs definitions) together with an explicit type checker is
that the extracted type-checking algorithm gives rise to an OCaml program
that can directly be used to type-check Coq kernel terms. This opens a way to a
concrete solution to bootstrap Coq by implementing the Coq kernel in Coq.
However, a complete reification of CIC terms and a definition of the checker are
not enough to provide a meta-programming framework in which Coq plugins
could be implemented. One needs to get access to Coq logical environments.
This is achieved using a monad that reifies Coq general commands, such as
lookups and declarations of constants and inductive types.

As far as we know this is the only reflection framework in a dependently-typed
language allowing such manipulations of terms and datatypes, thanks to the
relatively concise representation of terms and inductive families in CIC. Compared
to the MetaCoq project [27], Lean’s tactic monad [12], or Agda’s reflection
framework [26], our ultimate goal is not to interface with Coq’s unification

Inductive term : Set ≔

| tRel : N → term

| tVar : ident → term

| tEvar : N → list term → term

| tSort : universe → term

| tCast : term → cast_kind → term → term

| tProd : name → term → term → term

| tLambda : name → term → term → term

| tLetIn : name → term → term → term → term

| tApp : term → list term → term

| tConst : kername → universe_instance → term

| tInd : inductive → universe_instance → term

| tConstruct: inductive → N → universe_instance → term

| tCase : inductive * N → term → term → list (N * term) → term

| tProj : projection → term → term

| tFix : mfixpoint term → N → term

| tCoFix : mfixpoint term → N → term.

Fig. 1. Representation of the syntax in Template-Coq

and type-checking algorithms, but to provide a self-hosted, bootstrappable and
verifiable implementation of these algorithms. On one hand, this opens the
possibility to verify the kernel’s implementation, a problem tackled by Barras

[6] using set-theoretic models. On the other hand we also advocate for the use of
Template-Coq as a foundation on which higher-level tools can be built: meta-
programs implementing translations, boilerplate-generating tools, domain-specific
proof languages, or even general purpose tactic languages.

Plan of the paper. In Section 2, we present the complete reification of Coq terms,
covering the entire CIC and define in Section 3 the type-checking algorithm of
Coq reified terms in Coq. In Section 4, we show the definition of a monad for
general manipulation of Coq’s logical environment and use it to define plugins
for various translations from Coq to Coq (Section 5). Finally, we discuss related
and future work in Section 6.

2 Reification of Coq Terms

Reification of syntax. The central piece of Template-Coq is the inductive
type term which represents the syntax of Coq terms, as defined in Fig. 1. This
inductive follows directly the constr datatype of Coq terms in the OCaml code
of Coq, except for the use of OCaml’s native arrays and strings; an upcoming
extension of Coq [5] with such features should solve this mismatch.

Constructor tRel represents variables bound by abstractions (introduced
by tLambda), dependent products (introduced by tProd) and local definitions
(introduced by tLetIn), the natural number is a De Bruijn index. The name is a
printing annotation.

Sorts are represented with tSort, which takes a universe as argument. A
universe is the supremum of a (non-empty) list of level expressions, and a level is
either Prop, Set, a global level or a De Bruijn polymorphic level variable.

Inductive level ≔ lProp | lSet | Level (_ : string) | Var (_ : N).

Definition universe ≔ list (level * bool). (* level+1 if true *)

The application (introduced by tApp) is n-ary. The tConst, tInd and tConstruct

constructors represent references to constants (definitions or axioms), inductives,
or constructors of an inductive type. The universe_instances are non-empty only
for polymorphic constants. Finally, tCase represents pattern-matchings, tProj
primitive projections, tFix fixpoints and tCoFix cofixpoints.

Quoting and unquoting of terms. Template-Coq provides a lifting from concrete
syntax to reified syntax (quoting) and the converse (unquoting). It can reify and
reflect all kernel Coq terms.

The command Quote Definition reifies the syntax of a term. For instance,

Quote Definition f ≔ (fun x ⇒ x + 0).

generates the term f defined as

f = tLambda (nNamed "x") (tInd {| inductive_mind ≔ "Coq.Init.Datatypes.

nat"; inductive_ind ≔ 0 |} []) (tApp (tConst "Coq.Init.Nat.add" [])

[tRel 0; tConstruct {| inductive_mind ≔ "Coq.Init.Datatypes.nat";

inductive_ind ≔ 0 |} 0 []) : term

On the converse, the command Make Definition constructs a term from its
syntax. This example below defines zero to be 0 of type N.

Make Definition zero ≔ tConstruct (mkInd "Coq.Init.Datatypes.nat" 0)

0 [].

where mkInd n k is the kth inductive of the mutual block of the name n.

Reification of environment. In Coq, the meaning of a term is relative to an
environment, which must be reified as well. Environments consist of three parts:
(i) a graph of universes (ii) declarations of definitions, axioms and inductives (iii)
a local context registering types of De Bruijn indexes.

As we have seen in the syntax of terms, universe levels are not given explicitly
in Coq. Instead, level variables are introduced and constraints between them
are registered in a graph of universes. This is the way typical ambiguity is
implemented in Coq. A constraint is given by two levels and a constraint_type

(Lt, Le or Eq):

Definition univ_constraint ≔ Level * constraint_type * Level.

Then the graph is given by a set of level variables and one of constraints. Sets,
coming from the Coq standard library, are implemented using lists without
duplicates. LevelSet.t means the type t of the module LevelSet.

Definition uGraph ≔ LevelSet.t * ConstraintSet.t.

Functions to query the graph are provided, for the moment they rely on a naive
implementation of the Bellman-Ford algorithm. check_leq u1 u2 checks if the
graph enforces u1 ≤ u2 and no_universe_inconsistency checks that the graph
has no negative cycle.

Constant and inductive declarations are grouped together, properly ordered
according to dependencies, in a global context (global_ctx), which is a list of
global declarations (global_decl).

Inductive global_decl ≔

| ConstantDecl : ident → constant_decl → global_decl

| InductiveDecl : ident → minductive_decl → global_decl.

Definitions and axioms just associate a name to a universe context, and two
terms for the optional body and type. Inductives are more involved:

(* Declaration of one inductive type *)

Record inductive_body ≔ { ind_name : ident;

ind_type : term; (* closed arity *)

ind_kelim : list sort_family; (* allowed elimination sorts *)

(* names, types, number of arguments of constructors *)

ind_ctors : list (ident * term * nat);

ind_projs : list (ident * term) (* names and types of projections *)}.

(* Declaration of a block of mutual inductive types *)

Record minductive_decl ≔ { ind_npars : nat; (* number of parameters *)

ind_bodies : list inductive_body; (* inductives of the mutual block *)

ind_universes : universe_context (* universe constraints *) }.

In Coq internals, there are in fact two ways of representing a declaration: either
as a “declaration” or as an “entry”. The kernel takes entries as input, type-check
them and elaborate them to declarations. In Template-Coq, we provide both,
and provide an erasing function mind_decl_to_entry from declarations to entries
for inductive types.

Finally, local contexts are just list of local declarations: a type for lambda
bindings and a type and a body for let bindings.

Quoting and unquoting the environment Template-Coq provides the command
Quote Recursively Definition to quote an environment. This command crawls
the environment and quote all declarations needed to typecheck a given term.

The other way, the commands Make Inductive allows declaring an inductive
type from its entry. For instance the following redefines a copy of N:

Make Inductive (mind_decl_to_entry

{| ind_npars ≔ 0; ind_universes ≔ [];

ind_bodies ≔ [{|

ind_name ≔ "nat";

ind_type ≔ tSort [(lSet, false)];

ind_kelim ≔ [InProp; InSet; InType];

ind_ctors ≔ [("O", tRel 0, 0);

("S", tProd nAnon (tRel 0) (tRel 1), 1)];

ind_projs ≔ [] |}] |}).

Inductive cumul (Σ : global_ctx) (Γ : context) : term → term → Prop

≔ | cumul_refl t u : leq_term (snd Σ) t u = true → Σ ; Γ ⊢ t ≤ u

| cumul_red_l t u v : red1 Σ Γ t v → Σ ; Γ ⊢ v ≤ u → Σ ; Γ ⊢ t ≤ u

| cumul_red_r t u v : Σ ; Γ ⊢ t ≤ v → red1 Σ Γ u v → Σ ; Γ ⊢ t ≤ u

where " Σ ; Γ ⊢ t ≤ u " ≔ (cumul Σ Γ t u).

Inductive typing (Σ : global_ctx) (Γ : context) : term → term → Set

≔ | type_Rel n : ∀ (H : n < List.length Γ),

Σ ; Γ ⊢ tRel n : lift0 (S n) (safe_nth Γ (exist _ n H)).(decl_type)

| type_Sort (l : level) :

Σ ; Γ ⊢ tSort (Universe.make l) : tSort (Universe.super l)

| type_Prod n t b s1 s2 :

Σ ; Γ ⊢ t : tSort s1 → Σ ; Γ , vass n t ⊢ b : tSort s2 →

Σ ; Γ ⊢ tProd n t b : tSort (max_universe s1 s2)

| type_App t l t_ty t’ :

Σ ; Γ ⊢ t : t_ty → typing_spine Σ Γ t_ty l t’ →

Σ ; Γ ⊢ tApp t l : t’

| ...

where " Σ ; Γ ⊢ t : T " ≔ (typing Σ Γ t T)

with typing_spine Σ Γ : term → list term → term → Prop ≔

| type_spine_nil ty : typing_spine Σ Γ ty [] ty

| type_spine_const hd tl na A B B’ T :

Σ ; Γ ⊢ T ≤ tProd na A B → Σ ; Γ ⊢ hd : A →

typing_spine Σ Γ (subst0 hd B) tl B’ →

typing_spine Σ Γ T (cons hd tl) B’

Fig. 2. Typing judment for terms, excerpt

More examples of use of quoting/unquoting commands can be found in the
file test-suite/demo.v.

3 Type Checking Coq in Coq

In Fig. 2, we present (an excerpt of) the specification of the typing judgment of
the kernel of Coq using the inductive type typing. It represents all the typing
rules of Coq6. This includes the basic dependent lambda calculus with lets,
global references to inductives and constants, the match construct and primitive
projections. Universe polymorphic definitions and the well-formedness judgment
for global declarations are dealt with as well.

The only ingredients missing are the guard check for fixpoint and productivity
of cofixpoints and the positivity condition of mutual (co-) inductive types. They
are work-in-progress.

6 We do not treat metavariables which are absent from kernel terms and require a
separate environment for their declarations.

The typing judgment typing is mutually defined with typing_spine to account
for n-ary applications. Untyped reduction red1 and cumulativity cumul can be
defined separately.

Implementation. To test this specification, we have implemented the basic
algorithms for type-checking in Coq, that is, we implement type inference: given
a context and a term, output its type or produce a type error. All the rules
of type inference are straightforward except for cumulativity. The cumulativity
test is implemented by comparing head normal forms for a fast-path failure and
potentially calling itself recursively, unfolding definitions at the head in Coq’s
kernel in case the heads are equal. We implemented weak-head reduction by
mimicking Coq’s kernel implementation, which is based on an abstract machine
inspired by the KAM. Coq’s machine optionally implements a variant of lazy,
memoizing evaluation (which can have mixed results, see Coq’s PR #555 for
example), that feature has not been implemented yet.

The main difference with the OCaml implementation is that all of the
functions are required to be shown terminating in Coq. One possibility could be
to prove the termination of type-checking separately but this amounts to prove in
particular the normalization of CIC which is a complex task. Instead, we simply
add a fuel parameter to make them syntactically recursive and make OutOfFuel

a type error, i.e., we are working in a variant of the option monad.

Bootstrapping it. We can extract this checker to OCaml and reuse the setup
described in Section 2 to connect it with the reifier and easily derive a (partialy
verified) alternative checker for Coq’s .vo object files. Our plugin provides a
new command Template Check for typechecking definitions using the alternative
checker, that can be used as follows:

Require Import Template.TemplateCoqChecker List. Import ListNotations.

Definition foo ≔ List.map (fun x ⇒ x + 3) [0; 1].

Template Check foo.

Our initial tests indicate that its running time is comparable to the coqchk

checker of Coq, as expected.

4 Reification of Coq Commands

Coq plugins need to interact with the environment, for example by repeatedly
looking up definitions by name, declaring new constants using fresh names, or
performing computations. It is desirable to allow such programs to be written
in Coq (Gallina) because of the two following advantages. Plugin-writers no
longer need to understand the OCaml implementation of Coq and plugins are
no longer sensitive to changes made in the OCaml implementation. Also, when
plugins implementing syntactic models are proven correct in Coq, they provide
a mechanism to add axioms to Coq without compromising consistency (§5.3).

In general, interactions with the environment have side effects, e.g. the
declaration of new constants, which must be described in Coq’s pure setting. To

overcome this difficulty, we use the standard “free” monadic setting to represent
the operations involved in interacting with the environment, as done for instance
in Mtac [27].

Inductive TemplateMonad : Type → Type ≔

(* Monadic operations *)

| tmReturn : ∀ {A}, A → TemplateMonad A

| tmBind : ∀ {A B},

TemplateMonad A → (A → TemplateMonad B) → TemplateMonad B

(* General operations *)

| tmPrint : ∀ {A}, A → TemplateMonad unit

| tmFail : ∀ {A}, string → TemplateMonad A

| tmEval : reductionStrategy → ∀ {A}, A → TemplateMonad A

| tmDefinition : ident → ∀ {A}, A → TemplateMonad A

| tmAxiom : ident → ∀ A, TemplateMonad A

| tmLemma : ident → ∀ A, TemplateMonad A

| tmFreshName : ident → TemplateMonad ident

| tmAbout : ident → TemplateMonad (option global_reference)

| tmCurrentModPath : unit → TemplateMonad string

(* Quoting and unquoting operations *)

| tmQuote : ∀ {A}, A → TemplateMonad term

| tmQuoteRec : ∀ {A}, A → TemplateMonad program

| tmQuoteInductive : kername → TemplateMonad mutual_inductive_entry

| tmQuoteConstant : kername → bool → TemplateMonad constant_entry

| tmMkDefinition : ident → term → TemplateMonad unit

| tmMkInductive : mutual_inductive_entry → TemplateMonad unit

| tmUnquote : term → TemplateMonad {A : Type & A}.

| tmUnquoteTyped : ∀ A, term → TemplateMonad A

Fig. 3. The monad of commands

TemplateMonad is an inductive family (Fig. 3) such that TemplateMonad A

represents a program which will finally output a term of type A. There are special
constructor tmReturn and tmBind to provide (freely) the basic monadic operations.
We use the monadic syntactic sugar x ← t ; u for tmBind t (fun x ⇒ u).

The other operations of the monad can be classified in two categories: the
traditional Coq operations (tmDefinition to declare a new definition, . . .) and the
quoting and unquoting operations to move between Coq term and their syntax
or to work directly on the syntax (tmMkInductive to declare a new inductive from
its syntax for instance). An overview is given in Table 1.

A program prog of type TemplateMonad A can be executed with the command
Run TemplateProgram prog. This command is thus an interpreter for TemplateMonad
programs, implemented in OCaml as a traditional Coq plugin. The term pro-

Vernacular
command

Reified command with
its arguments

Description

Eval tmEval red t
Returns the evaluation of t following the evalu-
ation strategy red (cbv, cbn, hnf, all or lazy)

Definition tmDefinition id t
Makes the definition id ≔ t and returns the
created constant id

Axiom tmAxiom id A
Adds the axiom id of type A and returns the
created constant id

Lemma tmLemma id A
Generates an obligation of type A, returns the
created constant id after all obligations close

About or Locate tmAbout id

Returns Some gr if id is a constant in the cur-
rent environment and gr is the corresponding
global reference. Returns None otherwise.

tmQuote t
Returns the syntax of t (of type term)

tmQuoteRec t
Returns the syntax of t and all the declarations
on which it depends

tmQuoteInductive kn
Returns the declaration of the inductive kn

tmQuoteConstant kn

b

Returns the declaration of the constant kn, if b
is true the implementation bypass opacity to
get the body of the constant

Make

Definition

tmMkDefinition id

tm

Adds the definition id ≔ t where t is denoted
by tm

Make Inductive tmMkInductive d
Declares the inductive denoted by the declara-
tion d

tmUnquote tm
Returns the pair (A;t) where t is the term
whose syntax is tm and A it’s type

tmUnquoteTyped A tm
Returns the term whose syntax is tm and checks
that it is indeed of type A

Table 1. Main Template-Coq commands

duced by the program is discarded but, and it is the point, a program can have
many side effects like declaring a new definition or a new inductive type, printing
something,

Let’s look at some examples. The following program adds the definitions
foo ≔ 12 and bar ≔ foo + 1 to the current context.

Run TemplateProgram (foo ← tmDefinition "foo" 12 ;
tmDefinition "bar" (foo +1)).

The program below asks the user to provide an inhabitant of N (here we
provide 3 * 3) and records it in the lemma foo ; prints its normal form ; and
records the syntax of its normal form in foo_nf_syntax (hence of type term).

We use Program’s obligation mechanism7 to ask for missing proofs, running
the rest of the program when the user finishes providing it. This enables the
implementation of interactive plugins.

Run TemplateProgram (foo ← tmLemma "foo" N ;
nf ← tmEval all foo ;
tmPrint "normal form: " ; tmPrint nf ;
nf_ ← tmQuote nf ;
tmDefinition "foo_nf_syntax" nf_).

Next Obligation. exact (3 * 3). Defined.

5 Writing Coq plugins in Coq

The reification of syntax, typing and commands of Coq allow writing a Coq

plugin directly inside Coq, without requiring another language like OCaml and
an external compilation phase.

In this section, we describe three examples of such plugins: (i) a plugin that
adds a constructor to an inductive type, (ii) a re-implementation of Lasson’s
parametricity plugin8, and (iii) an implementation of a plugin that provides an
extension of CIC—using a syntactic translation—in which it is possible to prove
the negation of functional extensionality [8].

5.1 A Plugin to Add a Constructor

Our first example is a toy example to show the methodology of writing plugins in
Template-Coq. Given an inductive type I, we want to declare a new inductive
type I’ which corresponds to I plus one more constructor.

For instance, let’s say we have a syntax for lambda calculus:

Inductive tm : Set ≔

| var : nat → tm | lam : tm → tm | app : tm → tm → tm.

And that in some part of our development, we want to consider a variation of tm
with a new constructor, e.g., let in. Then we declare tm’ with the plugin by:

Run TemplateProgram

(add_constructor tm "letin" (fun tm’ ⇒ tm’ → tm’ → tm’)).

This command has the same effect as declaring the inductive tm’ by hand:

Inductive tm’ : Set ≔

| var’ : nat → tm’ | lam’ : tm’ → tm’

| app’ : tm’ → tm’ → tm’ | letin : tm’ → tm’ → tm’.

7 In Coq, a proof obligation is a goal which has to be solved to complete a definition.
Obligations were introduced by Sozeau [23] in the Program mode.

8 https://github.com/parametricity-coq/paramcoq

but with the benefit that if tm is changed, for instance by adding one new
constructor, then tm’ is automatically changed accordingly. We provide other
examples in the file test-suite/add_constructor.v, e.g. with mutual inductives.

We will see that it is fairly easy to define this plugin using Template-Coq.
The main function is add_constructor which takes an inductive type ind (whose
type is not necessarily Type if it is an inductive family), a name idc for the new
constructor and the type ctor of the new constructor, abstracted with respect to
the new inductive.

Definition add_constructor {A} (ind : A) (idc : ident) {B} (ctor : B)

: TemplateMonad unit

≔ tm ← tmQuote ind ;
match tm with

| tInd ind0 _ ⇒

decl ← tmQuoteInductive (inductive_mind ind0) ;
ctor ← tmQuote ctor ;
d’ ← tmEval lazy (add_ctor decl ind0 idc ctor) ;
tmMkInductive d’

| _ ⇒ tmFail "The provided term is not an inductive"

end.

It works in the following way. First the inductive type ind is quoted, the
obtained term tm is expected to be a tInd constructor otherwise the function fails.
Then the declaration of this inductive is obtained by calling tmQuoteInductive,
the constructor is reified too, and an auxiliary function is called to add the
constructor to the declaration. After evaluation, the new inductive type is added
to the current context with tmMkInductive.

It remains to define the add_ctor auxiliary function to complete the definition
of the plugin. It takes a minductive_decl which is the declaration of a block of
mutual inductive types and returns a minductive_decl.

Definition add_ctor (mind : minductive_decl) (ind0 : inductive)

(idc : ident) (ctor : term) : minductive_decl

≔ let i0 ≔ inductive_ind ind0 in

{| ind_npars ≔ mind.(ind_npars) ;

ind_bodies ≔ map_i (fun (i : nat) (ind : inductive_body) ⇒

{| ind_name ≔ tsl_ident ind.(ind_name) ;

ind_type ≔ ind.(ind_type) ;

ind_kelim ≔ ind.(ind_kelim) ;

ind_ctors ≔

let ctors ≔ map (fun ’(id, t, k) ⇒ (tsl_ident id, t, k))

ind.(ind_ctors) in

if Nat.eqb i i0 then

let n ≔ length mind.(ind_bodies) in

let typ ≔ try_remove_n_lambdas n ctor in

ctors ++ [(idc, typ, 0)]

else ctors;

ind_projs ≔ ind.(ind_projs) |})

mind.(ind_bodies) |}.

[t]0 = t

[x]1 = xt

[∀(x : A).B]1 = λf.∀(x : [A]0)(x
t : [A]1x).[B]1(f x)

[λ(x : A).t]1 = λ(x : [A]0)(x
t : [A]1x).[t]1

JΓ, x : AK = JΓ K, x : [A]0, x
t : [A]1 x

Γ ⊢ t : A

JΓ K ⊢ [t]0 : [A]0

JΓ K ⊢ [t]1 : [A]1 [t]0

Fig. 4. Unary parametricity translation and soundness theorem, excerpt (from [7])

The declaration of the block of mutual inductive types is a record. The field
ind_bodies contains the list of declarations of each inductive of the block. We
see that most of the fields of the records are propagated, except for the names
which are translated to add some primes and ind_ctors, the list of types of
constructors, for which, in the case of the relevant inductive (i0 is its number),
the new constructor is added.

5.2 Parametricity Plugin

We now show how Template-Coq permits to define a parametricity plugin that
computes the translation of a term following Reynolds’ parametricity [21,25].
We follow the already known approaches of parametricity for dependent type
theories [7,15], and provide an alternative to Keller and Lasson’s plugin.

The definition in the unary case is described in Fig. 4. The soundness theorem
ensures that, for a term t of type A, [t]1 computes a proof of parametricity of [t]0
in the sense that it has type [A]1 [t]0. The definition of the plugin goes in two
steps: first the definition of the translation on the syntax of term in Template-

Coq and then the instrumentation to connect it with terms of Coq using the
TemplateMonad. It can be found in the file translations/tsl param.v.

The parametricity translation of Fig. 4 is total and syntax directed, the two
components of the translation []0 and []1 are implemented by two recursive
functions tsl param0 and tsl param1.

Fixpoint tsl param0 (n : nat) (t : term) {struct t} : term ≔

match t with

| tRel k ⇒ if k >= n then (* global variable *) tRel (2*k-n+1)

else (* local variable *) tRel k

| tProd na A B ⇒ tProd na (tsl param0 n A) (tsl param0 (n+1) B)

| _ ⇒ ...

end.

Fixpoint tsl param1 (E : tsl_table) (t : term) : term ≔

match t with

| tRel k ⇒ tRel (2 * k)

| tSort s ⇒ tLambda (nNamed "A") (tSort s)

(tProd nAnon (tRel 0) (tSort s))

| tProd na A B ⇒

let A0 ≔ tsl param0 0 A in let A1 ≔ tsl param1 E A in

let B0 ≔ tsl param0 1 B in let B1 ≔ tsl param1 E B in

tLambda (nNamed "f") (tProd na A0 B0)

(tProd na (lift0 1 A0)

(tProd (tsl_name na) (subst_app (lift0 2 A1) [tRel 0])

(subst_app (lift 1 2 B1) [tApp (tRel 2) [tRel 1]])))

| tConst s univs ⇒ match lookup_tsl_table E (ConstRef s) with

| Some t ⇒ t

| None ⇒ default_term

end

| _ ⇒ ...

end.

On Fig. 4, the translation is presented in a named setting, so the introduction
of new variables does not change references to existing ones. That’s why, []0
is the identity. In the De Bruijn setting of Template-Coq, the translation
has to take into account the shift induced by the duplication of the context.
Therefore, the implementation tsl param0 of []0 is not the identity anymore. The
argument n of tsl param0 represents the De Bruijn level from which the variables
have been duplicated. There is no need for such an argument in tsl param1, the
implementation of []1, because in this function all variables are duplicated.

The parametricity plugin not only has to be defined on terms of CIC but also
on additional terms dealing with the global context. In particular, constants are
translated using a translation table which records the translations of previously
processed constants.

Definition tsl_table ≔ list (global_reference * term).

If a constant is not in the translation table we return a dummy default_term,
considered as an error (this could also be handled by an option monad).

We have also implemented the translation of inductives and pattern matching.
For instance the translation of the equality type eq produces the inductive type:

Inductive eqt A (At : A → Type) (x : A) (xt : At x)

: ∀ H, At H → x = H → Prop ≔

| eq_reflt : eqt A At x xt x xt eq_refl.

Then [eq]1 is given by eqt and [eq_refl]1 by eq_reflt.
Given tsl param0 and tsl param1 the translation of the declaration of a block

of mutual inductive types is not so hard to get. Indeed, such a declaration mainly
consists of the arities of the inductives and the types of constructors ; and the
one of the translated inductive are produced by translation of the original ones.

Definition tsl_mind_decl (E : tsl_table) (kn : kername)

(mind : minductive_decl) : minductive_decl.

In a similar manner, we can translate pattern-matching. Note that the plugin
does not support fixpoints and cofixpoints for the moment.

Now, it remains to connect this translation defined on reified syntax term

to terms of Coq. For this, we define the new command tTranslate in the
TemplateMonad.

Definition tTranslate (E : tsl_table) (id : ident)

: TemplateMonad tsl_table.

When id is a definition, the command recovers the body of id (as a term) using
tmQuoteConstant and then translates it and records it in a new definition idt. The
command returns the translation table E extended by (id, idt). In the case id

is an inductive type or a constructor then the command does basically the same
but extends the translation table with both the inductive and the constructors.
If id is an axiom or not a constant the command fails.

Here is an illustration coming from the work of Lasson [16] on the automatic
proofs of (ω-)groupoid laws using parametricity. We show that all function of type
ID ≔ ∀ A x y, x = y → x = y are identity functions. First we need to record
the translations of eq and ID in a term table of type tsl_table.

Run TemplateProgram (table ← tTranslate [] "eq" ;
table ← tTranslate table "ID" ;
tmDefinition "table" table).

Then we show that every parametric function on ID is pointwise equal to the
identity using the predicate fun y ⇒ x = y.

Lemma param_ID (f : ID) : IDt f → ∀ A x y p, f A x y p = p.

Proof.

intros H A x y p. destruct p.

destruct (H A (fun y ⇒ x = y) x eq_refl

x eq_refl eq_refl (eq_reflt _ _)).

reflexivity.

Qed.

Then we define a function myf ≔ p 7→ p � p-1 � p and get its parametricity proof
using the plugin.

Definition myf : ID ≔ fun A x y p ⇒ eq_trans (eq_trans p (eq_sym p)) p.

Run TemplateProgram (table ← tTranslate table "eq_sym" ;
table ← tTranslate table "eq_trans" ;
tTranslate table "myf").

It is then possible to deduce automatically that p � p-1 � p = p for all p : x = y.

Definition free_thm_myf : ∀ A x y p, myf A x y p = p ≔ param_ID myf myft.

5.3 Intensional Function Plugin

Our last illustration is a plugin that provides an intensional flavour to functions
and thus allows negating functional extensionality (FunExt). This is a simple
example of syntactical translation which enriches the logical power of Coq, in

[x] := x [λ(x : A). t] := (λ(x : [A]). [t], true)

[t u] := (π1 [t]) [u] [∀(x : A). B] := (∀(x : [A]). [B])× B

Fig. 5. Intensional Function Translation, excerpt (from [8])

the sense that new theorems can be proven (as opposed to the parametricity
translation which is conservative over CIC). See [8] for an introduction to
syntactical translations and a complete description of the intensional function
translation.

Even if the translation is very simple as it just adds a boolean to every
function (Fig. 5), this time, it is not fully syntax directed. Indeed the notation
for pairs hide some types:

[fun (x:A) ⇒ t] ≔ pair (∀ x:[A]. ?T) bool (fun (x:[A]) ⇒ [t]) true

and we can not recover the type ?T from the source term. There is thus a mismatch
between the lambdas which are not fully annotated and the pairs which are.9

However we can use the type inference algorithm of Section 3 implemented
on Template-Coq terms to recover the missing information.

[fun (x:A) ⇒ t] ≔ let B ≔ infer Σ (Γ, x:[A]) t in

pair (∀ (x:[A]). B) bool (fun (x:[A]) ⇒ [t]) true

Compared to the parametricity plugin, the translation function has a more
complex type as it requires the global and local contexts. However, we can
generalize the tTranslate command so that it can be used for both the para-
metricity and the intensional function plugins. The implementation is in the files
translations/translation_utils.v and translations/tsl_fun.v.

Extending Coq using plugins. The intensional translation extends the logical
power of Coq as it is possible for instance to negate FunExt. In this perspective,
we defined a new command:

Definition tImplement (Σ : global_ctx * tsl_table)

(id : ident) (A : Type)

: TemplateMonad (global_ctx * tsl_table).

which computes the translation A’ of A, then asks the user to inhabit the type A’

by generating a proof obligation and then safely adds the axiom id of type A to
the current context. By safely, we mean that the correction of the translation
ensures that no inconsistencies are introduced.

For instance, here is how to negate FunExt. We use for that two pairs
(fun x ⇒ x; true) and (fun x ⇒ x; false) in the interpretation of functions
from unit to unit, which are extensionally both the identity, but differ intension-
ally on their boolean.

9 Note that there is a similar issue with applications and projections, but which can
be circumvented this time using (untyped) primitive projections.

Run TemplateProgram (TC ← tTranslate ([],[]) "eq" ;
TC ← tTranslate TC "False" ;
tImplement TC "notFunext"

((∀ A B (f g : A → B), (∀ x:A, f x = g x) → f = g) → False)).

Next Obligation.

tIntro H. tSpecialize H unit. tSpecialize H unit.

tSpecialize H (fun x ⇒ x; true). tSpecialize H (fun x ⇒ x; false).

tSpecialize H (fun x ⇒ eq_reflt _ _; true).

apply eqt_eq in H; discriminate.

Defined.

where tIntro and tSpecialize are special versions of the corresponding intro and
specialize tactics of Coq to deal with extra booleans appearing in the translated
terms. After this command, the axiom notFunext belongs to the environment, as if
it where added with the Axiom command. But as we have inhabited the translation
of its type, the correcteness of the translation ensures that no inconsistency were
introduced.

Note that we could also define another translation, e.g. the setoid translation,
in which FunExt is inhabited. This is not contradictory as the two translations
induce two different logical extensions of Coq, which can not be combined.

6 Related Work and Future Work

Meta-Programming is a whole field of research in the programming languages
community, we will not attempt to give a detailed review of related work here. In
contrast to most work on meta-programming, we provide a very rough interface
to the object language: one can easily build ill-scoped and ill-typed terms in our
framework, and staging is basic. However, with typing derivations we provide a
way to verify meta-programs and ensure that they do make sense.

The closest cousin of our work is the Typed Syntactic Meta-Programming [11]
proposal in Agda, which provides a well-scoped and well-typed interface to a
denotation function, that can be used to implement tactics by reflection. We
could also implement such an interface, asking for a proof of well-typedness on
top of the tmUnquoteTyped primitive of our monad.

Intrinsically typed representations of terms in dependent type-theory is an area
of active research. Most solutions are based on extensions of Martin-Löf Intensional
Type Theory with inductive-recursive or quotient inductive-inductive types [9,2],
therefore extending the meta-theory. Recent work on verifying soundness and
completeness of the conversion algorithm of a dependent type theory (with
natural numbers, dependent products and a universe) in a type theory with IR
types [1] gives us hope that this path can nonetheless be taken to provide the
strongest guarantees on our conversion algorithm. The intrinsically-typed syntax
used there is quite close to our typing derivations.

Another direction is taken by the Œuf certified compiler [19], which restricts
itself to a fragment of Coq for which a total denotation function can be defined,
in the tradition of definitional interpreters advocated by Chlipala [10]. This setup
should be readily accomodated by Template-Coq.

The translation+plugin technique paves the way for certified translations and
the last piece will be to prove correctness of such translations. By correctness
we mean computational soundness and typing soundness (see [8]), and both can
be stated in Template-Coq. Anand has made substantial attempts in this
direction to prove the computational soundness, in Template-Coq, of a variant
of parametricity providing stronger theorems for free on propositions [3]. This
included as a first step a move to named syntax that could be reused in other
translations.

Our long term goal is to leverage this technique to extend the logical and
computational power of Coq using, for instance, the forcing translation [14] or
the weaning translation [20].

When performance matters, we can extract the translation to OCaml and
use it like any ordinary Coq plugin. This relies on the correctness of extraction,
but in the untyped syntax + typing judgment setting, extraction of translations
is almost an identity pretty-printing phase, so we do not lose much confidence.
We can also implement a template monad runner in OCaml to run the plugins
outside Coq. Our first experiments show that we could gain a factor 10 for the
time needed to compute the translation of a term. Another solution would be to
use the certified CertiCoq compiler, once it supports a kind of foreign function
interface, to implement the TemplateMonad evaluation.

The last direction of extension is to build higher-level tools on top of the syntax:
the unification algorithm described in [28] is our first candidate. Once unification
is implemented, we can look at even higher-level tools: elaboration from concrete
syntax trees, unification hints like canonical structures and type class resolution,
domain-specific and general purpose tactic languages. A key inspiration in this
regard is the work of Malecha and Bengston [17] which implemented this idea on
a restricted fragment of CIC.

Acknowledgments

This work is supported by the CoqHoTT ERC Grant 64399 and the NSF grants
CCF-1407794, CCF-1521602, and CCF-1646417.

References

1. Abel, A., Öhman, J., Vezzosi, A.: Decidability of conversion for type theory in type
theory. PACMPL 2(POPL), 23:1–23:29 (2018)

2. Altenkirch, T., Kaposi, A.: Type Theory in Type Theory Using Quotient Inductive
Types. pp. 18–29. POPL ’16, ACM, New York, NY, USA (2016)

3. Anand, A., Morrisett, G.: Revisiting Parametricity: Inductives and Uniformity of
Propositions. In: CoqPL’18. Los Angeles, CA, USA (2018)

4. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: CoqPL.
Paris, France (2017)

5. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with Imperative
Features and Its Application to SAT Verification. In: Kaufmann, M., Paulson, L.C.
(eds.) Interactive Theorem Proving. pp. 83–98. Springer (2010)

6. Barras, B.: Auto-validation d’un système de preuves avec familles inductives. Thèse
de doctorat, Université Paris 7 (Nov 1999)

7. Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free: Parametricity for depen-
dent types. Journal of Functional Programming 22(2), 107–152 (Mar 2012)

8. Boulier, S., Pédrot, P.M., Tabareau, N.: The Next 700 Syntactical Models of Type
Theory. In: CPP’17, Paris, France. pp. 182–194. ACM (2017)

9. Chapman, J.: Type Theory Should Eat Itself. Electronic Notes in Theoretical
Computer Science 228, 21 – 36 (2009), proceedings of LFMTP 2008

10. Chlipala, A.: Certified Programming with Dependent Types, vol. 20. MIT Press
(2011)

11. Devriese, D., Piessens, F.: Typed Syntactic Meta-programming. ICFP ’13, vol. 48,
pp. 73–86. ACM (2013)

12. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A Metaprogramming
Framework for Formal Verification pp. 34:1–34:29 (Sep 2017)

13. Forster, Y., Kunze, F.: Verified Extraction from Coq to a Lambda-Calculus. In:
Coq Workshop 2016 (2016)

14. Jaber, G., Lewertowski, G., Pédrot, P.M., Sozeau, M., Tabareau, N.: The Definitional
Side of the Forcing. In: LICS’16, New York, NY, USA. pp. 367–376 (2016)

15. Keller, C., Lasson, M.: Parametricity in an Impredicative Sort. CoRR abs/1209.6336
(2012)

16. Lasson, M.: Canonicity of Weak ω-groupoid Laws Using Parametricity Theory.
Electronic Notes in Theoretical Computer Science 308, 229–244 (2014)

17. Malecha, G., Bengtson, J.: ESOP 2016, chap. Extensible and Efficient Automation
Through Reflective Tactics, pp. 532–559. Springer Berlin Heidelberg (2016)

18. Malecha, G.M.: Extensible Proof Engineering in Intensional Type Theory. Ph.D.
thesis, Harvard University (2014)

19. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: minimizing
the Coq extraction TCB. In: Proceedings of CPP 2018. pp. 172–185 (2018)

20. Pédrot, P., Tabareau, N.: An effectful way to eliminate addiction to dependence.
In: LICS’17, Reykjavik, Iceland. pp. 1–12 (2017)

21. Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP
Congress. pp. 513–523 (1983)

22. Sheard, T., Jones, S.P.: Template Meta-programming for Haskell. SIGPLAN Not.
37(12), 60–75 (Dec 2002)

23. Sozeau, M.: Program-ing Finger Trees in Coq. pp. 13–24. ICFP ’07, ACM, New
York, NY, USA (2007)

24. Taha, W., Sheard, T.: Multi-stage Programming with Explicit Annotations. pp.
203–217. PEPM ’97, ACM, New York, NY, USA (1997)

25. Wadler, P.: Theorems for Free! In: Functional Programming Languages and Com-
puter Architecture. pp. 347–359. ACM Press (1989)

26. Van der Walt, P., Swierstra, W.: Engineering Proof by Reflection in Agda. In:
Implementation and Application of Functional Languages. Springer (2013)

27. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: A
Monad for Typed Tactic Programming in Coq. Journal of Functional Programming
25 (2015)

28. Ziliani, B., Sozeau, M.: A Comprehensible Guide to a New Unifier for CIC Including
Universe Polymorphism and Overloading. Journal of Functional Programming 27,
e10 (2017)

