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Abstract—With  Convolutional Neural Networks (CNN)
becoming more of a commodity in the computer vision field,
many have attempted to improve CNN in a bid to achieve better
accuracy to a point that CNN accuracies have surpassed that
of human’s capabilities. However, with deeper networks, the
number of computations and consequently the power needed
per classification has grown considerably. In this paper, we
propose Iterative CNN (ICNN) by reformulating the CNN
from a single feed-forward network to a series of sequentially
executed smaller networks. Each smaller network processes
a sub-sample of input image, and features extracted from
previous network, and enhances the classification accuracy.
Upon reaching an acceptable classification confidence, ICNN
immediately terminates. The proposed network architecture
allows the CNN function to be dynamically approximated by
creating the possibility of early termination and performing
the classification with far fewer operations compared to a
conventional CNN. Our results show that this iterative approach
competes with the original larger networks in terms of accuracy
while incurring far less computational complexity by detecting
many images in early iterations.

I. INTRODUCTION

Computer visions detection and prediction accuracy,
credited to recent developments in the design of deep
and modern Convolutional Neural Networks (CNN), and
processing power provided by Graphical Processing Units
(GPU) for training them, has improved significantly. However,
many Neural Network algorithms and CNN as a part of this
family, due to their deep networks and dense connectivity,
are computationally intensive. For example, AlexNet [1],
a CNN architecture that won the 2012 ImageNet visual
recognition challenge, contains 650K neurons and 60M
parameters which demand computational performance in
the order of 0.8G-1.0G Floating Point Operations (FLOP)s
per classification. Next generations of vision-based CNN
algorithms have further improved the prediction accuracy;
however, this is achieved via even deeper networks. VGG [2],
GoogleNet [3] and ResNet [4] have improved the prediction
accuracy via increasing the CNN depth from 8 in AlexNet
to 19, 22, and 152 layers respectively, but still keeping the
CNN a computationally intensive and power hungry solution.

Albeit higher performance requirements, there is a need to
aggressively reduce the power consumption of these solutions
as many desired platforms for vision-based applications are
energy constrained. Adopting complex vision algorithms in
many of mobile and hand-held, embedded systems and IoT
applications will not be feasible if energy consumption barrier
is not addressed. At the same time, many of the desired
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Fig. 1: Reformulating the CNN into an iterative solution

applications require real-time and short latency responses.
Therefore, the optimization space involves Accuracy, Latency,
Power and Area (ALPA). With this in mind, we propose a
radically different approach from modern and deep CNN
models; we reformulate the learning from a single feed-
forward network to a series of smaller networks that are
executed iteratively.

Figure 1 illustrates a high-level abstraction of the proposed
iterative CNN (ICNN). With iterative learning, each iteration
processes a small set of sub-sampled input features and
enhances the accuracy of the classification. The proposed
ICNN model removes the need for a large neural network
and constructs a learning model based on iterative execution
of substantially smaller networks. In each iteration, by
combining the processing results of the previous iteration
with new features extracted from the sub-sampled input
image, ICNNs classification accuracy is refined.

While CNN, as well as all other deep-learning networks,
are inherently approximate, ICNN further exploits this
approximate nature to reduce the large computational load
of such networks with negligible effect on the performance.
The proposed learning model improves the energy-efficiency
of CNN processing by lowering the overall computational
complexity, and by allowing early-termination (upon reaching
a satisfactory confidence threshold). In addition, it prepares a
fast initial classification and supports dynamic deadline-driven
scheduling (by making the best classification decision within
the available time budget) for real-time applications. Lower
energy consumption, lower complexity and inherent support
for deadline-driven applications make ICNN an attractive
solution for resource-constrained and real-time devices.

II. BACKGROUND

CNNs are constructed from multiple computational layers
formed as Directed Acyclic Graph (DAG) [5], [6]. Each layer
extracts an abstraction of data provided in the previous layer,
called a feature map (fmap). Most common layers are Pooling
(POOL), Convolution (CONV), and Fully Connected (FC).
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Fig. 2: Computing one CONV layer using mput Ifmap/image and
filters to produce the output (Ofmaps)

In CONV layers, as illustrated in Figure 2, 2-D filters slide
over the input images/feature-maps (Ifmaps) performing con-
volution operation to extract feature characteristics from local
regions and generate output images/feature-maps (Ofmaps).
Equation 1 explains how a CONV layer is computed, while
equation 2 defines the constraints on used parameters.

O f[2][u][][y] = Bias[u]+
C—1R—-1R-1
Z > MUz + iUy + 4] x WhKIEL] @)
0<2<N;0<u<M;0<z,y<EE=H-R+U)/U (2

In this equations, Of and [F are Ofmap and ifmap,
respectively. W and Biaa are the filter weights and bias.
N is the batch size of input images. The rest of parameters
used in these equations are explained in Figure 2. Each
filter generates a new Ofmap adding to the features extracted
from the Ifmaps. Computation of CONV layer in popular
CNNs accounts for more than 90% of the overall operations
and requires a large amount of data movement and memory
operations [7]. In addition, the large size of Ifmmap, Ofmap
and partial results that are generated during the CONV
processing, increases the memory requirements for these
architectures. After every CONV layer, a non-linear operation
is applied to each Ofmap pixel to introduce non-linearity in
the network. For example, Rectified Linear Unit (ReLU) is an
operator that replaces all negative pixel values by zero. Other
non-linear functions include Tanh and Sigmoid operators.

POOL layers perform down-sampling along the spatial
dimensions of [fimaps by partitioning them into a set of
sub-regions and combining the values in each sub-region
into a single value. Max-pooling and average-pooling are
examples of POOL operators which use the maximum and
the average values for each sub-region respectively. Next,
FC layers combine all the neurons in the previous layer and
connect them to every single neuron in the next layer. The
outputs from the CONV and POOL layers represent high-level
features of the input image, and FC layers fuse these features
to generate a relational representation of these features with
respect to each class in the classifier detection set. Finally,
a Softmax classifier uses the outputs of the last FC layer to
produce normalized class probabilities for various classes.
Softmax classifier is a multi-class version of the binary
logistic regression classifier, which produces un-normalized
log probabilities for each class using cross-entropy loss.

III. RELATED WORK

AlexNet [1] is one of the first works that deployed a
deep convolutional neural network for image recognition and
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Fig. 3: Iterative CNN (ICNN) general architecture where each u-
CNN is fed by features extracted from its previous u-CNN, and
a DW sub-band generated from DWT transformation of the input
image. Classification accuracy is checked at the end of each uCNN,
based on which either ICNN is terminated, or next u-CNN is
invoked.
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won ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) in 2012. The ILSVRC [8] is an object detection and
image classification competition, which includes classification
of images into 1000 different classes by training on 1.2
million labeled images. AlexNet architecture consists of 5
convolutional layers (with filter sizes of 11 x 11, 5 x 5 and
3 x 3), 3 fully connected layers. To enhance the accuracy,
during the testing phase, AlexNet re-sizes each image to
3 x 256 x 256 and takes five 3 x 224 x 224 crops from
the images (four corners and one center). Using the 5
crops and their horizontal reflections, the predictions of
the Softmax layer for the ten images are averaged to yield
the results. This technique increases the top-5 accuracy
of AlexNet from 80% to 84%. With modifications to
AlexNet (using 7 x 7 filter size instead of 11 x 11), ZF Net
[9] wins the ILSVRC in 2013 with a top-5 accuracy of 88.8%.

VGG [2] advocates the idea that going deeper with CNNs
increases the accuracy [10]. It is proven that the effective
receptive fields of 2 and 3 back-to-back convolutional layers
with filter sizes of 3 x 3 are equivalent to the receptive field
of convolutional layers with filter sizes of 5 x 5 and 7 x 7,
respectively. With this idea, and by using 16 weight layers,
VGG-16 achieves a top-5 accuracy of 92.5% by stacking 13
CONV layers with filter sizes of 3 x 3, and 3 FC layers.
Rather than going deeper, GooglLeNet [3] introduces inception
layer, in which, pooling layers and multiple convolutional
layers with different kernel sizes process the same input. All
the outputs are then concatenated allowing the model to take
advantage of multi-level feature extraction from each input.
For instance, it extracts general (3 x 3 and 5 x 5) and local
(1 x 1) features at the same time. With 22 weight layers,
GoogLeNet achieves a top-5 accuracy of 93.3% and wins
ILSVRC 2014.

Finally, Microsoft ResNet [4] uses residual blocks in which,
each input goes through a series of CONV-ReLu-CONV
layers before being added to itself. The formulation of
residual blocks is realized through shortcut connections [11],
[12], which allows features to skip one or more CONV
layer and be combined with other features at a later stage in
the network. The authors show that these residual networks
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are easier to optimize and they considerably benefit from
increased depth. With 152 layers, ResNet wins the ILSVRC
2015 with a top-5 accuracy of 96.4%, the highest accuracy
reported for the ImageNet challenge.

An overall analysis of the existing CNN architectures
shows that the number of layers and the complexity of the
CNNs have dramatically increased over time to enhance
the accuracy. However, not all images need to go through
such complex networks to yield satisfactory classification
results. In this work, we propose an iterative architectural
solution that breaks the large AlexNet CNN network into a
sequence of smaller networks. Each smaller CNN, which is
referred as Micro-CNN (u-CNN), processes a sub-sample of
the input image and only proceeds to the next u-CNN stage
if the classification confidence remains below a predefined
threshold. This allows us to achieve a considerable reduction
in computational complexity, and provide us with a route
to terminate the process early if the classification under test
reaches the desired confidence threshold upon termination of
each u-CNN. For popularity and simplicity of AlexNet, we
demonstrate our solution on this network. However, similar
reformulation is applicable to other CNN architectures.

IV. ITERATIVE LEARNING

State of the art DAG-based CNN networks are composed
of a single feed-forward computational network, where the
prediction is given and its confidence is determined after
performing all necessary computations. This conventional
model of learning has little or no regard for energy or
power saving and is purely focused on improving the
detection rate and the classification confidence. Our proposed
reformulation is driven by the needs of resource-constrained
vision applications for lowering the energy consumption and
shortening the classification latency when deploying CNN
solutions. In the proposed solution, a large CNN block is
decomposed into many smaller networks (u-CNN in Figure
1), allowing iterative refinement and greater control over the
execution of algorithm. Thus, not all images pass through
all the u-CNNs; By monitoring the successive execution of
u-CNN networks, a thresholding mechanism decides when to
terminate the forward u-CNN traversal based on the current
classification confidence of the images.

The proposed solution requires sub-sampling of input
images into various sets for various rounds of computation.
We propose the application of Discrete Wavelet sampling to
decompose an input image into various input sets (sub-bands).
The learning is then initiated using the first sub-sampled
input set. Upon completion of first computational round
(first u-CNN), the classification confidence is tested. If
the confidence is unsatisfactory, it could be progressively
increased by working on additional input samples (chosen
from remaining sub-bands). Discrete Wavelet Transformation
(DWT) provides the proposed learning algorithm with
an attractive start point and unlike Fourier transform, in
addition to frequency information, it also preserves temporal
information of an image[13]. However, note that other
sampling mechanisms could also be used for ICNN.

A high-level representation of envisioned iterative learning
algorithm fed by DWT is illustrated in Figure 3. Each
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Fig. 4: sub-bands generated from a 2-level 2-dimensional Haar
Discrete Wavelet Transformation (DWT) of an input image.

iteration is a u-CNN, which takes a new DWT sub-band
as its input and refines the confidence of learning network.
DWT, being a convolutional filter, could be readily computed
using processing elements (PE) in CNN processing engine of
interest, or could be provided directly to CNN.

The iterative transformation of learning algorithm has
many advantages: It could be terminated as soon as a u-CNN
produces the desired confidence level. Further iterations could
be avoided if the first u-CNN detection confidence is below
a certain threshold signifying no contextually significant
input. And confidence could be improved by moving to the
next iteration, if the current measure of confidence remains
between demarcated thresholds, aiding the rise or decline of
classification confidence.

V. TRAINING ICNN

In order to train the ICNN network, we deploy a top-down
approach, in which, most of the ICNN training is done in one
step. To achieve this, we train the last iteration of ICNN by
initializing the weights for all the CONV layers in all u-CNN’s
and only the FC layers in the last iteration from a Gaussian
distribution with zero mean and a standard deviation of 0.01.
The training was started with a learning rate of 0.01. The
learning rate was reduced by 2x every 20-epoch until the
learning rate was as low as 10~¢ (by one-epoch, we refer to
one pass of all the 1.2 million images in ImageNet; however,
for data augmentation purposes, every few epochs the order
of the images was modified, the image crops were altered
and horizontal mirror of the images were utilized). Using a
single GPU, this process takes 7-9 days.

To train the FC layers of earlier iterations, the weights in
the CONV layers of these networks were initialized to those
computed in the last iteration. Then, to keep these weights
constant, the learning rate of them was set to zero. This
allowed us to only train the FC layers of early iterations.
The time required for the training of these FC layers ranged
from a couple of hours for the 1-th u-CNN, to a day for the
6-th u-CNN (for an ICNN using 2-level DWT and thus 7
iterations). Please note that it is also possible to train u-CNNs
sequentially to improve the accuracy of each u-CNN. This
training scheme will be further explored in our future work.

VI. IMPLEMENTATION FRAMEWORK

The proposed ICNN was implemented to build a 1000-class
image classifier for the ImageNet dataset. The ImageNet
training and the validation archives include 1.2 million and
50K labeled RGB images respectively. The images are of
varied spatial dimensions and labeled into 1K different classes.
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u-CNN

AlexNet | 1 2 3 4 5 6 7

CONV1 35K 87K | B.7K | 87K | 8.7K | 8.7K | 8.7K | 8.7K

--------- CONV2 | 307K | 20K | 20K | 20K | 20K | 20K | 20K | 20K |
CONV3 | 885K |s5K| SSK | 55K | 55K | S5K | 55K | 55K |
CONVA4 | 663K | 20K | 20K | 20K | 20K | 20K | 20K | 20K |
CONVS | 442K | 6.9k | 6.9K | 6.9K | 6.9K | 6.9K | 6.9K | 6.9K |
FC1 38M | 12M| 2.4M [3.5M |4.7M 11.8M14.1M 32M
FC2 1M | 1M | IM | 1M | 1M | aMm | aMm | 17M
FG3 AM_ M | 1M | IM | IM | 2M | 2M | aM
Total | 61M [3.4m|4.6M |5.7M|6.9M | 19M | 20M | 54m |
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Fig. 5: The architecture of (a) original CNN (b) iterative CNN with 7 iterations. (The numbers in the boxes on left show the filter sizes
for CONV layers and the numbers on right show the number and size of Ofmaps) (c) Comparing the number of required parameters

for executing each CONV and FC layer in ICNN and AlexNet

A common problem associated with training of complex
CNN architectures is over-fitting. Over-fitting happens when
the model fits too well to the training set, making it difficult
for the model to generalize to new examples that were not
in the training set. One of the solutions to the over-fitting
problem is to increase the size of training data. For this
purpose, following the methodology in [3], the horizontal
mirror of each training image was added to the training set.
Then, all training images were reshaped to 3 x 256 x 256 and
various 3 X 228 x 228 crops were taken from each image.

Subsequently, a 2-level 2-dimensional DWT was captured
for each channel of the RGB images through the Haar
filter [14]. The resulting sub-bands are four RGB images
of size 3 x 57 x 57 in smaller sub-bands (corresponding to
LL-LL, LL-LH, LL-HL, LL-HH), and three RGB images of
3 x 114 x 114 in larger sub-bands (corresponding to HL,
LH and HH). The sub-bands’ naming convention is captured
in Figure 4. The 2-level DWT is composed of 7 sub-bands
allowing us to sample the input image 7 times and to build the
ICNN with 7 iterations. To increase the number of iterations,
the DWT depth can be increased or alternatively, DWT can
be applied the other sub-bands (LH, HL, HH).

The sub-bands are stored in a lightning memory-mapped
database (Imdb) format [15], which is the database of choice
when using large datasets. For the pre-processing and storage
of images, several Python package libraries, including Imdb,
PyWavelets,OpenCV, were used. Moreover, a mean image
was calculated for each sub-band based on the training
data. The mean images are subtracted from each image for
all the sub-bands to ensure a zero mean for every feature pixel.

AlexNet, was modified to be iterative and implemented
in Caffe [16], a deep learning framework developed by
Berkeley AI Research (BAIR). To train the network, Tesla
K80 GPUs were deployed. Figure 5 shows the decomposition
and reformulation of AlexNet into its ICNN representation.
The iterative AlexNet includes 7 iterations. Each Concat layer
fuses the Ofmaps of the last CONV layer in current iteration
with the Ofmaps of the last CONV layer from the previous
iteration. It should be noted that the number of Ofimaps which
are processed at any given CONV layer in each u-CNN is
considerably smaller than that of original AlexNet. Hence,
the computational complexity of each u-CNN is considerably
smaller than that of AlexNet.
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VII. COMPLEXITY ANALYSIS

As mentioned in the previous section, the number of
Ofmaps in each u-CNN is considerably reduced with respect
to the original CNN. Figure 6 shows the number of Floating
Point Operations (FLOP) for a forward pass of the iterative
AlexNet per image at each iteration. The figure shows that,
even if executed to the last iteration, ICNN still has a lower
computational complexity (needing 30% fewer FLOPs) than
the original AlexNet. On top of this, many images are
detected at earlier iterations, removing the need to process
subsequent u-CNNs. This further reduces the total FLOP
count for a large number of images. More specifically, images
detected in iterations 1, 2, 3, 4, 5 and 6 respectively require
12.2x, 6.1x, 4x, 3%, 2.3x and 1.8x fewer FLOPs when
compared to the original AlexNet.

As stated previously, the computation intensive layers in
AlexNet are CONV layers, and ICNN considerably reduces
the required FLOP count. However, when it comes to the
parameter count, in AlexNet, the largest number of parameters
are associated with FC layers. This problem, as illustrated in
Figure 5-c is exacerbated for the Iterative AlexNet, where
FC layers are repeated for each u-CNN. Although the input
Ifmaps to the FC layers in each u-CNN is smaller than that
of AlexNet, repetition of FC layers increases the number
of parameters for the iterative representation of AlexNet.
To remedy this, the size of FC layers in u-CNNs could be
reduced to smaller sizes (e.g. 1024 or 2048) at the expense of
lower classification accuracy in these iterations. In addition,
the size of parameters in these layers could be reduced to
have a fewer number of bits. Note that this is an AlexNet
model-specific problem and ICNN representation of other
popular networks could experience significant reduction in
both parameter and FLOP counts. For example, ICNN model
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Fig. 7: The top-1 and top-5 accuracy of AlexNet vs. Iterative AlexNet using (a) original image re-sized to 3 X 228 X 228 (b) the
average of ten 3 X 228 X 228 crops from images re-sized to 3 X 256 X 256

of ResNet will require far fewer parameters for the final
classification as it only has a single FC layer.

Additionally, for resource-contained applications not all
the parameters of the network are kept in the memory.
Assuming that the processing unit only keeps the parameters
needed for the current CONV or FC layer in the memory, the
maximum memory footprint for keeping network parameters
in Iterative-AlexNet is reduced by 12%.

VIII. RESULTS

For testing, the 50K images in the validation set of
ImageNet were classified and the top-1 and top-5 scores are
reported in Figure 7. The top-1 score is the percentage of the
test images for which, the classifier gives the correct class
the highest probability. The top-5 score is the percentage of
the test images for which, the classifier includes the correct
class among its top 5 guesses. To fit the test images into the
network we re-sized them to 3 x 228 x 228. Figure 7-a shows
the results for re-sized images. Alternatively, to enhance the
accuracy, a similar approach as in [1] was deployed. The
images were re-sized to 3 x 256 x 256 and five 3 x 228 x 228
crops from the images (four corners and one center) were
taken, as well as their horizontal reflections (ten crops in
total), and the predictions of the Softmax layer for the ten
crops was averaged. The results are illustrated in Figure
7-b. The figure shows that this approach increases the top-5
scores by up to 4%. Moreover, the top-5 accuracy of ICNN
approaches that of AlexNet in the final iterations.

While the accumulated FLOP count of all iterations
is lower than AlexNet, the decrease in the top-5 score
of the last iteration is about 2%. For effectively using
the proposed iterative approach and making intelligent
termination decisions, we need to set confidence goals for
the classification. For instance, while iteration 1 yields an
accumulated probability of 80% for the top-5 class for a
test image, it might yield a probability of 40% for the top-5
class of another test image. Needless to say, the prediction
confidence for the first image is significantly higher than
the second image. ICNN, in this case, terminates the CNN
processing after the first iteration for the first image and
moves forward to the next iteration for the second image.

To exploit the iterative CNN for reducing computational
complexity, for each image in the validation set (50K
images), ICNN starts the classification with the first iteration
and calculates the classification confidence. Classification
confidence is calculated by adding up the probabilities of
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the top-5 classes. Subsequently, the classification confidence
is compared to the desired Confidence Threshold (C; ), and
if lower, ICNN moves forward to the next iteration. ICNN
continues this process until the classification confidence is
higher that C;. In this approach, various images are detected
in different iterations. Moreover, some of the images never
reach a classification confidence above C;. For these images,
the results of the last iteration are used.

Figure 8 shows the number of images classified in each
iteration and their top-5 score for various C; values. Since
ICNN is proposed to reduce the computational complexity
of CNN, only one image was used for classification (rather
than averaging 10 different crops). In Figure 8, the newly
detected images in each iteration and low-confidence images
detected in the last iteration are depicted under the labels
new and remaining, respectively. For the remaining images,
the top-5 classification accuracy is significantly lower than
those with confidence values higher than the threshold. With
increasing values of C; the number of these remaining images
increases, pushing the classifier toward the last iteration and
thus increasing the total FLOP count.

Figure 8 shows that with each new iteration, the ICNN
detects more images with high classification confidence.
This is to be expected, as the last iterations combine a
larger number of features in more complex architectures with
a larger number of parameters, allowing a more accurate
prediction model and thus classifying more images.

Moreover, by increasing the value of C, the number of
images classified in early iterations decreases; however the
classification accuracy (correct label within top-5) increases.
In Figure 8 this is illustrated by comparing the difference
in the heights of Top-5 and Detected bars at each iteration,
where a larger delta means larger miss-classification. More
specifically, higher values of C; enhances the accuracy at
the expense of larger computation complexity, and lower
C; values reduce the complexity at the expense of lower
classification accuracy. Thus, an intelligent selection of C}
maintains a trade-off between accuracy and computational
complexity.

Note that the C; doesn’t have to be a fixed value across
different u-CNN iterations and could be different for each
iteration. In addition, it could be tuned at run-time to
dynamically control the trade-off between accuracy and
computational complexity. Access to such run-time control
knob is extremely desirable and is a new concept in CNN
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networks which is made possible by ICNN. Figure 9 illustrates
this trade-off where the overall accuracy of ICNN, as well as
the average number of FLOPs required to process the S0K
images in the validation-set changes with the selection of C
values (C} is fixed across all u-CNN layers). Interestingly,
with a fixed confidence threshold of 0.9, the overall accuracy
is the same as using the data from all the iterations to
process all images (see Figure 7) while requiring only half
the FLOPs. This trade-off and its applications will be studied
and explained further in our future work.

IX. CONCLUSIONS

In this work, we proposed a novel iterative architectural
solution (ICNN) that breaks a large CNN network (AlexNet)
into a sequence of smaller (u-CNN) networks. Each smaller u-
CNN processes a sub-sample of the input image and only pro-
ceeds to the next u-CNN stage if its classification confidence
remains below a predefined threshold. Depending on how far
the ICNN is executed (which u-CNN stage generates the final
classification that satisfies the desired confidence threshold),
the FLOP count required for classification is reduced between
2.8% to 12.2x. Reduction in computational complexity results
in a similar reduction in the classification time and energy
required for classification. The lower energy consumption,
lower computational complexity, inherent support for real-time
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deadline-driven applications, and the ability to dynamically
tradeoff accuracy versus complexity by application of desired
thresholding policies, makes the ICNN an attractive solution
for resource-constrained mobile and real-time devices.
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