
ICNN: An Iterative Implementation of Convolutional Neural

Networks to Enable Energy and Computational Complexity

Aware Dynamic Approximation

Katayoun Neshatpour, Farnaz Behnia, Houman Homayoun, Avesta Sasan

Department of Computer and Electrical Engineering, George Mason University,

{kneshatp, fbehnia, hhomayou, asasan} @gmu.edu

Abstract—With Convolutional Neural Networks (CNN)
becoming more of a commodity in the computer vision field,
many have attempted to improve CNN in a bid to achieve better
accuracy to a point that CNN accuracies have surpassed that
of human’s capabilities. However, with deeper networks, the
number of computations and consequently the power needed
per classification has grown considerably. In this paper, we
propose Iterative CNN (ICNN) by reformulating the CNN
from a single feed-forward network to a series of sequentially
executed smaller networks. Each smaller network processes
a sub-sample of input image, and features extracted from
previous network, and enhances the classification accuracy.
Upon reaching an acceptable classification confidence, ICNN
immediately terminates. The proposed network architecture
allows the CNN function to be dynamically approximated by
creating the possibility of early termination and performing
the classification with far fewer operations compared to a
conventional CNN. Our results show that this iterative approach
competes with the original larger networks in terms of accuracy
while incurring far less computational complexity by detecting
many images in early iterations.

I. INTRODUCTION

Computer visions detection and prediction accuracy,

credited to recent developments in the design of deep

and modern Convolutional Neural Networks (CNN), and

processing power provided by Graphical Processing Units

(GPU) for training them, has improved significantly. However,

many Neural Network algorithms and CNN as a part of this

family, due to their deep networks and dense connectivity,

are computationally intensive. For example, AlexNet [1],

a CNN architecture that won the 2012 ImageNet visual

recognition challenge, contains 650K neurons and 60M

parameters which demand computational performance in

the order of 0.8G-1.0G Floating Point Operations (FLOP)s

per classification. Next generations of vision-based CNN

algorithms have further improved the prediction accuracy;

however, this is achieved via even deeper networks. VGG [2],

GoogleNet [3] and ResNet [4] have improved the prediction

accuracy via increasing the CNN depth from 8 in AlexNet

to 19, 22, and 152 layers respectively, but still keeping the

CNN a computationally intensive and power hungry solution.

Albeit higher performance requirements, there is a need to

aggressively reduce the power consumption of these solutions

as many desired platforms for vision-based applications are

energy constrained. Adopting complex vision algorithms in

many of mobile and hand-held, embedded systems and IoT

applications will not be feasible if energy consumption barrier

is not addressed. At the same time, many of the desired

Fig. 1: Reformulating the CNN into an iterative solution

applications require real-time and short latency responses.

Therefore, the optimization space involves Accuracy, Latency,

Power and Area (ALPA). With this in mind, we propose a

radically different approach from modern and deep CNN

models; we reformulate the learning from a single feed-

forward network to a series of smaller networks that are

executed iteratively.

Figure 1 illustrates a high-level abstraction of the proposed

iterative CNN (ICNN). With iterative learning, each iteration

processes a small set of sub-sampled input features and

enhances the accuracy of the classification. The proposed

ICNN model removes the need for a large neural network

and constructs a learning model based on iterative execution

of substantially smaller networks. In each iteration, by

combining the processing results of the previous iteration

with new features extracted from the sub-sampled input

image, ICNNs classification accuracy is refined.

While CNN, as well as all other deep-learning networks,

are inherently approximate, ICNN further exploits this

approximate nature to reduce the large computational load

of such networks with negligible effect on the performance.

The proposed learning model improves the energy-efficiency

of CNN processing by lowering the overall computational

complexity, and by allowing early-termination (upon reaching

a satisfactory confidence threshold). In addition, it prepares a

fast initial classification and supports dynamic deadline-driven

scheduling (by making the best classification decision within

the available time budget) for real-time applications. Lower

energy consumption, lower complexity and inherent support

for deadline-driven applications make ICNN an attractive

solution for resource-constrained and real-time devices.

II. BACKGROUND

CNNs are constructed from multiple computational layers

formed as Directed Acyclic Graph (DAG) [5], [6]. Each layer

extracts an abstraction of data provided in the previous layer,

called a feature map (fmap). Most common layers are Pooling

(POOL), Convolution (CONV), and Fully Connected (FC).

551978-3-9819263-0-9/DATE18/ c©2018 EDAA



Fig. 2: Computing one CONV layer using input Ifmap/image and
filters to produce the output (Ofmaps)

In CONV layers, as illustrated in Figure 2, 2-D filters slide

over the input images/feature-maps (Ifmaps) performing con-

volution operation to extract feature characteristics from local

regions and generate output images/feature-maps (Ofmaps).

Equation 1 explains how a CONV layer is computed, while

equation 2 defines the constraints on used parameters.

Of [z][u][x][y] = Bias[u]+

C−1∑

k=0

R−1∑

i=0

R−1∑

j=0

If [z][k][Ux+ i][Uy + j]×W [u][k][i][j] (1)

0 ≤ z ≤ N ; 0 ≤ u ≤ M ; 0 ≤ x, y ≤ E;E = (H −R+U)/U (2)

In this equations, Of and IF are Ofmap and ifmap,

respectively. W and Biaa are the filter weights and bias.

N is the batch size of input images. The rest of parameters

used in these equations are explained in Figure 2. Each

filter generates a new Ofmap adding to the features extracted

from the Ifmaps. Computation of CONV layer in popular

CNNs accounts for more than 90% of the overall operations

and requires a large amount of data movement and memory

operations [7]. In addition, the large size of Ifmap, Ofmap

and partial results that are generated during the CONV

processing, increases the memory requirements for these

architectures. After every CONV layer, a non-linear operation

is applied to each Ofmap pixel to introduce non-linearity in

the network. For example, Rectified Linear Unit (ReLU) is an

operator that replaces all negative pixel values by zero. Other

non-linear functions include Tanh and Sigmoid operators.

POOL layers perform down-sampling along the spatial

dimensions of Ifmaps by partitioning them into a set of

sub-regions and combining the values in each sub-region

into a single value. Max-pooling and average-pooling are

examples of POOL operators which use the maximum and

the average values for each sub-region respectively. Next,

FC layers combine all the neurons in the previous layer and

connect them to every single neuron in the next layer. The

outputs from the CONV and POOL layers represent high-level

features of the input image, and FC layers fuse these features

to generate a relational representation of these features with

respect to each class in the classifier detection set. Finally,

a Softmax classifier uses the outputs of the last FC layer to

produce normalized class probabilities for various classes.

Softmax classifier is a multi-class version of the binary

logistic regression classifier, which produces un-normalized

log probabilities for each class using cross-entropy loss.

III. RELATED WORK

AlexNet [1] is one of the first works that deployed a

deep convolutional neural network for image recognition and

Fig. 3: Iterative CNN (ICNN) general architecture where each u-
CNN is fed by features extracted from its previous u-CNN, and
a DW sub-band generated from DWT transformation of the input
image. Classification accuracy is checked at the end of each uCNN,
based on which either ICNN is terminated, or next u-CNN is
invoked.

won ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) in 2012. The ILSVRC [8] is an object detection and

image classification competition, which includes classification

of images into 1000 different classes by training on 1.2

million labeled images. AlexNet architecture consists of 5

convolutional layers (with filter sizes of 11 × 11, 5 × 5 and

3 × 3), 3 fully connected layers. To enhance the accuracy,

during the testing phase, AlexNet re-sizes each image to

3 × 256 × 256 and takes five 3 × 224 × 224 crops from

the images (four corners and one center). Using the 5

crops and their horizontal reflections, the predictions of

the Softmax layer for the ten images are averaged to yield

the results. This technique increases the top-5 accuracy

of AlexNet from 80% to 84%. With modifications to

AlexNet (using 7 × 7 filter size instead of 11 × 11), ZF Net

[9] wins the ILSVRC in 2013 with a top-5 accuracy of 88.8%.

VGG [2] advocates the idea that going deeper with CNNs

increases the accuracy [10]. It is proven that the effective

receptive fields of 2 and 3 back-to-back convolutional layers

with filter sizes of 3 × 3 are equivalent to the receptive field

of convolutional layers with filter sizes of 5 × 5 and 7 × 7,

respectively. With this idea, and by using 16 weight layers,

VGG-16 achieves a top-5 accuracy of 92.5% by stacking 13

CONV layers with filter sizes of 3 × 3, and 3 FC layers.

Rather than going deeper, GoogLeNet [3] introduces inception

layer, in which, pooling layers and multiple convolutional

layers with different kernel sizes process the same input. All

the outputs are then concatenated allowing the model to take

advantage of multi-level feature extraction from each input.

For instance, it extracts general (3 × 3 and 5 × 5) and local

(1 × 1) features at the same time. With 22 weight layers,

GoogLeNet achieves a top-5 accuracy of 93.3% and wins

ILSVRC 2014.

Finally, Microsoft ResNet [4] uses residual blocks in which,

each input goes through a series of CONV-ReLu-CONV

layers before being added to itself. The formulation of

residual blocks is realized through shortcut connections [11],

[12], which allows features to skip one or more CONV

layer and be combined with other features at a later stage in

the network. The authors show that these residual networks

552 Design, Automation And Test in Europe (DATE 2018)



are easier to optimize and they considerably benefit from

increased depth. With 152 layers, ResNet wins the ILSVRC

2015 with a top-5 accuracy of 96.4%, the highest accuracy

reported for the ImageNet challenge.

An overall analysis of the existing CNN architectures

shows that the number of layers and the complexity of the

CNNs have dramatically increased over time to enhance

the accuracy. However, not all images need to go through

such complex networks to yield satisfactory classification

results. In this work, we propose an iterative architectural

solution that breaks the large AlexNet CNN network into a

sequence of smaller networks. Each smaller CNN, which is

referred as Micro-CNN (u-CNN), processes a sub-sample of

the input image and only proceeds to the next u-CNN stage

if the classification confidence remains below a predefined

threshold. This allows us to achieve a considerable reduction

in computational complexity, and provide us with a route

to terminate the process early if the classification under test

reaches the desired confidence threshold upon termination of

each u-CNN. For popularity and simplicity of AlexNet, we

demonstrate our solution on this network. However, similar

reformulation is applicable to other CNN architectures.

IV. ITERATIVE LEARNING

State of the art DAG-based CNN networks are composed

of a single feed-forward computational network, where the

prediction is given and its confidence is determined after

performing all necessary computations. This conventional

model of learning has little or no regard for energy or

power saving and is purely focused on improving the

detection rate and the classification confidence. Our proposed

reformulation is driven by the needs of resource-constrained

vision applications for lowering the energy consumption and

shortening the classification latency when deploying CNN

solutions. In the proposed solution, a large CNN block is

decomposed into many smaller networks (u-CNN in Figure

1), allowing iterative refinement and greater control over the

execution of algorithm. Thus, not all images pass through

all the u-CNNs; By monitoring the successive execution of

u-CNN networks, a thresholding mechanism decides when to

terminate the forward u-CNN traversal based on the current

classification confidence of the images.

The proposed solution requires sub-sampling of input

images into various sets for various rounds of computation.

We propose the application of Discrete Wavelet sampling to

decompose an input image into various input sets (sub-bands).

The learning is then initiated using the first sub-sampled

input set. Upon completion of first computational round

(first u-CNN), the classification confidence is tested. If

the confidence is unsatisfactory, it could be progressively

increased by working on additional input samples (chosen

from remaining sub-bands). Discrete Wavelet Transformation

(DWT) provides the proposed learning algorithm with

an attractive start point and unlike Fourier transform, in

addition to frequency information, it also preserves temporal

information of an image[13]. However, note that other

sampling mechanisms could also be used for ICNN.

A high-level representation of envisioned iterative learning

algorithm fed by DWT is illustrated in Figure 3. Each

Fig. 4: sub-bands generated from a 2-level 2-dimensional Haar
Discrete Wavelet Transformation (DWT) of an input image.

iteration is a u-CNN, which takes a new DWT sub-band

as its input and refines the confidence of learning network.

DWT, being a convolutional filter, could be readily computed

using processing elements (PE) in CNN processing engine of

interest, or could be provided directly to CNN.

The iterative transformation of learning algorithm has

many advantages: It could be terminated as soon as a u-CNN

produces the desired confidence level. Further iterations could

be avoided if the first u-CNN detection confidence is below

a certain threshold signifying no contextually significant

input. And confidence could be improved by moving to the

next iteration, if the current measure of confidence remains

between demarcated thresholds, aiding the rise or decline of

classification confidence.

V. TRAINING ICNN

In order to train the ICNN network, we deploy a top-down

approach, in which, most of the ICNN training is done in one

step. To achieve this, we train the last iteration of ICNN by

initializing the weights for all the CONV layers in all u-CNNs

and only the FC layers in the last iteration from a Gaussian

distribution with zero mean and a standard deviation of 0.01.

The training was started with a learning rate of 0.01. The

learning rate was reduced by 2× every 20-epoch until the

learning rate was as low as 10−6 (by one-epoch, we refer to

one pass of all the 1.2 million images in ImageNet; however,

for data augmentation purposes, every few epochs the order

of the images was modified, the image crops were altered

and horizontal mirror of the images were utilized). Using a

single GPU, this process takes 7-9 days.

To train the FC layers of earlier iterations, the weights in

the CONV layers of these networks were initialized to those

computed in the last iteration. Then, to keep these weights

constant, the learning rate of them was set to zero. This

allowed us to only train the FC layers of early iterations.

The time required for the training of these FC layers ranged

from a couple of hours for the 1-th u-CNN, to a day for the

6-th u-CNN (for an ICNN using 2-level DWT and thus 7

iterations). Please note that it is also possible to train u-CNNs

sequentially to improve the accuracy of each u-CNN. This

training scheme will be further explored in our future work.

VI. IMPLEMENTATION FRAMEWORK

The proposed ICNN was implemented to build a 1000-class

image classifier for the ImageNet dataset. The ImageNet

training and the validation archives include 1.2 million and

50K labeled RGB images respectively. The images are of

varied spatial dimensions and labeled into 1K different classes.

Design, Automation And Test in Europe (DATE 2018) 553



Fig. 5: The architecture of (a) original CNN (b) iterative CNN with 7 iterations. (The numbers in the boxes on left show the filter sizes
for CONV layers and the numbers on right show the number and size of Ofmaps) (c) Comparing the number of required parameters
for executing each CONV and FC layer in ICNN and AlexNet

A common problem associated with training of complex

CNN architectures is over-fitting. Over-fitting happens when

the model fits too well to the training set, making it difficult

for the model to generalize to new examples that were not

in the training set. One of the solutions to the over-fitting

problem is to increase the size of training data. For this

purpose, following the methodology in [3], the horizontal

mirror of each training image was added to the training set.

Then, all training images were reshaped to 3× 256× 256 and

various 3× 228× 228 crops were taken from each image.

Subsequently, a 2-level 2-dimensional DWT was captured

for each channel of the RGB images through the Haar

filter [14]. The resulting sub-bands are four RGB images

of size 3 × 57 × 57 in smaller sub-bands (corresponding to

LL-LL, LL-LH, LL-HL, LL-HH), and three RGB images of

3 × 114 × 114 in larger sub-bands (corresponding to HL,

LH and HH). The sub-bands’ naming convention is captured

in Figure 4. The 2-level DWT is composed of 7 sub-bands

allowing us to sample the input image 7 times and to build the

ICNN with 7 iterations. To increase the number of iterations,

the DWT depth can be increased or alternatively, DWT can

be applied the other sub-bands (LH, HL, HH).

The sub-bands are stored in a lightning memory-mapped

database (lmdb) format [15], which is the database of choice

when using large datasets. For the pre-processing and storage

of images, several Python package libraries, including lmdb,

PyWavelets,OpenCV, were used. Moreover, a mean image

was calculated for each sub-band based on the training

data. The mean images are subtracted from each image for

all the sub-bands to ensure a zero mean for every feature pixel.

AlexNet, was modified to be iterative and implemented

in Caffe [16], a deep learning framework developed by

Berkeley AI Research (BAIR). To train the network, Tesla

K80 GPUs were deployed. Figure 5 shows the decomposition

and reformulation of AlexNet into its ICNN representation.

The iterative AlexNet includes 7 iterations. Each Concat layer

fuses the Ofmaps of the last CONV layer in current iteration

with the Ofmaps of the last CONV layer from the previous

iteration. It should be noted that the number of Ofmaps which

are processed at any given CONV layer in each u-CNN is

considerably smaller than that of original AlexNet. Hence,

the computational complexity of each u-CNN is considerably

smaller than that of AlexNet.

Fig. 6: The FLOP count comparison of Iterative-AlexNet (ICNN
representation) vs AlexNet

VII. COMPLEXITY ANALYSIS

As mentioned in the previous section, the number of

Ofmaps in each u-CNN is considerably reduced with respect

to the original CNN. Figure 6 shows the number of Floating

Point Operations (FLOP) for a forward pass of the iterative

AlexNet per image at each iteration. The figure shows that,

even if executed to the last iteration, ICNN still has a lower

computational complexity (needing 30% fewer FLOPs) than

the original AlexNet. On top of this, many images are

detected at earlier iterations, removing the need to process

subsequent u-CNNs. This further reduces the total FLOP

count for a large number of images. More specifically, images

detected in iterations 1, 2, 3, 4, 5 and 6 respectively require

12.2×, 6.1×, 4×, 3×, 2.3× and 1.8× fewer FLOPs when

compared to the original AlexNet.

As stated previously, the computation intensive layers in

AlexNet are CONV layers, and ICNN considerably reduces

the required FLOP count. However, when it comes to the

parameter count, in AlexNet, the largest number of parameters

are associated with FC layers. This problem, as illustrated in

Figure 5-c is exacerbated for the Iterative AlexNet, where

FC layers are repeated for each u-CNN. Although the input

Ifmaps to the FC layers in each u-CNN is smaller than that

of AlexNet, repetition of FC layers increases the number

of parameters for the iterative representation of AlexNet.

To remedy this, the size of FC layers in u-CNNs could be

reduced to smaller sizes (e.g. 1024 or 2048) at the expense of

lower classification accuracy in these iterations. In addition,

the size of parameters in these layers could be reduced to

have a fewer number of bits. Note that this is an AlexNet

model-specific problem and ICNN representation of other

popular networks could experience significant reduction in

both parameter and FLOP counts. For example, ICNN model

554 Design, Automation And Test in Europe (DATE 2018)



(a) (b)

Fig. 7: The top-1 and top-5 accuracy of AlexNet vs. Iterative AlexNet using (a) original image re-sized to 3 × 228 × 228 (b) the
average of ten 3 × 228 × 228 crops from images re-sized to 3 × 256 × 256

of ResNet will require far fewer parameters for the final

classification as it only has a single FC layer.

Additionally, for resource-contained applications not all

the parameters of the network are kept in the memory.

Assuming that the processing unit only keeps the parameters

needed for the current CONV or FC layer in the memory, the

maximum memory footprint for keeping network parameters

in Iterative-AlexNet is reduced by 12%.

VIII. RESULTS

For testing, the 50K images in the validation set of

ImageNet were classified and the top-1 and top-5 scores are

reported in Figure 7. The top-1 score is the percentage of the

test images for which, the classifier gives the correct class

the highest probability. The top-5 score is the percentage of

the test images for which, the classifier includes the correct

class among its top 5 guesses. To fit the test images into the

network we re-sized them to 3× 228× 228. Figure 7-a shows

the results for re-sized images. Alternatively, to enhance the

accuracy, a similar approach as in [1] was deployed. The

images were re-sized to 3× 256× 256 and five 3× 228× 228
crops from the images (four corners and one center) were

taken, as well as their horizontal reflections (ten crops in

total), and the predictions of the Softmax layer for the ten

crops was averaged. The results are illustrated in Figure

7-b. The figure shows that this approach increases the top-5

scores by up to 4%. Moreover, the top-5 accuracy of ICNN

approaches that of AlexNet in the final iterations.

While the accumulated FLOP count of all iterations

is lower than AlexNet, the decrease in the top-5 score

of the last iteration is about 2%. For effectively using

the proposed iterative approach and making intelligent

termination decisions, we need to set confidence goals for

the classification. For instance, while iteration 1 yields an

accumulated probability of 80% for the top-5 class for a

test image, it might yield a probability of 40% for the top-5

class of another test image. Needless to say, the prediction

confidence for the first image is significantly higher than

the second image. ICNN, in this case, terminates the CNN

processing after the first iteration for the first image and

moves forward to the next iteration for the second image.

To exploit the iterative CNN for reducing computational

complexity, for each image in the validation set (50K

images), ICNN starts the classification with the first iteration

and calculates the classification confidence. Classification

confidence is calculated by adding up the probabilities of

the top-5 classes. Subsequently, the classification confidence

is compared to the desired Confidence Threshold (Ct ), and

if lower, ICNN moves forward to the next iteration. ICNN

continues this process until the classification confidence is

higher that Ct. In this approach, various images are detected

in different iterations. Moreover, some of the images never

reach a classification confidence above Ct. For these images,

the results of the last iteration are used.

Figure 8 shows the number of images classified in each

iteration and their top-5 score for various Ct values. Since

ICNN is proposed to reduce the computational complexity

of CNN, only one image was used for classification (rather

than averaging 10 different crops). In Figure 8, the newly

detected images in each iteration and low-confidence images

detected in the last iteration are depicted under the labels

new and remaining, respectively. For the remaining images,

the top-5 classification accuracy is significantly lower than

those with confidence values higher than the threshold. With

increasing values of Ct the number of these remaining images

increases, pushing the classifier toward the last iteration and

thus increasing the total FLOP count.

Figure 8 shows that with each new iteration, the ICNN

detects more images with high classification confidence.

This is to be expected, as the last iterations combine a

larger number of features in more complex architectures with

a larger number of parameters, allowing a more accurate

prediction model and thus classifying more images.

Moreover, by increasing the value of Ct, the number of

images classified in early iterations decreases; however the

classification accuracy (correct label within top-5) increases.

In Figure 8 this is illustrated by comparing the difference

in the heights of Top-5 and Detected bars at each iteration,

where a larger delta means larger miss-classification. More

specifically, higher values of Ct enhances the accuracy at

the expense of larger computation complexity, and lower

Ct values reduce the complexity at the expense of lower

classification accuracy. Thus, an intelligent selection of Ct

maintains a trade-off between accuracy and computational

complexity.

Note that the Ct doesn’t have to be a fixed value across

different u-CNN iterations and could be different for each

iteration. In addition, it could be tuned at run-time to

dynamically control the trade-off between accuracy and

computational complexity. Access to such run-time control

knob is extremely desirable and is a new concept in CNN

Design, Automation And Test in Europe (DATE 2018) 555



(a) (b)

(c) (d)

Fig. 8: Number of classified images and the number of classified images with a correct label in the top-5 probabilities for various
confidence threshold (Ct) (a) Ct = 0.6 (b) Ct = 0.7 (a) Ct = 0.8 (d) Ct = 0.9

Fig. 9: The avg flop count for setting fix Ct for all iterations and
detecting remaining images with original AlexNet

networks which is made possible by ICNN. Figure 9 illustrates

this trade-off where the overall accuracy of ICNN, as well as

the average number of FLOPs required to process the 50K

images in the validation-set changes with the selection of Ct

values (Ct is fixed across all u-CNN layers). Interestingly,

with a fixed confidence threshold of 0.9, the overall accuracy

is the same as using the data from all the iterations to

process all images (see Figure 7) while requiring only half

the FLOPs. This trade-off and its applications will be studied

and explained further in our future work.

IX. CONCLUSIONS

In this work, we proposed a novel iterative architectural

solution (ICNN) that breaks a large CNN network (AlexNet)

into a sequence of smaller (u-CNN) networks. Each smaller u-

CNN processes a sub-sample of the input image and only pro-

ceeds to the next u-CNN stage if its classification confidence

remains below a predefined threshold. Depending on how far

the ICNN is executed (which u-CNN stage generates the final

classification that satisfies the desired confidence threshold),

the FLOP count required for classification is reduced between

2.8× to 12.2×. Reduction in computational complexity results

in a similar reduction in the classification time and energy

required for classification. The lower energy consumption,

lower computational complexity, inherent support for real-time

deadline-driven applications, and the ability to dynamically

tradeoff accuracy versus complexity by application of desired

thresholding policies, makes the ICNN an attractive solution

for resource-constrained mobile and real-time devices.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] C. Szegedy and et al., “Going deeper with convolutions,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[4] K. He and et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[5] M. Liu and et al., “Towards better analysis of deep convolutional neural
networks,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 1, pp. 91–100, 2017.

[6] Y. LeCun and et al., “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[7] Y.-H. Chen and et al., “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” IEEE Journal of
Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[8] J. Deng and et al., “ImageNet: A Large-Scale Hierarchical Image
Database,” in CVPR09, 2009.

[9] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[10] K. He and et al., “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[11] C. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

[12] B. D. Ripley, Pattern recognition and neural networks. Cambridge
university press, 2007.

[13] C. S. Burrus and et al., “Introduction to wavelets and wavelet transforms:
a primer,” 1997.

[14] S. Mallat, A wavelet tour of signal processing. Academic press, 1999.
[15] H. Ch and S. Corporation, “Lightning memory-mapped database man-

ager (lmdb),” http://104.237.133.194/doc/.
[16] Y. Jia and et al., “Caffe: Convolutional architecture for fast feature

embedding,” in Proceedings of the 22nd ACM international conference
on Multimedia. ACM, 2014, pp. 675–678.

556 Design, Automation And Test in Europe (DATE 2018)


