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Abstract—Event-based cameras have shown great promise in
a variety of situations where frame based cameras suffer, such
as high speed motions and high dynamic range scenes. However,
developing algorithms for event measurements requires a new
class of hand crafted algorithms. Deep learning has shown great
success in providing model free solutions to many problems in
the vision community, but existing networks have been developed
with frame based images in mind, and there does not exist the
wealth of labeled data for events as there does for images for
supervised training. To these points, we present EV-FlowNet,
a novel self-supervised deep learning pipeline for optical flow
estimation for event based cameras. In particular, we introduce
an image based representation of a given event stream, which is
fed into a self-supervised neural network as the sole input. The
corresponding grayscale images captured from the same camera
at the same time as the events are then used as a supervisory
signal to provide a loss function at training time, given the
estimated flow from the network. We show that the resulting
network is able to accurately predict optical flow from events only
in a variety of different scenes, with performance competitive to
image based networks. This method not only allows for accurate
estimation of dense optical flow, but also provides a framework
for the transfer of other self-supervised methods to the event-
based domain.

I. INTRODUCTION

By registering changes in log intensity in the image with

microsecond accuracy, event-based cameras offer promising

advantages over frame based cameras in situations with fac-

tors such as high speed motions and difficult lighting. One

interesting application of these cameras is the estimation

of optical flow. By directly measuring the precise time at

which each pixel changes, the event stream directly encodes

fine grain motion information, which researchers have taken

advantage of in order to perform optical flow estimation. For

example, Benosman et al. [5] show that optical flow can be

estimated from a local window around each event in a linear

fashion, by estimating a plane in the spatio-temporal domain.

This is significantly simpler than image-based methods, where

optical flow is performed using iterative methods. However,

analysis in Rueckauer and Delbruck [26] has shown that these

algorithms require significant, hand crafted outlier rejection

schemes, as they do not properly model the output of the

sensor.

Associated dataset: https://daniilidis-group.github.io/mvsec/.

Supplementary video: https://youtu.be/eMHZBSoq0sE.

Figure 1: Left: Event input to the network visualizing the

last two channels (latest timestamps). Right: Predicted flow,

colored by direction. Best viewed in color.

For traditional image-based methods, deep learning has

helped the computer vision community achieve new levels

of performance while avoiding having to explicitly model

the entire problem. However, these techniques have yet to

see the same level of adoption and success for event-based

cameras. One reason for this is the asynchronous output of

the event-based camera, which does not easily fit into the

synchronous, frame-based inputs expected by image-based

paradigms. Another reason is the lack of labeled training data

necessary for supervised training methods. In this work, we

propose two main contributions to resolve these issues.

First, we propose a novel image-based representation of

an event stream, which fits into any standard image-based

neural network architecture. The event stream is summarized

by an image with channels representing the number of events

and the latest timestamp at each polarity at each pixel.

This compact representation preserves the spatial relationships

between events, while maintaining the most recent temporal

information at each pixel and providing a fixed number of

channels for any event stream.

Second, we present a self-supervised learning method for

optical flow estimation given only a set of events and the

corresponding grayscale images generated from the same

camera. The self-supervised loss is modeled after frame based

self-supervised flow networks such as Yu et al. [28] and

Meister et al. [16], where a photometric loss is used as a

supervisory signal in place of direct supervision. As a result,



the network can be trained using only data captured directly

from an event camera that also generates frame based images,

such as the Dynamic and Active-pixel Vision (DAVIS) Sensor

developed by Brandli et al. [8], circumventing the need for

expensive labeling of data.

These event images combined with the self-supervised loss

are sufficient for the network to learn to predict accurate

optical flow from events alone. For evaluation, we generate a

new event camera optical flow dataset, using the ground truth

depths and poses in the Multi Vehicle Event Camera Dataset

by Zhu et al. [30]. We show that our method is competitive

on this dataset with UnFlow by Meister et al. [16], an image-

based self supervised network trained on KITTI, and fine tuned

on event camera frames, as well as standard non-learning

based optical flow methods.

In summary, our main contributions in this work are:

• We introduce a novel method for learning optical flow

using events as inputs only, without any supervision from

ground-truth flow.

• Our CNN architecture uses a self-supervised photocon-

sistency loss from low resolution intensity images used

in training only.

• We present a novel event-based optical flow dataset with

ground truth optical flow, on which we evaluate our

method against a state of the art frame based method.

II. RELATED WORK

A. Event-based Optical Flow

There have been several works that attempt to take advan-

tage of the high temporal resolution of the event camera to

estimate accurate optical flow. Benosman et al. [5] model

a given patch moving in the spatial temporal domain as a

plane, and estimate optical flow as the slope of this plane.

This work is extended in Benosman et al. [6] by adding an

iterative outlier rejection scheme to remove events significantly

far from the plane, and in Barranco et al. [3] by combining the

estimated flow with flow from traditional images. Brosch et al.

[9] present an analogy of Lucas et al. [15] using the events

to approximate the spatial image gradient, while Orchard

and Etienne-Cummings [21] use a spiking neural network

to estimate flow, and Liu and Delbruck [14] estimate sparse

flow using an adaptive block matching algorithm. In other

works, Bardow et al. [2] present the optical flow estimation

problem jointly with image reconstruction, and solve the joint

problem using convex optimization methods, while Zhu et al.

[29] present an expectation-maximization based approach to

estimate flow in a local patch. A number of these methods

have been evaluated in Rueckauer and Delbruck [26] against

relatively simple scenes with limited translation and rotation,

with limited results, with ground truth optical flow estimated

from a gyroscope. Similarly, Barranco et al. [4] provide a

dataset with optical flow generated from a known motion

combined with depths from a RGB-D sensor.

Figure 2: Example of a timestamp image. Left: Grayscale

output. Right: Timestamp image, where each pixel represents

the timestamp of the most recent event. Brighter is more

recent.

B. Event-based Deep Learning

One of the main challenges for supervised learning for

events is the lack of labeled data. As a result, many of the

early works on learning with event-based data, such as Ghosh

et al. [10] and Moeys et al. [17], rely on small, hand collected

datasets.

To address this, recent works have attempted to collect new

datasets of event camera data. Mueggler et al. [18], provide

handheld sequences with ground truth camera pose, which

Nguyen et al. [20] use to train a LSTM network to predict

camera pose. In addition, Zhu et al. [30] provide flying,

driving and handheld sequences with ground truth camera pose

and depth maps, and Binas et al. [7] provide long driving

sequences with ground truth measurements from the vehicle

such as steering angle and GPS position.

Another approach has been to generate event based equiv-

alents of existing image based datasets by recording images

from these datasets from an event based camera (Orchard et al.

[22], Hu et al. [11]).

Recently, there have also been implementations of neural

networks on spiking neuromorphic processors, such as in Amir

et al. [1], where a network is adapted to the TrueNorth chip

to perform gesture recognition.

C. Self-supervised Optical Flow

Self-supervised, or unsupervised, methods have shown great

promise in training networks to solve many challenging 3D

perception problems. Yu et al. [28] and Ren et al. [24]

train an optical flow prediction network using the traditional

brightness constancy and smoothness constraints developed in

optimization based methods such as the Lucas Kanade method

Lucas et al. [15]. Zhu et al. [31] combine this self-supervised

loss with supervision from an optimization based flow estimate

as a proxy for ground truth supervision, while Meister et al.

[16] extend the loss with occlusion masks and a second order

smoothness term, and Lai et al. [13] introduce an adversarial

loss on top of the photometric error.





at each pixel, we have observed that this representation is

sufficient for the network to estimate the correct flow in most

regions. One deficiency of this representation is that areas

with very dense events and large motion will have all pixels

overridden by very recent events with very similar timestamps.

However, this problem can be avoided by choosing smaller

time windows, thereby reducing the magnitude of the motion.

In addition, we normalize the timestamp images by the size

of the time window for the image, so that the maximum value

in the last two channels is 1. This has the effect of both

scaling the timestamps to be on the same order of magnitude

as the event counts, and ensuring that fast motions with a

small time window and slow motions with a large time window

that generate similar displacements have similar inputs to the

network.

B. Self-Supervised Loss

Due to the fact that there is a relatively small amount of

labeled data for event based cameras as compared to traditional

cameras, it is difficult to generate a sufficient dataset for a

supervised learning method. Instead, we utilize the fact that the

DAVIS camera generates synchronized events and grayscale

images to perform self-supervised learning using the grayscale

images in the loss. At training time, the network is provided

with the event timestamp images, as well as a pair of grayscale

images, occurring immediately before and after the event time

window. Only the event timestamp images are passed into the

network, which predicts a per pixel flow. The grayscale images

are then used to apply a loss over the predicted flow in a self-

supervised manner.

The overall loss function used follows traditional variational

methods for estimating optical flow, and consists of a photo-

metric and a smoothness loss.

To compute the photometric loss, the flow is used to warp

the second image to the first image using bilinear sampling, as

described in Yu et al. [28]. The photometric loss, then, aims

to minimize the difference in intensity between the warped

second image and the first image:

`photometric(u, v; It, It+1) =
∑

x,y

ρ(It(x, y)− It+1(x+ u(x, y), y + v(x, y)))

(3)

where ρ is the Charbonnier loss function, a common loss in

the optical flow literature used for outlier rejection (Sun et al.

[27]):

ρ(x) =(x2 + ε2)α (4)

As we are using frame based images for supervision, this

method is susceptible to image-based issues such as the

aperture problem. Thus, we follow the other works in the

frame based domain, and apply a regularizer in the form of

a smoothness loss. The smoothness loss aims to regularize

the output flow by minimizing the difference in flow between

neighboring pixels horizontally, vertically and diagonally.

`smoothness(u, v) =
∑

x,y

∑

i,j∈N (x,y)

ρ(u(x, y)− u(i, j)) + ρ(v(x, y)− v(i, j))

(5)

where N is the set of neighbors around (x, y).
The total loss is the weighted sum of the photometric and

smoothness losses:

Ltotal =`photometric + λ`smoothness (6)

C. Network Architecture

The EV-FlowNet architecture very closely resembles the

encoder-decoder networks such as the stacked hourglass

(Newell et al. [19]) and the U-Net (Ronneberger et al. [25]),

and is illustrated in Fig. 3. The input event image is passed

through 4 strided convolution layers, with output channels dou-

bling each time. The resulting activations are passed through

2 residual blocks, and then four upsample convolution layers,

where the activations are upsampled using nearest neighbor

resampling and then convolved, to obtain a final flow estimate.

At each upsample convolution layer, there is also a skip con-

nection from the corresponding strided convolution layer, as

well as another convolution layer to produce an intermediate,

lower resolution, flow estimate, which is concatenated with the

activations from the upsample convolution. The loss in (6) is

then applied to each intermediate flow by downsampling the

grayscale images. The tanh function is used as the activation

function for all of the flow predictions.

IV. OPTICAL FLOW DATASET

For ground truth evaluation only, we generated a novel

dataset for ground truth optical flow using the data provided

in the Multi-Vehicle Stereo Event Camera dataset (MVSEC)

by Zhu et al. [30]. The dataset contains stereo event camera

data in a number of flying, driving and handheld scenes. In

addition, the dataset provides ground truth poses and depths

maps for each event camera, which we have used to generate

reference ground truth optical flow.

From the pose (consisting of rotation R and translation p)

of the camera at time t0 and t1, we make a linear velocity

assumption, and estimate velocity and angular velocity using

numerical differentiation:

v =
(p(t1)− p(t0))

dt
(7)

ω∧ =
logm

(

RT
t0
Rt1

)

dt
(8)

where logm is the matrix logarithm, and ω∧ converts the vector

ω into the corresponding skew symmetric matrix:

ω∧ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (9)

A central moving average filter is applied to the estimated

velocities to reduce noise. We then use these velocities to



estimate the motion field, given the ground truth depths, Z, at

each undistorted pixel position:
(

ẋ

ẏ

)

=

[

− 1
Z

0 − x
Z

xy −(1 + x2) y

0 − 1
Z

y

Z
1 + y2 −xy −x

](

v

ω

)

(10)

Finally, we scale the motion field by the time window

between each pair of images dt, and use the resulting dis-

placement as an approximation to the true optical flow for each

pixel. To apply the ground truth to the distorted images, we

shift the undistorted pixels by the flow, and apply distortion to

the shifted pixels. The distorted flow is, then, the displacement

from the original distorted position to the shifted distorted

position.

In total, we have generated ground truth optical flow for

the indoor flying, outdoor day and outdoor night sequences.

In addition to using the indoor flying and outdoor day ground

truth sets for evaluation, we will also release all sequences as

a dataset.

V. EMPIRICAL EVALUATION

A. Training Details

Two networks were trained on the two outdoor day se-

quences from MVSEC. outdoor day1 contains roughly 12000

images, and outdoor day2 contains roughly 26000 images.

The images are captured from driving in an industrial complex

and public roads, respectively, where the two scenes are

visually very different. The motions include mostly straights

and turns, with occasional independently moving objects such

as other cars and pedestrians. The input images are cropped

to 256x256, the number of output channels at the first encoder

layer is 64 and the number of output channels in each residual

block is 512.

To increase the variation in the magnitude of the optical flow

seen at training, we randomly select images up to k images

apart in time, and all of the events that occurred between those

images. In our experiments, k ∈ [2, 4, 6, 8, 10, 12]. In addition,

we randomly flip the inputs horizontally, and randomly crop

them to achieve the desired resolution.

The weight on the smoothness loss (6), λ, is set to 0.5. Each

of the intermediate losses is weighted equally in the final loss.

For the Charbonnier loss (4), α was set to be 0.45 and ε was

set to be 1e-3. The Adam optimizer is used, with learning rate

initialized at 1e-5, and exponentially decayed every 4 epochs

by 0.8. The model is trained for 300,000 iterations, and takes

around 12 hours to train on a 16GB NVIDIA Tesla V100.

B. Ablation Studies

In addition to the described architecture (denoted EV-

FlowNet2R), we also train three other networks to test the ef-

fects of varying the input to the network, as well as increasing

the capacity of the network.

To test the contribution of each of the channels in the input,

we train two additional networks, one with only the event

counts (first two channels) as input (denoted EV-FlowNetC),

and one with only the event timestamps (last two channels) as

input (denoted EV-FlowNetR).

In addition, we tested different network capacities by train-

ing a larger model with 4 residual blocks (denoted EV-

FlowNet4R). A single forward pass takes, on average, 40ms for

the smaller network, and 48ms for the larger network, when

run on a NVIDIA GeForce GTX 1050, a laptop grade GPU.

C. Comparisons

To compare our results with other existing methods, we

tested implementations of Event-based Visual Flow by Benos-

man et al. [6], an optimization based method that works on

events, and UnFlow by Meister et al. [16], a self supervised

method that works on traditional frames.

As there is no open source code by the authors of Event-

based Visual Flow, we designed an implementation around

the method described in Rueckauer and Delbruck [26]. In

particular, we implemented the robust Local Plane Fit algo-

rithm, with a spatial window of 5x5 pixels, vanishing gradient

threshold th3 of 1e-3, and outlier distance threshold of 1e-2.

However, we were unable to achieve any reasonable results

on the datasets, with only very few points returning valid

flow values (< 5%), and none of the valid flow values being

visually correct. For validation, we also tested the open source

MATLAB code provided by the authors of Mueggler et al.

[18], where we received similar results. As a result, we believe

that the method was unable to generalize to the natural scenes

in the test set, and so did not include the results in this paper.

For UnFlow, we used the unsupervised model trained on

KITTI raw, and fine tuned on outdoor day2. This model was

able to produce reasonable results on the testing sets, and we

include the results in the quantitative evaluation in Tab. I.

D. Test Sequences

For comparison against UnFlow, we evaluated 800 frames

from the outdoor day1 sequence as well as sequences 1 to 3

from indoor flying. For the event input, we used all of the

events that occurred in between the two input frames.

The outdoor day1 sequence spans between 222.4s and

240.4s. This section was chosen as the grayscale images were

consistently bright, and there is minimal shaking of the camera

(the provided poses are smoothed and do not capture shaking

of the camera if the vehicle hits a bump in the road). In order

to avoid conflicts between training and testing data, a model

trained only using data from outdoor day2 was used, which

is visually significantly different from outdoor day1.

The three indoor flying sequences total roughly 240s, and

feature a significantly different indoor scene, containing ver-

tical and backward motions, which were previously unseen in

the driving scenes. A model trained on both outdoor day1

and outdoor day2 data was used for evaluation on these

sequences. We avoided fine tuning on the flying sequences,

as the sequences are in one room, and all relatively similar

in visual appearance. As a result, it would be very easy for a

network to overfit the environment. Sequence 4 was omitted

as the majority of the view was just the floor, and so had a

relatively small amount of useful data for evaluation.



Grayscale Image Event Timestamps Ground Truth Flow UnFlow Flow EV-FlowNet2R Flow

Figure 4: Qualitative results from evaluation. Examples were collected from outdoor day1, outdoor day1, indoor flying1 and

indoor flying2, in that order. Best viewed in color.

E. Metrics

For each method and sequence, we compute the average

endpoint error (AEE), defined as as the distance between the

endpoints of the predicted and ground truth flow vectors:

AEE =
∑

x,y

∥

∥

∥

∥

(

u(x, y)pred

v(x, y)pred

)

−

(

u(x, y)gt

v(x, y)gt

)∥

∥

∥

∥

2

(11)

In addition, we follow the KITTI flow 2015 benchmark and

report the percentage of points with EE greater than 3 pixels

and 5% of the magnitude of the flow vector. Similarly to

KITTI, 3 pixels is roughly the maximum error observed when

warping the grayscale images according to the ground truth

flow, and comparing against the next image.

However, as the input event image is relatively sparse, the

network only returns accurate flow on points with events. As

a result, we limit the computation of AEE to pixels in which

at least one event was observed. For consistency, this is done

with a mask applied to the EE for both event-based and frame-

based methods. We also mask out any points for which we

have no ground truth flow (i.e. regions with no ground truth

depth). In practice, this results in the error being computed

over 20-30% of the pixels in each image.

In order to vary the magnitude of flow observed for each

test, we run two evaluations per sequence: one with input

frames and corresponding events that are one frame apart, and

one with frames and events four frames apart. We outline the

results in Tab. I.



dt=1 frame outdoor driving indoor flying1 indoor flying2 indoor flying3
AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

UnFlow 0.97 1.6 0.50 0.1 0.70 1.0 0.55 0.0

EV-FlowNetC 0.49 0.2 1.30 6.8 2.34 25.9 2.06 22.2
EV-FlowNetT 0.52 0.2 1.20 4.5 2.15 22.6 1.91 19.8
EV-FlowNet2R 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9
EV-FlowNet4R 0.49 0.2 1.14 3.5 2.10 21.0 1.85 18.8

dt=4 frames outdoor driving indoor flying1 indoor flying2 indoor flying3
AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

UnFlow 2.95 40.0 3.81 56.1 6.22 79.5 1.96 18.2

EV-FlowNetC 1.41 10.8 3.22 41.4 5.30 60.1 4.68 57.0
EV-FlowNetT 1.34 8.4 2.53 33.7 4.40 51.9 3.91 47.1
EV-FlowNet2R 1.23 7.3 2.25 24.7 4.05 45.3 3.45 39.7
EV-FlowNet4R 1.33 9.4 2.75 33.5 4.82 53.3 4.30 47.8

Table I: Quantitative evaluation of each model on the MVSEC optical flow ground truth. Average end-point error (AEE)

and percentage of pixels with EE above 3 and 5% of the magnitude of the flow vector(% Outlier) are presented for each

method (lower is better for both), with evaluation run with image pairs 1 frame apart (top) and 4 frames apart (bottom). The

EV-FlowNet methods are: Counts only (EV-FlowNetc), Timestamps only (EV-FlowNetT), 2 Residual blocks (EV-FlowNet2R)
and 4 Residual blocks (EV-FlowNet4R).

Figure 5: Common failure case, where fast motion causes

recent timestamps to overwrite older pixels nearby, resulting

in incorrect predictions. Best viewed in color.

F. Results

1) Qualitative Results: In addition to the quantitative anal-

ysis provided, we provide qualitative results in Fig. 4. In these

results, and throughout the test set, the predicted flow always

closely follows the ground truth. As the event input is quite

sparse, our network tends to predict zero flow in areas without

events. This is consistent with the photometric loss, as areas

without events are typically low texture areas, where there is

little change in intensity within each pixel neighborhood. In

practice, the useful flow can be extracted by only using flow

predictions at points with events. On the other hand, while

UnFlow typically performs reasonably on the high texture

regions, the results on low texture regions are very noisy.

2) Ablation Study Results: From the results of the ablation

studies in Tab. I, EV-FlowNetC (counts only) performed the

worst. This aligns with our intuition, as the only information

attainable from the counts is from motion blur effects, which

is a weak signal on its own. EV-FlowNetT (timestamps only)

performs better for most tests, as the timestamps carry infor-

mation about the ordering between neighboring events, as well

as the magnitude of the velocity. However, the timestamp only

network fails when there is significant noise in the image, or

when fast motion results in more recent timestamps covering

all of the older ones. This is illustrated in Fig 5, where even the

full network struggles to predict the flow in a region dominated

by recent timestamps. Overall, the combined models clearly

perform better, likely as the event counts carry information

about the importance of each pixel. Pixels with few events are

likely to be just noise, while pixels with many events are more

likely to carry useful information. Somewhat surprisingly, the

larger network, EV-FlowNet4R actually performs worse than

the smaller one, EV-FlowNet2R. A possible explanation is that

the larger capacity network learned to overfit the training sets,

and so did not generalize as well to the test sets, which

were significantly different. For extra validation, both EV-

FlowNet2R and EV-FlowNet4R were trained for an additional

200,000 iterations, with no appreciable improvements. It is

likely, however, that, given more data, the larger model would

perform better.

3) Comparison Results: From our experiments, we found

that the UnFlow network tends to predict roughly correct flows

for most inputs, but tends to be very noisy in low texture areas

of the image. The sparse nature of the events is a benefit in

these regions, as the lack of events there would cause the

network to predict no flow, instead of an incorrect output.

In general, EV-FlowNet performed better on the dt=4

tests, while worse on the dt=1 tests (with the exception

of outdoor driving1 and indoor flying3). We observed that

UnFlow typically performed better in situations with very

small or very large motion. In these situations, there are either

few events as input, or so many events that the image is

overriden by recent timestamps. However, this is a problem

intrinsic to the testing process, as the time window is defined

by the image frame rate. In practice, these problems can

be avoided by choosing time windows large enough so that

sufficient information is available while avoiding saturating

the event image. One possible solution to this would be to

have a fixed number of events in the window each time.

VI. CONCLUSION

In this work, we have presented a novel design for a

neural network architecture that is able to accurately predict

optical flow from events alone. Due to the method’s self-

supervised nature, the network can be trained without any



manual labeling, simply by recording data from the camera.

We show that the predictions generalize beyond hand designed

laboratory scenes to natural ones, and that the method is

competitive with state of the art frame-based self supervised

methods. We hope that this work will provide not only a novel

method for flow estimation, but also a paradigm for applying

other self-supervised learning methods to event cameras in

the future. For future work, we hope to incorporate additional

losses that provide supervisory signals from event data alone,

to expose the network to scenes that are challenging for

traditional frame-based cameras, such as those with high speed

motions or challenging lighting.
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