EV-FlowNet: Seltf-Supervised Optical Flow
Estimation for Event-based Cameras

Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney and Kostas Daniilidis
School of Engineering and Applied Science
University of Pennsylvania
{alexzhu, Izyuan, chaneyk, kostas}@seas.upenn.edu

Abstract—Event-based cameras have shown great promise in
a variety of situations where frame based cameras suffer, such
as high speed motions and high dynamic range scenes. However,
developing algorithms for event measurements requires a new
class of hand crafted algorithms. Deep learning has shown great
success in providing model free solutions to many problems in
the vision community, but existing networks have been developed
with frame based images in mind, and there does not exist the
wealth of labeled data for events as there does for images for
supervised training. To these points, we present EV-FlowNet,
a novel self-supervised deep learning pipeline for optical flow
estimation for event based cameras. In particular, we introduce
an image based representation of a given event stream, which is
fed into a self-supervised neural network as the sole input. The
corresponding grayscale images captured from the same camera
at the same time as the events are then used as a supervisory
signal to provide a loss function at training time, given the
estimated flow from the network. We show that the resulting
network is able to accurately predict optical flow from events only
in a variety of different scenes, with performance competitive to
image based networks. This method not only allows for accurate
estimation of dense optical flow, but also provides a framework
for the transfer of other self-supervised methods to the event-
based domain.

I. INTRODUCTION

By registering changes in log intensity in the image with
microsecond accuracy, event-based cameras offer promising
advantages over frame based cameras in situations with fac-
tors such as high speed motions and difficult lighting. One
interesting application of these cameras is the estimation
of optical flow. By directly measuring the precise time at
which each pixel changes, the event stream directly encodes
fine grain motion information, which researchers have taken
advantage of in order to perform optical flow estimation. For
example, Benosman et al. [S] show that optical flow can be
estimated from a local window around each event in a linear
fashion, by estimating a plane in the spatio-temporal domain.
This is significantly simpler than image-based methods, where
optical flow is performed using iterative methods. However,
analysis in Rueckauer and Delbruck [26] has shown that these
algorithms require significant, hand crafted outlier rejection
schemes, as they do not properly model the output of the
Sensor.

Associated dataset: https://daniilidis- group.github.io/mvsec/.
Supplementary video: https://youtu.be/eMHZBSoq0sE.

Figure 1: Left: Event input to the network visualizing the
last two channels (latest timestamps). Right: Predicted flow,
colored by direction. Best viewed in color.

For traditional image-based methods, deep learning has
helped the computer vision community achieve new levels
of performance while avoiding having to explicitly model
the entire problem. However, these techniques have yet to
see the same level of adoption and success for event-based
cameras. One reason for this is the asynchronous output of
the event-based camera, which does not easily fit into the
synchronous, frame-based inputs expected by image-based
paradigms. Another reason is the lack of labeled training data
necessary for supervised training methods. In this work, we
propose two main contributions to resolve these issues.

First, we propose a novel image-based representation of
an event stream, which fits into any standard image-based
neural network architecture. The event stream is summarized
by an image with channels representing the number of events
and the latest timestamp at each polarity at each pixel.
This compact representation preserves the spatial relationships
between events, while maintaining the most recent temporal
information at each pixel and providing a fixed number of
channels for any event stream.

Second, we present a self-supervised learning method for
optical flow estimation given only a set of events and the
corresponding grayscale images generated from the same
camera. The self-supervised loss is modeled after frame based
self-supervised flow networks such as Yu et al. [28] and
Meister et al. [16], where a photometric loss is used as a
supervisory signal in place of direct supervision. As a result,

the network can be trained using only data captured directly
from an event camera that also generates frame based images,
such as the Dynamic and Active-pixel Vision (DAVIS) Sensor
developed by Brandli et al. [8], circumventing the need for
expensive labeling of data.

These event images combined with the self-supervised loss
are sufficient for the network to learn to predict accurate
optical flow from events alone. For evaluation, we generate a
new event camera optical flow dataset, using the ground truth
depths and poses in the Multi Vehicle Event Camera Dataset
by Zhu et al. [30]. We show that our method is competitive
on this dataset with UnFlow by Meister et al. [16], an image-
based self supervised network trained on KITTI, and fine tuned
on event camera frames, as well as standard non-learning
based optical flow methods.

In summary, our main contributions in this work are:

o We introduce a novel method for learning optical flow
using events as inputs only, without any supervision from
ground-truth flow.

e Our CNN architecture uses a self-supervised photocon-
sistency loss from low resolution intensity images used
in training only.

o We present a novel event-based optical flow dataset with
ground truth optical flow, on which we evaluate our
method against a state of the art frame based method.

II. RELATED WORK

A. Event-based Optical Flow

There have been several works that attempt to take advan-
tage of the high temporal resolution of the event camera to
estimate accurate optical flow. Benosman et al. [5] model
a given patch moving in the spatial temporal domain as a
plane, and estimate optical flow as the slope of this plane.
This work is extended in Benosman et al. [6] by adding an
iterative outlier rejection scheme to remove events significantly
far from the plane, and in Barranco et al. [3] by combining the
estimated flow with flow from traditional images. Brosch et al.
[9] present an analogy of Lucas et al. [15] using the events
to approximate the spatial image gradient, while Orchard
and Etienne-Cummings [21] use a spiking neural network
to estimate flow, and Liu and Delbruck [14] estimate sparse
flow using an adaptive block matching algorithm. In other
works, Bardow et al. [2] present the optical flow estimation
problem jointly with image reconstruction, and solve the joint
problem using convex optimization methods, while Zhu et al.
[29] present an expectation-maximization based approach to
estimate flow in a local patch. A number of these methods
have been evaluated in Rueckauer and Delbruck [26] against
relatively simple scenes with limited translation and rotation,
with limited results, with ground truth optical flow estimated
from a gyroscope. Similarly, Barranco et al. [4] provide a
dataset with optical flow generated from a known motion
combined with depths from a RGB-D sensor.

T

Figure 2: Example of a timestamp image. Left: Grayscale
output. Right: Timestamp image, where each pixel represents
the timestamp of the most recent event. Brighter is more
recent.

B. Event-based Deep Learning

One of the main challenges for supervised learning for
events is the lack of labeled data. As a result, many of the
early works on learning with event-based data, such as Ghosh
et al. [10] and Moeys et al. [17], rely on small, hand collected
datasets.

To address this, recent works have attempted to collect new
datasets of event camera data. Mueggler et al. [18], provide
handheld sequences with ground truth camera pose, which
Nguyen et al. [20] use to train a LSTM network to predict
camera pose. In addition, Zhu et al. [30] provide flying,
driving and handheld sequences with ground truth camera pose
and depth maps, and Binas et al. [7] provide long driving
sequences with ground truth measurements from the vehicle
such as steering angle and GPS position.

Another approach has been to generate event based equiv-
alents of existing image based datasets by recording images
from these datasets from an event based camera (Orchard et al.
[22], Hu et al. [11]).

Recently, there have also been implementations of neural
networks on spiking neuromorphic processors, such as in Amir
et al. [1], where a network is adapted to the TrueNorth chip
to perform gesture recognition.

C. Self-supervised Optical Flow

Self-supervised, or unsupervised, methods have shown great
promise in training networks to solve many challenging 3D
perception problems. Yu et al. [28] and Ren et al. [24]
train an optical flow prediction network using the traditional
brightness constancy and smoothness constraints developed in
optimization based methods such as the Lucas Kanade method
Lucas et al. [15]. Zhu et al. [31] combine this self-supervised
loss with supervision from an optimization based flow estimate
as a proxy for ground truth supervision, while Meister et al.
[16] extend the loss with occlusion masks and a second order
smoothness term, and Lai et al. [13] introduce an adversarial
loss on top of the photometric error.

I encoder
I8 residual block

decoder
® concatenation

loss1

Figure 3: EV-FlowNet architecture. The event input is downsampled through four encoder (strided convolution) layers, before
being passed through two residual block layers. The activations are then passed through four decoder (upsample convolution)
layers, with skip connections to the corresponding encoder layer. In addition, each set of decoder activations is passed through
another depthwise convolution layer to generate a flow prediction at its resolution. A loss is applied to this flow prediction,
and the prediction is also concatenated to the decoder activations. Best viewed in color.

III. METHOD

In this section, we describe our approach in detail. In
Sec. III-A, we describe our event representation, which is an
analogy to an event image. In Sec. III-B, we describe the
self-supervised loss used to provide a supervisory signal using
only the gray scale images captured before and after each time
window, and in Sec. III-C, we describe the architecture of our
network, which takes as input the event image and outputs a
pixel-wise optical flow. Note that, throughout this paper, we
refer to optical flow as the displacement of each pixel within
a given time window.

A. Event Representation

An event-based camera tracks changes in the log intensity
of an image, and returns an event whenever the log intensity
changes over a set threshold 6:

log(Zt41) — log(1;) > 0 (1

Each event contains the pixel location of the change, times-
tamp of the event and polarity:

t, p} 2)

Because of the asynchronous nature of the events, it is not
immediately clear what representation of the events should be
used in the standard convolutional neural network architecture.
Most modern network architectures expect image-like inputs,
with a fixed, relatively low, number of channels (recurrent
networks excluded) and spatial correlations between neigh-
boring pixels. Therefore, a good representation is key to fully
take advantage of existing networks while summarizing the
necessary information from the event stream.

e ={x,

Perhaps the most complete representation that preserves all
of the information in each event would be to represent the
events as a n X 4 matrix, where each column contains the
information of a single event. However, this does not directly
encode the spatial relationships between events that is typically
exploited by convolutions over images.

In this work, we chose to instead use a representation of the
events in image form. The input to the network is a 4 channel
image with the same resolution as the camera.

The first two channels encode the number of positive and
negative events that have occurred at each pixel, respectively.
This counting of events is a common method for visualizing
the event stream, and has been shown in Nguyen et al. [20] to
be informative in a learning based framework to regress 6dof
pose.

However, the number of events alone discards valuable
information in the timestamps that encode information about
the motion in the image. Incorporating timestamps in image
form is a challenging task. One possible solution would be to
have k channels, where k is the most events in any pixel in
the image, and stack all incoming timestamps. However, this
would result in a large increase in the dimensionality of the
input. Instead, we encode the pixels in the last two channels as
the timestamp of the most recent positive and negative event
at that pixel, respectively. This is similar to the "Event-based
Time Surfaces” used in Lagorce et al. [12] and the "timestamp
images” used in Park et al. [23]. An example of this kind of
image can be found in Fig. 2, where we can see that the flow
is evident by following the gradient in the image, particularly
for closer (faster moving) objects. While this representation
inherently discards all of the timestamps but the most recent

at each pixel, we have observed that this representation is
sufficient for the network to estimate the correct flow in most
regions. One deficiency of this representation is that areas
with very dense events and large motion will have all pixels
overridden by very recent events with very similar timestamps.
However, this problem can be avoided by choosing smaller
time windows, thereby reducing the magnitude of the motion.

In addition, we normalize the timestamp images by the size
of the time window for the image, so that the maximum value
in the last two channels is 1. This has the effect of both
scaling the timestamps to be on the same order of magnitude
as the event counts, and ensuring that fast motions with a
small time window and slow motions with a large time window
that generate similar displacements have similar inputs to the
network.

B. Self-Supervised Loss

Due to the fact that there is a relatively small amount of
labeled data for event based cameras as compared to traditional
cameras, it is difficult to generate a sufficient dataset for a
supervised learning method. Instead, we utilize the fact that the
DAVIS camera generates synchronized events and grayscale
images to perform self-supervised learning using the grayscale
images in the loss. At training time, the network is provided
with the event timestamp images, as well as a pair of grayscale
images, occurring immediately before and after the event time
window. Only the event timestamp images are passed into the
network, which predicts a per pixel flow. The grayscale images
are then used to apply a loss over the predicted flow in a self-
supervised manner.

The overall loss function used follows traditional variational
methods for estimating optical flow, and consists of a photo-
metric and a smoothness loss.

To compute the photometric loss, the flow is used to warp
the second image to the first image using bilinear sampling, as
described in Yu et al. [28]. The photometric loss, then, aims
to minimize the difference in intensity between the warped
second image and the first image:

gphotomelric(ua U3 It, It+1) =
Z pLi(@,y) — Lipa(z + ul(z,y),y + v(2,9)))
z,y

3)

where p is the Charbonnier loss function, a common loss in
the optical flow literature used for outlier rejection (Sun et al.
[27]):

p(x) =(x? + 4)* “4)

As we are using frame based images for supervision, this
method is susceptible to image-based issues such as the
aperture problem. Thus, we follow the other works in the
frame based domain, and apply a regularizer in the form of
a smoothness loss. The smoothness loss aims to regularize
the output flow by minimizing the difference in flow between

neighboring pixels horizontally, vertically and diagonally.

gsmoolhness(uv ’U) =

SN plulz,y) —uli,§) + po(a,y)

=,y i,5EN (z,y)

- U(Z'a .7))
&)

where A is the set of neighbors around (z,y).
The total loss is the weighted sum of the photometric and
smoothness losses:

Ltolal :éphotometric + /\Esmoolhness (6)

C. Network Architecture

The EV-FlowNet architecture very closely resembles the
encoder-decoder networks such as the stacked hourglass
(Newell et al. [19]) and the U-Net (Ronneberger et al. [25]),
and is illustrated in Fig. 3. The input event image is passed
through 4 strided convolution layers, with output channels dou-
bling each time. The resulting activations are passed through
2 residual blocks, and then four upsample convolution layers,
where the activations are upsampled using nearest neighbor
resampling and then convolved, to obtain a final flow estimate.
At each upsample convolution layer, there is also a skip con-
nection from the corresponding strided convolution layer, as
well as another convolution layer to produce an intermediate,
lower resolution, flow estimate, which is concatenated with the
activations from the upsample convolution. The loss in (6) is
then applied to each intermediate flow by downsampling the
grayscale images. The tanh function is used as the activation
function for all of the flow predictions.

IV. OPTICAL FLOW DATASET

For ground truth evaluation only, we generated a novel
dataset for ground truth optical flow using the data provided
in the Multi-Vehicle Stereo Event Camera dataset (MVSEC)
by Zhu et al. [30]. The dataset contains stereo event camera
data in a number of flying, driving and handheld scenes. In
addition, the dataset provides ground truth poses and depths
maps for each event camera, which we have used to generate
reference ground truth optical flow.

From the pose (consisting of rotation R and translation p)
of the camera at time ¢y and ¢;, we make a linear velocity
assumption, and estimate velocity and angular velocity using
numerical differentiation:

(p(t1) — p(to))

V5T e ™
wh :% (8)

where logm is the matrix logarithm, and w” converts the vector
w into the corresponding skew symmetric matrix:

0 —w, Wy
wh = w, 0 — Wy)]
—Wy Wy 0

A central moving average filter is applied to the estimated
velocities to reduce noise. We then use these velocities to

estimate the motion field, given the ground truth depths, Z, at
each undistorted pixel position:

T _ f% 0 -7 Ty
Y 0 —2 £ 1+

Finally, we scale the motion field by the time window
between each pair of images dt, and use the resulting dis-
placement as an approximation to the true optical flow for each
pixel. To apply the ground truth to the distorted images, we
shift the undistorted pixels by the flow, and apply distortion to
the shifted pixels. The distorted flow is, then, the displacement
from the original distorted position to the shifted distorted
position.

In total, we have generated ground truth optical flow for
the indoor_flying, outdoor_day and outdoor_night sequences.
In addition to using the indoor_flying and outdoor_day ground
truth sets for evaluation, we will also release all sequences as
a dataset.

—xy —x| \w
(10)

—(1+2?%) y} v

V. EMPIRICAL EVALUATION
A. Training Details

Two networks were trained on the two outdoor_day se-
quences from MVSEC. outdoor_day1 contains roughly 12000
images, and outdoor_day2 contains roughly 26000 images.
The images are captured from driving in an industrial complex
and public roads, respectively, where the two scenes are
visually very different. The motions include mostly straights
and turns, with occasional independently moving objects such
as other cars and pedestrians. The input images are cropped
to 256x256, the number of output channels at the first encoder
layer is 64 and the number of output channels in each residual
block is 512.

To increase the variation in the magnitude of the optical flow
seen at training, we randomly select images up to k images
apart in time, and all of the events that occurred between those
images. In our experiments, k € [2,4, 6,8, 10, 12]. In addition,
we randomly flip the inputs horizontally, and randomly crop
them to achieve the desired resolution.

The weight on the smoothness loss (6), J, is set to 0.5. Each
of the intermediate losses is weighted equally in the final loss.
For the Charbonnier loss (4), a was set to be 0.45 and ¢ was
set to be le-3. The Adam optimizer is used, with learning rate
initialized at le-5, and exponentially decayed every 4 epochs
by 0.8. The model is trained for 300,000 iterations, and takes
around 12 hours to train on a 16GB NVIDIA Tesla V100.

B. Ablation Studies

In addition to the described architecture (denoted EV-
FlowNet,r), we also train three other networks to test the ef-
fects of varying the input to the network, as well as increasing
the capacity of the network.

To test the contribution of each of the channels in the input,
we train two additional networks, one with only the event
counts (first two channels) as input (denoted EV-FlowNetc),

and one with only the event timestamps (last two channels) as
input (denoted EV-FlowNetg).

In addition, we tested different network capacities by train-
ing a larger model with 4 residual blocks (denoted EV-
FlowNet4r). A single forward pass takes, on average, 40ms for
the smaller network, and 48ms for the larger network, when
run on a NVIDIA GeForce GTX 1050, a laptop grade GPU.

C. Comparisons

To compare our results with other existing methods, we
tested implementations of Event-based Visual Flow by Benos-
man et al. [6], an optimization based method that works on
events, and UnFlow by Meister et al. [16], a self supervised
method that works on traditional frames.

As there is no open source code by the authors of Event-
based Visual Flow, we designed an implementation around
the method described in Rueckauer and Delbruck [26]. In
particular, we implemented the robust Local Plane Fit algo-
rithm, with a spatial window of 5x5 pixels, vanishing gradient
threshold th3 of 1e-3, and outlier distance threshold of le-2.
However, we were unable to achieve any reasonable results
on the datasets, with only very few points returning valid
flow values (< 5%), and none of the valid flow values being
visually correct. For validation, we also tested the open source
MATLAB code provided by the authors of Mueggler et al.
[18], where we received similar results. As a result, we believe
that the method was unable to generalize to the natural scenes
in the test set, and so did not include the results in this paper.

For UnFlow, we used the unsupervised model trained on
KITTI raw, and fine tuned on outdoor_day2. This model was
able to produce reasonable results on the testing sets, and we
include the results in the quantitative evaluation in Tab. 1.

D. Test Sequences

For comparison against UnFlow, we evaluated 800 frames
from the outdoor_dayl sequence as well as sequences 1 to 3
from indoor_flying. For the event input, we used all of the
events that occurred in between the two input frames.

The outdoor_dayl sequence spans between 222.4s and
240.4s. This section was chosen as the grayscale images were
consistently bright, and there is minimal shaking of the camera
(the provided poses are smoothed and do not capture shaking
of the camera if the vehicle hits a bump in the road). In order
to avoid conflicts between training and testing data, a model
trained only using data from outdoor_day2 was used, which
is visually significantly different from outdoor_day]l.

The three indoor_flying sequences total roughly 240s, and
feature a significantly different indoor scene, containing ver-
tical and backward motions, which were previously unseen in
the driving scenes. A model trained on both outdoor_dayl
and outdoor_day2 data was used for evaluation on these
sequences. We avoided fine tuning on the flying sequences,
as the sequences are in one room, and all relatively similar
in visual appearance. As a result, it would be very easy for a
network to overfit the environment. Sequence 4 was omitted
as the majority of the view was just the floor, and so had a
relatively small amount of useful data for evaluation.

Grayscale Image Event Timestamps

#

Ground Truth Flow

UnFlow Flow EV-FlowNet,g Flow

Figure 4: Qualitative results from evaluation. Examples were collected from outdoor_day1, outdoor_day1, indoor_flyingl and

indoor_{flying2, in that order. Best viewed in color.

E. Metrics

For each method and sequence, we compute the average
endpoint error (AEE), defined as as the distance between the
endpoints of the predicted and ground truth flow vectors:

AEE = Z (U(xa y)pmd) o (u(:(‘, f‘/)gt)
oy U(IE, y)pred ’U(I, y)gt

In addition, we follow the KITTI flow 2015 benchmark and
report the percentage of points with EE greater than 3 pixels
and 5% of the magnitude of the flow vector. Similarly to
KITTIL 3 pixels is roughly the maximum error observed when
warping the grayscale images according to the ground truth
flow, and comparing against the next image.

However, as the input event image is relatively sparse, the
network only returns accurate flow on points with events. As

Y

2

a result, we limit the computation of AEE to pixels in which
at least one event was observed. For consistency, this is done
with a mask applied to the EE for both event-based and frame-
based methods. We also mask out any points for which we
have no ground truth flow (i.e. regions with no ground truth
depth). In practice, this results in the error being computed
over 20-30% of the pixels in each image.

In order to vary the magnitude of flow observed for each
test, we run two evaluations per sequence: one with input
frames and corresponding events that are one frame apart, and
one with frames and events four frames apart. We outline the
results in Tab. I.

dt=1 frame outdoor driving

indoor flyingl

indoor flying2 indoor flying3

AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier
UnFlow 0.97 1.6 0.50 0.1 0.70 1.0 0.55 0.0
EV-FlowNetc 0.49 0.2 1.30 6.8 2.34 259 2.06 222
EV-FlowNetr 0.52 0.2 1.20 4.5 2.15 22.6 1.91 19.8
EV-FlowNet,g ~ 0.49 0.2 1.03 22 1.72 15.1 1.53 11.9
EV-FlowNetyr ~ 0.49 0.2 1.14 3.5 2.10 21.0 1.85 18.8
dt=4 frames outdoor driving indoor flyingl indoor flying2 indoor flying3
AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier
UnFlow 2.95 40.0 3.81 56.1 6.22 79.5 1.96 18.2
EV-FlowNetc 1.41 10.8 3.22 414 5.30 60.1 4.68 57.0
EV-FlowNetr 1.34 8.4 2.53 33.7 4.40 51.9 391 47.1
EV-FlowNet,g ~ 1.23 7.3 2.25 24.7 4.05 45.3 3.45 39.7
EV-FlowNetyg ~ 1.33 9.4 2.75 335 4.82 53.3 4.30 47.8

Table I: Quantitative evaluation of each model on the MVSEC optical flow ground truth. Average end-point error (AEE)
and percentage of pixels with EE above 3 and 5% of the magnitude of the flow vector(% Outlier) are presented for each
method (lower is better for both), with evaluation run with image pairs 1 frame apart (top) and 4 frames apart (bottom). The
EV-FlowNet methods are: Counts only (EV-FlowNet,), Timestamps only (EV-FlowNetr), 2 Residual blocks (EV-FlowNet,g)
and 4 Residual blocks (EV-FlowNetg).

Figure 5: Common failure case, where fast motion causes
recent timestamps to overwrite older pixels nearby, resulting
in incorrect predictions. Best viewed in color.

F. Results

1) Qualitative Results: In addition to the quantitative anal-
ysis provided, we provide qualitative results in Fig. 4. In these
results, and throughout the test set, the predicted flow always
closely follows the ground truth. As the event input is quite
sparse, our network tends to predict zero flow in areas without
events. This is consistent with the photometric loss, as areas
without events are typically low texture areas, where there is
little change in intensity within each pixel neighborhood. In
practice, the useful flow can be extracted by only using flow
predictions at points with events. On the other hand, while
UnFlow typically performs reasonably on the high texture
regions, the results on low texture regions are very noisy.

2) Ablation Study Results: From the results of the ablation
studies in Tab. I, EV-FlowNetc (counts only) performed the
worst. This aligns with our intuition, as the only information
attainable from the counts is from motion blur effects, which
is a weak signal on its own. EV-FlowNetr (timestamps only)
performs better for most tests, as the timestamps carry infor-
mation about the ordering between neighboring events, as well
as the magnitude of the velocity. However, the timestamp only
network fails when there is significant noise in the image, or
when fast motion results in more recent timestamps covering
all of the older ones. This is illustrated in Fig 5, where even the
full network struggles to predict the flow in a region dominated
by recent timestamps. Overall, the combined models clearly

perform better, likely as the event counts carry information
about the importance of each pixel. Pixels with few events are
likely to be just noise, while pixels with many events are more
likely to carry useful information. Somewhat surprisingly, the
larger network, EV-FlowNetyr actually performs worse than
the smaller one, EV-FlowNet,g. A possible explanation is that
the larger capacity network learned to overfit the training sets,
and so did not generalize as well to the test sets, which
were significantly different. For extra validation, both EV-
FlowNet,r and EV-FlowNetsz were trained for an additional
200,000 iterations, with no appreciable improvements. It is
likely, however, that, given more data, the larger model would
perform better.

3) Comparison Results: From our experiments, we found
that the UnFlow network tends to predict roughly correct flows
for most inputs, but tends to be very noisy in low texture areas
of the image. The sparse nature of the events is a benefit in
these regions, as the lack of events there would cause the
network to predict no flow, instead of an incorrect output.

In general, EV-FlowNet performed better on the dt=4
tests, while worse on the dt=1 tests (with the exception
of outdoor_drivingl and indoor_flying3). We observed that
UnFlow typically performed better in situations with very
small or very large motion. In these situations, there are either
few events as input, or so many events that the image is
overriden by recent timestamps. However, this is a problem
intrinsic to the testing process, as the time window is defined
by the image frame rate. In practice, these problems can
be avoided by choosing time windows large enough so that
sufficient information is available while avoiding saturating
the event image. One possible solution to this would be to
have a fixed number of events in the window each time.

VI. CONCLUSION

In this work, we have presented a novel design for a
neural network architecture that is able to accurately predict
optical flow from events alone. Due to the method’s self-
supervised nature, the network can be trained without any

manual labeling, simply by recording data from the camera.
We show that the predictions generalize beyond hand designed
laboratory scenes to natural ones, and that the method is
competitive with state of the art frame-based self supervised
methods. We hope that this work will provide not only a novel
method for flow estimation, but also a paradigm for applying
other self-supervised learning methods to event cameras in
the future. For future work, we hope to incorporate additional
losses that provide supervisory signals from event data alone,
to expose the network to scenes that are challenging for
traditional frame-based cameras, such as those with high speed
motions or challenging lighting.

ACKNOWLEDGMENTS

Thanks to Tobi Delbruck and the team at iniLabs for
providing and supporting the DAVIS-346b cameras. We also
gratefully appreciate support through the following grants:
NSF-1IS-1703319, NSF-11P-1439681 (I/UCRC), ARL RCTA
WO11NF-10-2-0016, and the DARPA FLA program.

REFERENCES

[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano,
Jeffrey McKinstry, Carmelo Di Nolfo, Tapan Nayak,
Alexander Andreopoulos, Guillaume Garreau, Marcela
Mendoza, et al. A Low Power, Fully Event-Based
Gesture Recognition System. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 7243-7252, 2017.

[2] Patrick Bardow, Andrew J Davison, and Stefan Leuteneg-
ger. Simultaneous optical flow and intensity estimation
from an event camera. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 884-892, 2016.

[3] Francisco Barranco, Cornelia Fermiiller, and Yiannis
Aloimonos. Contour motion estimation for asynchronous
event-driven cameras. Proceedings of the IEEE, 102(10):
1537-1556, 2014.

[4] Francisco Barranco, Cornelia Fermuller, Yiannis Aloi-
monos, and Tobi Delbruck. A dataset for visual navi-
gation with neuromorphic methods. Frontiers in Neuro-
science, 10:49, 2016.

[5] Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara
Bartolozzi, and Mandyam Srinivasan. Asynchronous
frameless event-based optical flow. Neural Networks, 27:
32-37, 2012.

[6] Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-
Hoi Ieng, and Chiara Bartolozzi. Event-based visual
flow. IEEE transactions on neural networks and learning
systems, 25(2):407-417, 2014.

[7] Jonathan Binas, Daniel Neil, Shih-Chii Liu, and Tobi
Delbriick. DDD17: End-To-End DAVIS Driving Dataset.
CoRR, abs/1711.01458, 2017.

[8] Christian Brandli, Raphael Berner, Minhao Yang, Shih-
Chii Liu, and Tobi Delbruck. A 240x 180 130 db 3 us
latency global shutter spatiotemporal vision sensor. [EEE
Journal of Solid-State Circuits, 49(10):2333-2341, 2014.

[9] Tobias Brosch, Stephan Tschechne, and Heiko Neumann.
On event-based optical flow detection. Frontiers in
neuroscience, 9:137, 2015.

Rohan Ghosh, Abhishek Mishra, Garrick Orchard, and

Nitish V Thakor. Real-time object recognition and

orientation estimation using an event-based camera and

CNN. In Biomedical Circuits and Systems Conference

(BioCAS), 2014 IEEE, pages 544-547. IEEE, 2014.

Yuhuang Hu, Hongjie Liu, Michael Pfeiffer, and Tobi

Delbruck. DVS benchmark datasets for object tracking,

action recognition, and object recognition. Frontiers in

Neuroscience, 10, 2016.

[12] Xavier Lagorce, Garrick Orchard, Francesco Galluppi,
Bertram E Shi, and Ryad B Benosman. HOTS: a hierar-
chy of event-based time-surfaces for pattern recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(7):1346-1359, 2017.

[13] Wei-Sheng Lai, Jia-Bin Huang, and Ming-Hsuan Yang.
Semi-supervised learning for optical flow with generative
adversarial networks. In Advances in Neural Information
Processing Systems, pages 353-363, 2017.

[14] Min Liu and Tobi Delbruck. Abmof: A novel optical

flow algorithm for dynamic vision sensors. arXiv preprint

arXiv:1805.03988, 2018.

Bruce D Lucas, Takeo Kanade, et al. An iterative

image registration technique with an application to stereo

vision. 1981.

Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow:

Unsupervised Learning of Optical Flow with a Bidirec-

tional Census Loss. arXiv preprint arXiv:1711.07837,

2017.

Diederik Paul Moeys, Federico Corradi, Emmett Kerr,

Philip Vance, Gautham Das, Daniel Neil, Dermot Kerr,

and Tobi Delbriick. Steering a predator robot using

a mixed frame/event-driven convolutional neural net-

work. In Event-based Control, Communication, and

Signal Processing (EBCCSP), 2016 Second International

Conference on, pages 1-8. IEEE, 2016.

[18] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi

Delbruck, and Davide Scaramuzza. The event-camera

dataset and simulator: Event-based data for pose esti-

mation, visual odometry, and SLAM. The International

Journal of Robotics Research, 36(2):142-149, 2017.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked

hourglass networks for human pose estimation. In

European Conference on Computer Vision, pages 483—

499. Springer, 2016.

Anh Nguyen, Thanh-Toan Do, Darwin G Caldwell, and

Nikos G Tsagarakis. Real-Time Pose Estimation for

Event Cameras with Stacked Spatial LSTM Networks.

arXiv preprint arXiv:1708.09011, 2017.

Garrick Orchard and Ralph Etienne-Cummings. Bioin-

spired visual motion estimation. Proceedings of the

IEEE, 102(10):1520-1536, 2014.

[22] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen,
and Nitish Thakor. Converting static image datasets to

(10]

(11]

[15]

(16]

(17]

(19]

(20]

(21]

[23]

[24]

[25]

[26]

spiking neuromorphic datasets using saccades. Frontiers
in neuroscience, 9, 2015.

Paul KJ Park, Baeck Hwan Cho, Jin Man Park, Kyoobin
Lee, Ha Young Kim, Hyo Ah Kang, Hyun Goo Lee,
Jooyeon Woo, Yohan Roh, Won Jo Lee, et al. Per-
formance improvement of deep learning based gesture
recognition using spatiotemporal demosaicing technique.
In Image Processing (ICIP), 2016 IEEE International
Conference on, pages 1624-1628. IEEE, 2016.

Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang
Yang, and Hongyuan Zha. Unsupervised Deep Learning
for Optical Flow Estimation. In AAAI, pages 1495-1501,
2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pages 234-241. Springer, 2015.

Bodo Rueckauer and Tobi Delbruck. Evaluation of event-
based algorithms for optical flow with ground-truth from
inertial measurement sensor. Frontiers in neuroscience,
10, 2016.

[27]

(28]

[29]

(30]

(31]

Deqing Sun, Stefan Roth, and Michael J Black. A
quantitative analysis of current practices in optical flow
estimation and the principles behind them. International
Journal of Computer Vision, 106(2):115-137, 2014.
Jason J Yu, Adam W Harley, and Konstantinos G Der-
panis. Back to basics: Unsupervised learning of optical
flow via brightness constancy and motion smoothness.
In Computer Vision—-ECCV 2016 Workshops, pages 3—
10. Springer, 2016.

Alex Zihao Zhu, Nikolay Atanasov, and Kostas Dani-
ilidis. Event-based feature tracking with probabilistic
data association. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, pages 4465—
4470. IEEE, 2017.

Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd
Pfrommer, Vijay Kumar, and Kostas Daniilidis. The
multi vehicle stereo event camera dataset: An event
camera dataset for 3D perception. IEEE Robotics and
Automation Letters, 3(3):2032-2039, 2018.

Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexan-
der G Hauptmann. Guided optical flow learning. arXiv
preprint arXiv:1702.02295, 2017.

