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ABSTRACT

We present a framework for spatio-temporal (ST) data modeling,
analysis, and forecasting, with a focus on data that is sparse in space
and time. Our multi-scaled framework couples two components: a
self-exciting point process that models the macroscale statistical
behaviors of the ST data and a graph structured recurrent neural
network (GSRNN) to discover the microscale patterns of the ST
data on the inferred graph. This novel deep neural network (DNN)
incorporates the real time interactions of the graph nodes to enable
more accurate real time forecasting. The effectiveness of our method
is demonstrated on both crime and traffic forecasting.
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1 INTRODUCTION

Accurate spatio-temporal (ST) data forecasting is one of the central
tasks for artificial intelligence with many practical applications. For
instance, accurate crime forecasting can be used to prevent criminal
behavior, and forecasting traffic is of great importance for urban
transportation system. Forecasting the ST distribution effectively
is quite challenging, especially at hourly or even finer temporal
scales in micro-geographic regions. The task becomes even harder
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when the data is spatially and/or temporally sparse. There are many
recent efforts devoted to quantitative study of ST data, both from
the perspective of statistical modeling of macro-scale properties
and deep learning based approximation of micro-scale phenomena.
In [15], Mohler et al. pioneered the use of the Hawkes process (HP)
to predict crime, and recent field trials show that it can outperform
crime analysts, and are now used in commercial software deployed
in over 50 municipalities worldwide.

This paper builds on our previous work [21] in which we applied
ST-ResNet, along with data augmentation techniques, to forecast
crime on a small spatial scale in real time. We further showed that
the ST-ResNet can be quantized for crime forecasting with only a
negligible precision reduction [20]. Moreover, ST data forecasting
also has wide applications in computer vision [5-7, 11, 12]. Previous
CNN-based approaches for ST-data forcasting use a rectangular grid,
with temporal information represented by a histogram on the grid.
Then, a CNN is used to predict the future histogram. This prototype
is sub-optimal from two aspects. First, the geometry of a city is
usually highly irregular, resulting in the city’s spatial area taking
up a small portion of its bounding box, introducing unnecessary
redundancy in the algorithm. Moreover, the spatial sparsity is
exacerbated by the spatial grid structure. Directly applying a CNN
to fit the extreme sparse data can lead to all zero weights due to
the weight sharing of CNNs [20]. This can be alleviated by using
spatial super-resolution[20], with increased computational cost.
Moreover this lattice based data representation omits geographical
information and spatial correlation within the data itself.

In this work, we develop a framework to model sparse and un-
structured ST data. Compared to previous ad-hoc spatial partition-
ing, we introduce an ST weighted graph (STWG) to represent the
data, which automatically solves the issue caused by spatial sparsity.
This STWG carries the spatial cohesion and temporal evolution of
the data in different spatial regions over time. Unlike the fast Kro-
necker approach [17], we infer the STWG by solving a statistical
inference problem. For crime forecasting, we associate each graph
node with a time series of crime intensity in a zip code region,
where each zip code is a node of the graph. As is shown in [15], the
crime occurrence can be modeled by a multivariate Hawkes process
(MHP), where the self and mutual-exciting rates determines the
connectivity and weights of the STWG. To reduce the complexity of
the model, we enforce the graph connectivity to be sparse. To this
end, we add an additional L; regularizer to the maximal likelihood
function of MHP. The inferred STWG incorporates the macroscale
evolution of the crime time series over space and time, and is much
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Figure 1: Flow chart of the algorithm.

more flexible than the lattice representation. To perform micro-
scale forecasting of the ST data, we build a scalable graph structured
RNN (GSRNN) on the inferred graph based on the structural-RNN
(SRNN) architecture [7]. Our DNN is built by arranging RNNs in a
feed-forward manner: We first assign a cascaded long short-term
memory (LSTM) (we will explain this in the following paragraph)
to fit the time series on each node of the graph. Simultaneously,
we associate each edge of the graph with a cascaded LSTM that
receives the output from neighboring nodes along with the weights
learned from the Hawkes process. Then we feed the tensors learned
by these edge LSTMs to their terminal nodes. This arrangement of
edge and node LSTMs gives a native feed-forward structure that is
different from the classical multilayer perceptron. A neuron is the
basic building block of the latter, while our GSRNN is built with
LSTMs as basic units. The STWG representation together with the
feed-forward arranged LSTMs build the framework for ST data
forecasting. The flowchart of our framework is shown in Fig. 1.
Our contribution is summarized as follows:

e We employ a compact STWG to represent the ST sparse
unstructured data, which automatically encodes important
statistical properties of the data.

e We propose a simple data augmentation scheme to allow
DNN to approximate the temporally sparse data.

e We generalize the SRNN[7] to be bi-directional, and apply
a weighted average pooling which is more suitable for ST
data forecasting.

e We achieve remarkable performance on real time crime
and traffic forecasting at a fine-grained scale.

In section 2, we briefly review the literature of time-series for-
casting. In section 3, we describe the datasets used in this work,
including data acquisition, preprocessing, spectral and simple sta-
tistical analysis. In section 4, we present the pipeline for general
ST data forecasting, which contains STWG inference, DNN approx-
imation of the historical signals, and a data augmentation scheme.
Numerical experiments on the crime and traffic forecasting tasks
are demonstrated in sections 5 and 6, respectively. The concluding
remarks and future directions are discussed in section 7.

2 RELATED WORK

Alot of study have utilized deep learning to study the forecasting of
ST time series, most of which involves a CNN structure to capture
the spatial information, and a RNN structure to model temporal
dependency. In [8], the authors implemented CNN to extract the
features from the historical crime data, and then used a support
vector machine (SVM) to classify whether there will be crime or
not at the next time slot. Zhang et al.[22] create an ensemble of
residual networks [4], named ST-ResNet, to study and predict traffic
flow. Graph-based diffusion on RNN [14] is also proposed for traffic
forecasting. Additional applications include [7] who use the ST
graph to represent human environment interaction, and proposed
a structured RNN for semantic analysis and motion reasoning. The
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combination of video frame-wise forecasting and optical flow in-
terpolation allows for the forecasting of the dynamical process of
the robotics motion [6]. RNNs have also been combined with point
processes to study taxi and other data [2]. The closest to this work
is by Wang et al.[21], who used ST-ResNet to forecast crime on a
small spatial scale in real time.

3 DATASET DESCRIPTION AND SIMPLE
ANALYSIS

We study two different datasets: the crime and traffic data. The
former is more irregular in space and time, and hence is much more
challenging to study. In this section we describe these datasets and
introduce some preliminary analyses.

3.1 Crime Dataset

3.1.1  Data Collection and Preprocessing. We consider crime data
in Chicago (CHI) and Los Angeles (LA). In our framework, historical
crime and weather data are the key ingredients. Holiday informa-
tion, which is easy to obtain, is also included. The time intervals
studied are 1/1/2015-12/31/2015 for CHI and 1/1/2014-12/31/2015
for LA, with a time resolution of one hour. Here we provide a brief
description of the acquisition of these two critical datasets.

Weather Data. We collect the weather data from the Weather
Underground data base! through a simple web crawler. We se-
lect temperature, wind speed, and special events, including fog,
snow, rain, thunderstorm for our weather features. All data is
co-registered in time to the hour.

Crime Data. The CHI crime data is downloaded from the City
of Chicago open data portal. The LA data is provided by the LA
Police Department (LAPD). Compared to CHI data, the LA crime
data is sparser and more irregular in space. We first map the crime
data to the corresponding postal code using QGIS software [18].
A few crimes in CHI (less than 0.02%) cannot be mapped to the
correct postal code region, and we simply discard these events. For
the sake of simplicity, we only consider zip code regions with more
than 1000 crime events over the full time period. This filtering
criterion retains over 95 percent of crimes for both cities, leaving
us with 96 postal code regions in LA and 50 regions in CHL

3.1.2  Spectrum of the Crime Time Series. Figure 2 plots the
hourly crime intensities over the entire CHI and a randomly selected
zip code region. Though the time series are quite noisy, the spectrum
exhibits clear diurnal periodicity with magnitude peaked at 24
hours, as shown in Fig. 3.

3.1.3 Statistical Analysis of Crime Data. Evidence suggests that
crime is self-exciting [16], which is reflected in the fact that crime
events are clustered in time. The arrival of crimes can be modeled
as a Hawkes process (HP) [15] with a general form of conditional
intensity function:

Ay =p+a) glt—t) (1)
i<t
where A(t) is the intensity of events arrival at time ¢, p is the en-

dogenous or background intensity, which is simply modeled by

Uhttps://www.wunderground.com/
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Figure 2: Example plots of the hourly crime intensities for
the entire 2015 CHI (left) and the 2015 60620 zip code (right).
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Figure 3: Spectrum of the time series from Fig. 2. (log-scale
in y-axis.)

a constant, a is the self-exciting rate, and ¢(t) is a kernel trig-
gering function. In [24], it found that an exponential kernel, i.e.,
g(t) = wexp(—wt) where % models the average duration of the
influence of an event, is a good description of crime self-excitation.
To calibrate the HP, we use the expectation-maximisation (EM)
algorithm [19]. Simulation of the HP is done via a simple thinning
algorithm [10].

The HP fits to the crime time series in zip code region 60620 yields
Mt) = 0.7562+ 3, <1 0.4673+31.6301xexp(~31.6301%(t—t;)), which
shows that on average, each crime will have 0.4673 offspring. Fur-
thermore, we noticed that the duration of the influence is roughly
a constant over different zip code regions.

Figure 4 shows the exact and simulated crime intensities in the
first two weeks in Nov 2015 over zip code region 60620. Both the ex-
act and simulated time series demonstrate clustered behavior, which
confirms the assumption that crime time series is self-exciting, and
supports the contention that the HP is a suitable model. However,
the simulate intensity peaks are shifted relative to the exact ones.
If we use the HP to do the crime forecasting, we typically do an
ensemble average of many independent realizations of the HP, as is
shown in panel (c). However, this ensemble average differs hugely
from the exact crime time series. To capture fine scale patterns we
will use DNN.
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Figure 4: Exact and simulated hourly crime intensities for
CHI 60620 in the first two weeks of Nov 2015. (a), (b), and
(c) depict the exact, one path sampled from the HP, and the
ensemble average of 5000 paths, respectively.

3.2 Traffic Data

We also study the ST distribution of traffic data [22]. The data
contains two parts: taxi records from Beijing (TaxiBJ) and bicycle
data from New York city (BikeNYC). Basic analyse in [22] shows
periodicity, meteorological dependence, and other basic properties
of these two datasets. The time span for TaxiB] and BikeNYC are
selected time slots from 7/1/2013 to 4/10/2016 and the entire span
4/1/2014-9/30/2014, respectively. The time intervals are 30 minutes
and one hour, respectively. Both data are represented in Eulerian
representations with lattice sizes to be 32x32 and 16x8, respectively.
Traffic flow prediction using this traffic dataset will be selected as
benchmark to evaluate our model.

4 ALGORITHMS AND MODELS

Our model contains two components. The first part is a graph rep-
resentation for the ST evolution of the data, where the nodes of the
graph are selected to contain sufficient predictable signals, and the
topological structure of the graph is inferred from self-exciting point
process model. The second component is a DNN to approximate
the temporal evolution of the data, which has good generalizability.
The advantages of a graph representation are two-fold: on the one
hand, it captures the irregularity of the spatial domain; on the other
hand, it can capture versatile spatial partitioning which enables
forecasting at different spatial scales. In this section, we will present
the algorithms for modeling and forecasting the ST sparse unstruc-
tured data. The overall pipeline includes: STWG inference, data
augmentation, and the structure and algorithm to train the DNN.

4.1 STWG Representation for the ST Data

The entire city is partitioned into small pieces with each piece repre-
senting one zip code region, or other small region. This partitioning
retains geographical cohesion. In the STWG, we associate each
geographic region with one node of the graph. The inference of
the graph topological structure is done by solving the maximal
likelihood problem of the MHP. We model the time series on the
graph by the following MHP {N/‘|u = 1,2, - - - , U} with conditional
intensity functions:

Ma)) = pru+ ) @uu, gt — ), @)

iiti<t

where 1, > 0 is the background intensity of the process for the

u-th node and ¢; is the time at which the event occurred on node u;
prior to time ¢. The kernel is exponential, i.e., g(t) = wxexp(—w ).
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We calibrate the model in Eq.(2) using historical data. Let p =
(gylu = 1,2,---,U) and A = (ayy|u,u’ = 1,2,--- ,U). Suppose
we have m i.id samples {c1,c2, -, ¢} from the MHP; each is
a sequence of events observed during a time period [0, T¢]. The
events form a set of pairs (t;, u{) denoting the time ¢{ and the node
uf-th for each event. The log-likelihood of the model is:

Nne U T.
L(y,A):Z(ZlogﬂLui(tic)—Z /0 Au(t)dt). ®3)
c i=1 u=1

Similar to the work by Zhou et al. [23], to ensure the graph is
sparsely connected, we add an L; penalty, A|Al;1 = A3, lauw|, to
the log-likelihood £ in Eq.(3): Ly (i, A) = —L + A|Al;. To infer the
graph structure, we solve the optimization problem:

argmin‘u’ALA(p, A), st.p>0,and A>0,

where y > 0 and A > 0, both are defined element-wise. We solve
the above constraint optimization problem by the EM algorithm.
The L; constraint is solved by a split-Bregman liked algorithm [3].
For a fixed parameter w, we iterate between the following two steps

until convergence is reached:
o E-Step: Compute the exogenous or endogenous probabil-

ity:

u(kL)

Ui

pii = r — )
W+ il g0eg 1)

k
)

T TS ——
/tflic)+ a9t — 1)

e M-Step: Update parameters:

1 S
,Uakﬂ):m Z Z Pii

¢ i=Luj=u

*) ¢\
(k+1) _ a,u 2 Zi:uf:u Zj<i,uj?:u’ Pij
uu’ T.—1¢
Zc Zj:u;:u’ /0 ! g(t)dt
aikl;l) = shrink; (aikutl)).

The above EM algorithm is of quadratic scaling, which is infeasible
for our datasets. To reduce the algorithm’s complexity, instead
of considering all events before a given time slot, we do a simple
truncation in the E-step based on the localization of the exponential
kernel. This truncation simplifies the algorithm from quadratic
scaling to almost linear scaling. In the inference of the STWG, we
set the hyper-parameter A to be 0.01.

a

4.1.1 Results on STWG Inference. Due to the high condition
number of the log-likelihood function with respect to the parameter
w [24], we perform a simple grid search to find the optimal w (see
Fig. 5). The likelihood functions are maximized when w is 20 and
18 for CHI and LA, respectively. The similarity between the optimal
duration parameters for Chicago and Los Angeles suggest that the
duration of the self-excitation is an intrinsic property of crime. The
optimal self-excitation parameters sets A for two cities are plotted in
Fig.6. The diagonal in Fig. 6 reflects the intensity of self-excitation
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Figure 5: Plot of w vs log-likelihood. The maximum value
occurs at w = 20 and w = 18 respectively for CHI and LA.
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Figure 6: Image plot of the self and mutual excitation matrix
A for the cities CHI and LA.

within a single node of the graph (i.e., zip code region). Off-diagonal
entries reflects self-excitation of crime between nodes of the graph.
Only nodes that demonstrate self-excitation above a threshold theta
are connected by an edge in the final graph.

4.1.2  Effectiveness of STWG Inference. We validate the efficacy
of the inference algorithm on a synthetic problem. To generate the
synthetic data, a random graph G is first generated with a fixed level
of sparsity on a fixed set of nodesi = 1,...,U. A MHP E is then
simulated for a fixed amount of time T with randomly generated
background rate y;, and excitation rates a;, j supported on the graph
G. We use the aforementioned algorithm to infer the coefficients
dj j. To obtain the underlying graph structure, there is an edge
connected from node j to i if and only if Sign(d;, j — 6) > 0, where 0
is a threshold that determines the sparsity of the inferred weighted
graph. To evaluate the efficacy of the inference algorithm, we vary
the threshold 6 to obtain a ROC curve, where a connection between
two nodes i and j is treated as positive and vice versa. The area
under the ROC curve (AUC) will be a metric on the performance of
the algorithm.

For the experiments, we generate a directed and fully connected
graph G with N = 30 nodes, and keep each edge e;; with prob-
ability s = 0.1,0.2,...,0.5, where s denotes the sparsity level
of the graph. We generate at random p; ~ Unif([0,0.1]) and
aj;j ~ Unif([0.02,0.1]) for i,j connected in G, and 0 otherwise.
And we check the stability condition in the spectral norm where
p(A) < 1. A HP is then simulated with T = 3 x 10%. In crime net-
works, it is reasonable to assume that the interactions a;; are local,
and hence we may start out with a reduced set of edges during the
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Table 1: AUC of the ROC curve for the graph inference prob-
lem. Rows denote the sparsity of the ground truth graph,
columns are different prior knowledge for network struc-
ture for the inference algorithm.

Prior/Sparsity | 0.1 0.2 0.3 0.4 0.5
Null 0.900 | 0.897 | 0.884 | 0.915 | 0.910
GT + 200 0.989 | 0.987 | 0.982 | 0.981 | 0.986
GT + 400 0.969 | 0.956 | 0.962 | 0.947 | 0.954

(b) GT+200

(c) GT+400

Figure 7: Visualization of the ground truth and inferred
graph for the synthetic data. The inferred graphs were ob-
tained by thresholding a;; to match the sparsity level of the
original network. The true positives, true negatives, false
positives, false negatives are color coded in yellow, blue, red,
green respectively.

inference procedure to increase accuracy of the network recovery.
Therefore, in addition to recovering the network structure from a
fully connected graph, we also test the inference algorithm on a
set of reduced edges that contain the ground truth. For simplicity,
we randomly choose 200 and 400 edges from the graph and add
them to the true network structure at initialization. We observe
that the inference algorithm is able to obtain an AUC of around 0.9
across all levels of sparsity, with large increases in performance if
the graph prior is narrower.

4.2 Data Augmentation - Single Node Study

We consider data augmentation to boost the performance of the
DNN for sparse data forecasting, with single zip code crime forecast-
ing as an illustration. In our previous work [20, 21], when dealing
with crime forecasting on a square grid, we noticed the DNN poorly
approximates the crime intensity function. However, it does ap-
proximate well the diurnal cumulated crime intensity, which has
better regularity. According to the universal approximation theo-
rem [1], the DNN can approximate any continuous function with
arbitrary accuracy. However, the crime intensity time series is far
from a continuous function due to its spatial and temporal sparsity
and stochasticity. Mathematically, consider the diurnal time se-
ries {x(¢)} with period T. We map {x(¢)} to its diurnal cumulative
function via the following periodic mapping:

t
y(t) = / () = I(x0), ()

for t € [nT, (n + 1)T), this map is one-to-one.

[Input} {LSTM} [LSTM} { FC } {Output

Figure 8: The architecture of the cascaded LSTM that used
for single node data modeling.
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Figure 9: Histogram of the hourly crime counts in zip code
regions 60620, for the year 2015, and 90003, for 2014-2015.

We also super-resolve the diurnal cumulated time series {y(t)} to
constract an augmented time series {(T)} on half-hour increments
via linear interpolation. The new time series has a period of T =
2T — 1. In the time interval [nT, (n + 1)T) it is defined as:

R y(nT + k) t =nl + 2k
9(t) =47 R (5)
sly(nT + k) +y(nT +k +1)] t=nT + 2k +1,
fork =0,1,---,T — 1. It is worth noting the above linear interpo-

lation is completely local. In the following DNN training procedure
it will not lead to information leak.

4.2.1 Cascaded LSTM for Single Node Crime Modeling. The ar-
chitecture of the DNN used to model single node crime is a simple
cascaded LSTM as depicted in Fig.8. The architecture contains two
LSTM layers and one fully-connected (FC) layer, and represents the
following function:

DNN(x) = FC o LSTM; o LSTM3(x), (6)

where x is the input. Generally, we can cascade N layers of LSTM.

In the above cascaded architecture, all the LSTMs are equipped
with 128 dimensional outputs except the first one with 64 dimen-
sions. An FC layer maps the input tensor to the target value. To
avoid information leak when applying DNN to the super-resolved
time series, we skip the value at the nearest previous time slot in
both training and generalization.

Before fitting the historical crime intensities by the cascaded
LSTMs, we first look at histograms of the crime intensities (Fig.9).
The 99th percentiles of crime distributions are each less than six
crimes. This suggests that local crime intensity is important and
one cannot use a simple binary classifier.

We adopt the two layers of LSTMs cascade, which is demon-
strated in Fig.8 to fit the single node crime time series. To train
the DNNss for a single node, we run 200 epochs with the ADAM
optimizer [9], starting from the initial learning rate 0.01 with decay
rate le — 6. Fig. 10 shows the decay of the loss function for the raw
crime time series and cumulated super-resolved (CS) time series in
panels (a) and (b), respectively. It can be seen from the figure that
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Figure 10: Training procedures of the different scenarios on
the node 90003. Evolution of the training and validation loss
on the raw data and on the augmented data.

DNN performs much better on the regularized time series than the
raw one, i.e. the loss function reaches a much lower equilibrium.
To show the advantage of the generalization ability of the DNN,
we compare it with a few other approaches, including autoregres-
sive integrated moving average (ARIMA), K-nearest neighbors
(KNN), and historical average (HA). For sparse data, we fit the
historical data and perform one step forecasting in the same man-
ner as our previous work [20]. The root mean squared error (RMSE)
between the exact and predicted crime intensities and optimal pa-
rameters for the corresponding model are listed in Table 2. Under
the RMSE measure, DNN, especially on the augmented data, yields
higher accuracy. The small RMSE reflects the fact that DNN approx-
imates the crime time series with good generalization ability.

Table 2: RMSE between the exact and predicted crime inten-
sities over the last two months of 2015, in the region with
zip code 90003. DNN(CS) denotes DNN model applied to the
augmented data. Comparison with more advanced baseline
models will be given in the rest of this paper.

Methods RMSE (number of crimes)
DNN 0.858
DNN (CS) 0.491
ARIMA(25, 0, 26) 0.941
KNN (k=1) 1.193
HA 0.904

However, the simple RMSE measure is insufficient to measure
error appropriately for sparse data. Do HA and ARIMA really work
better than KNN for crime forecasting? HA ignores the day to day
variation, while ARIMA simply predicts the number of crimes to
be all zeros after flooring. KNN predicts more useful information
than both ARIMA and HA for the crime time series. We propose
the following measure, which we call a “precision matrix” (do not
confuse it with the one used in statistics) B be defined as:

Po - Pin
B=l i
ﬁmo e ,an
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Nij . . .
where f;; = Ti]) where N; = #{t|x; > i}, and N;; = #{t|x; >

iand(xi7 > iorx‘;)_1 >ior--- orx‘;)_j+1 >} fori=1,2,---m
j=0,1,--- ,m. Here x; and xf are the exact and predicted number
of crimes at time ¢. This means for a given threshold number of
crimes i, we count the number of time intervals in the testing set at
which the predicted and exact number of crimes both exceed this
threshold i, with an allowable delay j, i.e., the prediction is allowed
within j hours earlier than the exact time.

This measure provides much better guidance for crime patrol
strategies. For instance, if we forecast more crime to occur in a
given patrol area, then we can assign more police resources to that
area. This metric allows for a few hours of delay but penalizes
against crimes happening earlier than predicted, due to the time
irreversibility of forecasting. For the crime time series in nodes
60620 and 90003, we select m = 3, n = 2and m = 5, n = 4,
respectively, based on the sparsity level. Fig. 11 shows the precision
matrices of the crime prediction by different methods, confirming
that DNN together with data augmentation gives accurate crime
forecasting. Meanwhile, the KNN also gives better results compared
to other methods except the DNN with data augmentation. This
corrects potential inaccuracies in the RMSE measure and confirms
the spatial correlation of the crime time series.

REMARK 1. The precision matrix B still has an issue in the case of
over-prediction. Namely, this measure fails to penalize cases where
the prediction is higher than the ground truth. However in those cases,
the RMSE would typically be very large. Therefore, to determine if the
sparse data is well predicted or not, we should examine both metrics.

Another merit of the DNN is that with sufficient training data,
as the network goes deeper, better generalization accuracy can be
achieved. To validate this, we test the 2 and 3 layers LSTM cascades
on the node 60620 (see Fig. 12).

4.3 GSRNN for ST Forecasting

Our implementation of the GSRNN is based on the SRNN imple-
mentation in [7] (Fig.13), but differs in these key aspects: 1) We
generalize the SRNN model to a directed graph, which is more
suited to the ST data forecasting problem. 2) We use a weighted
sum pooling based on the self-exciting weights from the MHP in-
ference. 3) Due to the large number of nodes in the graph, we
subsample each class of nodes for scalability.

To be more specific, suppose i = 1,2,...N are the nodes of
the graph, and X;(t) denotes value of the time series at time ¢ for
node i. We first deploy the STWG inference procedure to obtain the
weighted directed graph, with weight on the edge connecting node i
and j denoted as w;;. With the same setup as in [7], we partition the
graph nodes to K groups according to some criterion. We construct
an “input RNN” E}c for each class k, and an “edge RNN” E12< ! for each
class pair (k, ) if k # I. For the forward pass, if node i l;elongs to
class k, we feed a set of historical data {X;(t —p)|p = n1,nz, ....,nm}
to E}C and the data from neighboring nodes of class [ to ElzC ;- In
contrast to [7], we use a weighted sum pooling for the edge iﬁputs,
ie, X{ = X ci(j)=k Wi,jXj- This pooling has shown to be more
suitable for ST data forecasting. Finally, the output from the two
RNNs are concatenated and fed to a node RNN le, which then
predicts the number of events at time t. For each epoch during
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Figure 11: Precision matrix of the different predictors’s performance in forecasting crime in 90003.
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Figure 12: Precision matrix of the cascaded two and three
layers LSTMs for crime zip code 60620, with RMSE.
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Figure 13: Figure a) shows an example STWG inferred via
the HP, where each color (red and green) denotes the class to
which the node belongs. Figure b) depicts the feed-forward
structure of our RNN network on a single node (node No.6).

training, we can also sample the nodes to maintain scalability when
dealing with large graphs. The sampling can be done non-uniformly
across groups, e.g., sampling more often groups that contribute
higher to the overall error.

The reason for grouping nodes together instead of training a
separate network per node is because signals from different nodes
are often qualitatively similar, and training jointly avoids overfitting
and improves generalization. This is shown in Table 3, 4, and 5,
where jointly training on groups leads to smaller test errors.

5 ST CRIME FORECASTING RESULTS

We compare two naive strategies that do not utilize the STWG
information against the GSRNN model. The first, denoted by Single
Node, trains a separate LSTM model on each individual zip code.
The second, denoted as Joint Training, organizes the zip code re-
gions in three groups according to the average crime rate (Groupl
contains the zip code regions with lowest crime rate, and so forth.).
The RNN is trained jointly for each group. The grouping strategy is

Algorithm 1 GSRNN for ST Forecasting.

Input: Input crime intensity {x;(t)}}_,, for allnodesi =1...N.
Output: Predicted crime intensity x; (i) at time slot t = n+ 1 for
all nodes i.

Step 1: Infer the mutual excitation coefficient using the Hawkes
model w;; for the multivariate time series x;(i), and set as graph
weights.

Step 2: Partition the nodes to K classes according to total crime
count.

Step 3: Preprocess each time series x;(i) by apply superresolu-
tion and integration as in Eqns .(4) and (5).

Step 4: Construct GSRNN model where the edge RNN outputs
are pooled via a weighted sum 3. ¢j(j)=¢ wijx;.

Step 5: Train network via ADAM, optionally subsample the
nodes in each class for efficiency.

Step 6: Apply the inverse maps to the data augmentation to
recover the predicted crime intensity at the time n + 1.

chosen for its simplicity, However, other grouping methods such
as geographic location can also be considered as well, and

To construct the STWG used in the GSRNN model, a K-nearest
neighbor graph of K = 15 is used as the initial sparse structure for
the MHP inference algorithm. The obtained self excitation rates
a;j are further thresholded to reach a sparsity rate of 0.1, and then

. a
normalized. Namely, w;; = i

For both single node and joint training, a 2-layer LSTM with 128
and 64 units is used, where a dropout rate of 0.2 is applied to the
output of each layer. For the GSRNN model, a 64/128 unit single
layer LSTM is used for the edge/node RNN, respectively.

All models are trained using the ADAM optimizer with a learning
rate of 0.001 and other default parameters. We compare the RMSE
in both CDF (diurnal cumulated time series) and PDF (raw time
series) of the predictions. For the LA Data, we test on the last two
months, and use the rest for training. For CHI we test on the last
one month, and use the rest for training. See Tables 3 and 4.

We observe that Joint Training leads to a boost in performance
compared to the Single Node approach, indicating that the group-
ing leads to less overfitting. Moreover, adding the bidirectional
graph leads to a further performance increase. Theses conclusions
are consistent across the stratified groups as well. The precision
matrices (thresholded to three in both number of crimes and delay)
averaged over all the nodes for LA and CHI are plotted in Fig. 14,
respectively. Figure 15 shows the predicted and exact crime time
series over two graph nodes.
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Table 3: Average RMSE on for LA Crime Data. Left: RMSE
on CDF, Right: RMSE on PDF.

Single Node | Joint Training | GSRNN
Group 1 | 0.108/0.113 0.062/0.075 0.059/0.078
Group 2 | 0.154/0.165 0.102/0.124 0.082/0.109
Group 3 | 0.235/0.251 0.168/0.191 0.144/0.183
Average | 0.174/0.185 0.120/0.140 0.103/0.131

Table 4: Average RMSE on for CHI Crime Data. Left: RMSE
on CDF, Right: RMSE on PDF. Unit: number of crimes.

Single Node | Joint Training | GSRNN
Group 1 | 0.174/0.166 0.204/0.143 0.102/0.108
Group 2 | 0.381/0.348 0.153/0.133 0.181/0.197
Group 3 | 0.699/0.697 0.413/0.495 0.382/0.412
Average | 0.482/0.471 0.286/0.317 0.258/0.278
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Figure 14: Precision matrix of GSRNN for Los Angeles and
Chicago averaged across top all zipcodes with at least one
hourly time slot containing more than 3 crimes.
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Figure 15: Panels a), b) plot snapshots of the predicted vs
exact hourly crime rate for CHI and LA data.

6 ST TRAFFIC FORECASTING RESULTS

We test the method on two public datasets for traffic forecasting [22].

The BikeNYC and TaxiB] datasets are both embedded in rectangular
bounding boxes, forming a rectangular grid of size 32 x 32 and
16 x 8 respectively. We consider each pixel in the spatial grid
as a graph node, and connect each node with its four immediate
neighbors. The graph weights are set to 1/4 for all edges, the same
as in an unweighted graph. More sophisticated methods could be

B. Wang et al..

- e

(©

Figure 16: Panels a)-c) visualize the node class assignment
from group 1 - 3 in the Beijing Traffic data respectively,
where a yellow pixel indicates the assignment of the pixel
node to its corresponding class. For example, the yellow pix-
els in panel a) are grouped to class 1.

used for graph construction and spatial partitioning to boost the
prediction accuracy, but for fair comparison we use the 4-regular
graph. Similar to the crime forcasting example, we group the nodes
to three classes by their overall cumulative traffic count. For the
New York data, there are three equal size classes, whereas in the
Beijing dataset, the classification is picked manually to reflect the
geographical structure of the Beijing road system (see Fig. 16).
For the BikeNYC, we use a two layer LSTM with (32, 64) units
and 0.2 dropout rate at each layer for the single-node model, and a
two layer LSTM with (64, 128) units and 0.2 dropout rate at each
layer for the joint and GSRNN model. For the TaxiBJ, we use a
two layer LSTM with (64,128) units for the single-node, and a three
layer LSTM model with (64, 128, 64) units for the joint model; for
the GSRNN model, the edge RNN is a two layer LSTM with (64, 128)
units, and the node RNN is a one layer LSTM with 128 units. All
models are trained using the ADAM optimizer with a learning rate
of 0.001 and other default parameters. The learning rate is halved
every 50 epochs, and a total of 500 epochs is used for training.
For evaluation, we use the Root Mean Square Error (RMSE)
across all nodes and all time intervals. The same train-test split is
used in our experiments as in [22]. The results on RMSE (Table 5)
are reported on the testing error based on the model parameters
with the best validation loss. Comparisons between the predicted
and exact traffic on two grids over a randomly selected time period
is shown in Fig. 17. On a randomly selected time slot, we plot the
predicted and exact spatial data and errors in Figs. 18 and 19.

Table 5: RMSE on for Traffic Data.

Single Joint GSRNN | STResNet | SARIMA | VAR
Node | Training [22] [22] [22]
Beijing | 23.50 19.5 16.59 16.69 26.88 22.88

NY 6.77 6.33 6.08 6.33 10.56 9.92

7 CONCLUSION

We develop a multiscale framework that contains two components:
inference of the macroscale spatial temporal graph representation
of the data, and a generalizeable graph-structured recurrent neural
network (GSRNN) to approximate the time series on the STWG.
Our GSRNN is arranged like a feed forward multilayer perceptron
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Figure 17: Comparison between predicted vs exact traffic
out-flow at a specified point x for New York and Beijing.
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Figure 18: Comparison between predicted (a) and exact (b)
traffic out-flow at t+ = 8647 for New York city over a 16 X 8

grid. Difference shown in c).
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Figure 19: Comparison between predicted (a) and exact (b)
traffic out-flow at t = 17204 for Beijing over a 32 X 32 grid.
Difference shown in (c).

with each node and each edge associated with LSTM cascades
instead of weights and activation functions. To reduce the model’s
complexity, we apply weight sharing among certain type of edges
and nodes. This specially designed deep neural network (DNN)
takes advantage of the RNN’s ability to learn the pattern of time
series, capturing real time interactions of each node to its connected
neighbors. To predict the value of the time series for a node at the
next time step, we use the information of its neighbors and real
time interactions. For the ST sparse data, we propose efficient data
augmentation techniques to boost the DNN’s performance. Our
model demonstrates remarkable results on both crime and traffic
data; for crime data we measure the performance with both root
mean squared error (RMSE) and the proposed precision matrix.
The method developed here forecasts crime on the time scale
of an hour in each US zip code region. This is in contrast to the
commercial software PredPol (www.predpol.com) that forecasts on
a smaller spatial scale and longer timescale. Due to the different
scales, the methods have different uses - PredPol is used to target

locations for patrol cars to disrupt crime whereas the method pro-
posed here might be used for resource allocation on an hourly basis
within different patrol regions.

There are a few issues that require future attention. The data
is represented as a static graph. A dynamic graph, that better
models the changing mutual influence between neighboring nodes,
could be incorporated in our framework. Furthermore, in the traffic
forecasting problem, better spatial representation of the traffic data
could also be explored.
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