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ABSTRACT

We present a framework for spatio-temporal (ST) data modeling,

analysis, and forecasting, with a focus on data that is sparse in space

and time. Our multi-scaled framework couples two components: a

self-exciting point process that models the macroscale statistical

behaviors of the ST data and a graph structured recurrent neural

network (GSRNN) to discover the microscale pa�erns of the ST

data on the inferred graph. �is novel deep neural network (DNN)

incorporates the real time interactions of the graph nodes to enable

more accurate real time forecasting. �e e�ectiveness of ourmethod

is demonstrated on both crime and tra�c forecasting.
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1 INTRODUCTION

Accurate spatio-temporal (ST) data forecasting is one of the central

tasks for arti�cial intelligence with many practical applications. For

instance, accurate crime forecasting can be used to prevent criminal

behavior, and forecasting tra�c is of great importance for urban

transportation system. Forecasting the ST distribution e�ectively

is quite challenging, especially at hourly or even �ner temporal

scales in micro-geographic regions. �e task becomes even harder
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when the data is spatially and/or temporally sparse. �ere are many

recent e�orts devoted to quantitative study of ST data, both from

the perspective of statistical modeling of macro-scale properties

and deep learning based approximation of micro-scale phenomena.

In [15], Mohler et al. pioneered the use of the Hawkes process (HP)

to predict crime, and recent �eld trials show that it can outperform

crime analysts, and are now used in commercial so�ware deployed

in over 50 municipalities worldwide.

�is paper builds on our previous work [21] in which we applied

ST-ResNet, along with data augmentation techniques, to forecast

crime on a small spatial scale in real time. We further showed that

the ST-ResNet can be quantized for crime forecasting with only a

negligible precision reduction [20]. Moreover, ST data forecasting

also has wide applications in computer vision [5–7, 11, 12]. Previous

CNN-based approaches for ST-data forcasting use a rectangular grid,

with temporal information represented by a histogram on the grid.

�en, a CNN is used to predict the future histogram. �is prototype

is sub-optimal from two aspects. First, the geometry of a city is

usually highly irregular, resulting in the city’s spatial area taking

up a small portion of its bounding box, introducing unnecessary

redundancy in the algorithm. Moreover, the spatial sparsity is

exacerbated by the spatial grid structure. Directly applying a CNN

to �t the extreme sparse data can lead to all zero weights due to

the weight sharing of CNNs [20]. �is can be alleviated by using

spatial super-resolution[20], with increased computational cost.

Moreover this la�ice based data representation omits geographical

information and spatial correlation within the data itself.

In this work, we develop a framework to model sparse and un-

structured ST data. Compared to previous ad-hoc spatial partition-

ing, we introduce an ST weighted graph (STWG) to represent the

data, which automatically solves the issue caused by spatial sparsity.

�is STWG carries the spatial cohesion and temporal evolution of

the data in di�erent spatial regions over time. Unlike the fast Kro-

necker approach [17], we infer the STWG by solving a statistical

inference problem. For crime forecasting, we associate each graph

node with a time series of crime intensity in a zip code region,

where each zip code is a node of the graph. As is shown in [15], the

crime occurrence can be modeled by a multivariate Hawkes process

(MHP), where the self and mutual-exciting rates determines the

connectivity and weights of the STWG. To reduce the complexity of

the model, we enforce the graph connectivity to be sparse. To this

end, we add an additional L1 regularizer to the maximal likelihood

function of MHP. �e inferred STWG incorporates the macroscale

evolution of the crime time series over space and time, and is much
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Figure 1: Flow chart of the algorithm.

more �exible than the la�ice representation. To perform micro-

scale forecasting of the ST data, we build a scalable graph structured

RNN (GSRNN) on the inferred graph based on the structural-RNN

(SRNN) architecture [7]. Our DNN is built by arranging RNNs in a

feed-forward manner: We �rst assign a cascaded long short-term

memory (LSTM) (we will explain this in the following paragraph)

to �t the time series on each node of the graph. Simultaneously,

we associate each edge of the graph with a cascaded LSTM that

receives the output from neighboring nodes along with the weights

learned from the Hawkes process. �en we feed the tensors learned

by these edge LSTMs to their terminal nodes. �is arrangement of

edge and node LSTMs gives a native feed-forward structure that is

di�erent from the classical multilayer perceptron. A neuron is the

basic building block of the la�er, while our GSRNN is built with

LSTMs as basic units. �e STWG representation together with the

feed-forward arranged LSTMs build the framework for ST data

forecasting. �e �owchart of our framework is shown in Fig. 1.

Our contribution is summarized as follows:

• We employ a compact STWG to represent the ST sparse

unstructured data, which automatically encodes important

statistical properties of the data.

• We propose a simple data augmentation scheme to allow

DNN to approximate the temporally sparse data.

• We generalize the SRNN[7] to be bi-directional, and apply

a weighted average pooling which is more suitable for ST

data forecasting.

• We achieve remarkable performance on real time crime

and tra�c forecasting at a �ne-grained scale.

In section 2, we brie�y review the literature of time-series for-

casting. In section 3, we describe the datasets used in this work,

including data acquisition, preprocessing, spectral and simple sta-

tistical analysis. In section 4, we present the pipeline for general

ST data forecasting, which contains STWG inference, DNN approx-

imation of the historical signals, and a data augmentation scheme.

Numerical experiments on the crime and tra�c forecasting tasks

are demonstrated in sections 5 and 6, respectively. �e concluding

remarks and future directions are discussed in section 7.

2 RELATED WORK

A lot of study have utilized deep learning to study the forecasting of

ST time series, most of which involves a CNN structure to capture

the spatial information, and a RNN structure to model temporal

dependency. In [8], the authors implemented CNN to extract the

features from the historical crime data, and then used a support

vector machine (SVM) to classify whether there will be crime or

not at the next time slot. Zhang et al.[22] create an ensemble of

residual networks [4], named ST-ResNet, to study and predict tra�c

�ow. Graph-based di�usion on RNN [14] is also proposed for tra�c

forecasting. Additional applications include [7] who use the ST

graph to represent human environment interaction, and proposed

a structured RNN for semantic analysis and motion reasoning. �e

combination of video frame-wise forecasting and optical �ow in-

terpolation allows for the forecasting of the dynamical process of

the robotics motion [6]. RNNs have also been combined with point

processes to study taxi and other data [2]. �e closest to this work

is by Wang et al.[21], who used ST-ResNet to forecast crime on a

small spatial scale in real time.

3 DATASET DESCRIPTION AND SIMPLE
ANALYSIS

We study two di�erent datasets: the crime and tra�c data. �e

former is more irregular in space and time, and hence is much more

challenging to study. In this section we describe these datasets and

introduce some preliminary analyses.

3.1 Crime Dataset

3.1.1 Data Collection and Preprocessing. We consider crime data

in Chicago (CHI) and Los Angeles (LA). In our framework, historical

crime and weather data are the key ingredients. Holiday informa-

tion, which is easy to obtain, is also included. �e time intervals

studied are 1/1/2015-12/31/2015 for CHI and 1/1/2014-12/31/2015

for LA, with a time resolution of one hour. Here we provide a brief

description of the acquisition of these two critical datasets.

Weather Data. We collect the weather data from the Weather

Underground data base1 through a simple web crawler. We se-

lect temperature, wind speed, and special events, including fog,

snow, rain, thunderstorm for our weather features. All data is

co-registered in time to the hour.

Crime Data. �e CHI crime data is downloaded from the City

of Chicago open data portal. �e LA data is provided by the LA

Police Department (LAPD). Compared to CHI data, the LA crime

data is sparser and more irregular in space. We �rst map the crime

data to the corresponding postal code using QGIS so�ware [18].

A few crimes in CHI (less than 0.02%) cannot be mapped to the

correct postal code region, and we simply discard these events. For

the sake of simplicity, we only consider zip code regions with more

than 1000 crime events over the full time period. �is �ltering

criterion retains over 95 percent of crimes for both cities, leaving

us with 96 postal code regions in LA and 50 regions in CHI.

3.1.2 Spectrum of the Crime Time Series. Figure 2 plots the

hourly crime intensities over the entire CHI and a randomly selected

zip code region. �ough the time series are quite noisy, the spectrum

exhibits clear diurnal periodicity with magnitude peaked at 24

hours, as shown in Fig. 3.

3.1.3 Statistical Analysis of Crime Data. Evidence suggests that

crime is self-exciting [16], which is re�ected in the fact that crime

events are clustered in time. �e arrival of crimes can be modeled

as a Hawkes process (HP) [15] with a general form of conditional

intensity function:

λ(t) = µ + a
’
ti t

д(t − ti ) (1)

where λ(t) is the intensity of events arrival at time t , µ is the en-

dogenous or background intensity, which is simply modeled by

1h�ps://www.wunderground.com/









MiLeTS ’18, August 2018, London, United Kingdom B. Wang et al..

0 50 100 150 200
Epochs

0

0.01

0.02

Loss

training

validation

raw data

augmented data

Figure 10: Training procedures of the di�erent scenarios on

the node 90003. Evolution of the training and validation loss

on the raw data and on the augmented data.

DNN performs much be�er on the regularized time series than the

raw one, i.e. the loss function reaches a much lower equilibrium.

To show the advantage of the generalization ability of the DNN,

we compare it with a few other approaches, including autoregres-

sive integrated moving average (ARIMA), K-nearest neighbors

(KNN), and historical average (HA). For sparse data, we �t the

historical data and perform one step forecasting in the same man-

ner as our previous work [20]. �e root mean squared error (RMSE)

between the exact and predicted crime intensities and optimal pa-

rameters for the corresponding model are listed in Table 2. Under

the RMSE measure, DNN, especially on the augmented data, yields

higher accuracy. �e small RMSE re�ects the fact that DNN approx-

imates the crime time series with good generalization ability.

Table 2: RMSE between the exact and predicted crime inten-

sities over the last two months of 2015, in the region with

zip code 90003. DNN(CS) denotes DNN model applied to the

augmented data. Comparison with more advanced baseline

models will be given in the rest of this paper.

Methods RMSE (number of crimes)

DNN 0.858

DNN (CS) 0.491

ARIMA(25, 0, 26) 0.941

KNN (k=1) 1.193

HA 0.904

However, the simple RMSE measure is insu�cient to measure

error appropriately for sparse data. Do HA and ARIMA really work

be�er than KNN for crime forecasting? HA ignores the day to day

variation, while ARIMA simply predicts the number of crimes to

be all zeros a�er �ooring. KNN predicts more useful information

than both ARIMA and HA for the crime time series. We propose

the following measure, which we call a “precision matrix” (do not

confuse it with the one used in statistics) B be de�ned as:

B =
©≠≠́

β10 · · · β1n
.

.

.

.

.

.

.

.

.

βm0 · · · βmn

™ÆÆ̈

where βi j =
Ni j

Ni
, where Ni ⌘ #{t |xt ≥ i}, and Ni j ⌘ #{t |xt ≥

i and (x
p
t ≥ i or x

p
t−1 ≥ i or · · · or x

p
t−j+1 ≥ i)}, for i = 1, 2, · · ·n;

j = 0, 1, · · · ,m. Here xt and x
p
t are the exact and predicted number

of crimes at time t . �is means for a given threshold number of

crimes i , we count the number of time intervals in the testing set at

which the predicted and exact number of crimes both exceed this

threshold i , with an allowable delay j , i.e., the prediction is allowed

within j hours earlier than the exact time.

�is measure provides much be�er guidance for crime patrol

strategies. For instance, if we forecast more crime to occur in a

given patrol area, then we can assign more police resources to that

area. �is metric allows for a few hours of delay but penalizes

against crimes happening earlier than predicted, due to the time

irreversibility of forecasting. For the crime time series in nodes

60620 and 90003, we select m = 3, n = 2 and m = 5, n = 4,

respectively, based on the sparsity level. Fig. 11 shows the precision

matrices of the crime prediction by di�erent methods, con�rming

that DNN together with data augmentation gives accurate crime

forecasting. Meanwhile, the KNN also gives be�er results compared

to other methods except the DNN with data augmentation. �is

corrects potential inaccuracies in the RMSE measure and con�rms

the spatial correlation of the crime time series.

R����� 1. �e precision matrix B still has an issue in the case of

over-prediction. Namely, this measure fails to penalize cases where

the prediction is higher than the ground truth. However in those cases,

the RMSE would typically be very large. �erefore, to determine if the

sparse data is well predicted or not, we should examine both metrics.

Another merit of the DNN is that with su�cient training data,

as the network goes deeper, be�er generalization accuracy can be

achieved. To validate this, we test the 2 and 3 layers LSTM cascades

on the node 60620 (see Fig. 12).

4.3 GSRNN for ST Forecasting

Our implementation of the GSRNN is based on the SRNN imple-

mentation in [7] (Fig.13), but di�ers in these key aspects: 1) We

generalize the SRNN model to a directed graph, which is more

suited to the ST data forecasting problem. 2) We use a weighted

sum pooling based on the self-exciting weights from the MHP in-

ference. 3) Due to the large number of nodes in the graph, we

subsample each class of nodes for scalability.

To be more speci�c, suppose i = 1, 2, . . .N are the nodes of

the graph, and Xi (t) denotes value of the time series at time t for

node i . We �rst deploy the STWG inference procedure to obtain the

weighted directed graph, with weight on the edge connecting node i

and j denoted aswi j . With the same setup as in [7], we partition the

graph nodes to K groups according to some criterion. We construct

an “input RNN” E1
k
for each class k , and an “edge RNN” E2

k,l
for each

class pair (k, l) if k , l . For the forward pass, if node i belongs to

class k , we feed a set of historical data {Xi (t −p)|p = n1,n2, ...,nm }

to E1
k
, and the data from neighboring nodes of class l to E2

k,l
. In

contrast to [7], we use a weighted sum pooling for the edge inputs,

i.e., X 0
i =

Õ
j,cl (j)=k wi, jX j . �is pooling has shown to be more

suitable for ST data forecasting. Finally, the output from the two

RNNs are concatenated and fed to a node RNN N 1
j , which then

predicts the number of events at time t . For each epoch during
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New York: x = (5, 5) Beijing: x = (12, 7)

Figure 17: Comparison between predicted vs exact tra�c

out-�ow at a speci�ed point x for New York and Beijing.

(a) predicted (b) exact (c) di�erence

Figure 18: Comparison between predicted (a) and exact (b)

tra�c out-�ow at t = 8647 for New York city over a 16 ⇥ 8

grid. Di�erence shown in c).

(a) predicted (b) exact (c) di�erence

Figure 19: Comparison between predicted (a) and exact (b)

tra�c out-�ow at t = 17204 for Beijing over a 32 ⇥ 32 grid.

Di�erence shown in (c).

with each node and each edge associated with LSTM cascades

instead of weights and activation functions. To reduce the model’s

complexity, we apply weight sharing among certain type of edges

and nodes. �is specially designed deep neural network (DNN)

takes advantage of the RNN’s ability to learn the pa�ern of time

series, capturing real time interactions of each node to its connected

neighbors. To predict the value of the time series for a node at the

next time step, we use the information of its neighbors and real

time interactions. For the ST sparse data, we propose e�cient data

augmentation techniques to boost the DNN’s performance. Our

model demonstrates remarkable results on both crime and tra�c

data; for crime data we measure the performance with both root

mean squared error (RMSE) and the proposed precision matrix.

�e method developed here forecasts crime on the time scale

of an hour in each US zip code region. �is is in contrast to the

commercial so�ware PredPol (www.predpol.com) that forecasts on

a smaller spatial scale and longer timescale. Due to the di�erent

scales, the methods have di�erent uses - PredPol is used to target

locations for patrol cars to disrupt crime whereas the method pro-

posed here might be used for resource allocation on an hourly basis

within di�erent patrol regions.

�ere are a few issues that require future a�ention. �e data

is represented as a static graph. A dynamic graph, that be�er

models the changing mutual in�uence between neighboring nodes,

could be incorporated in our framework. Furthermore, in the tra�c

forecasting problem, be�er spatial representation of the tra�c data

could also be explored.
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