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Abstract— We study two multi-robot assignment problems for
multi-target tracking. We consider distributed approaches in
order to deal with limited sensing and communication ranges.
We seek to simultaneously assign trajectories and targets to
the robots. Our focus is on local algorithms that achieve
performance close to the optimal algorithms with limited
communication. We show how to use a local algorithm that
guarantees a bounded approximate solution within O(hlog 1/¢)
communication rounds. We compare with a greedy approach
that achieves a 2-approximation in as many rounds as the
number of robots. Simulation results show that the local
algorithm is an effective solution to the assignment problem.

I. INTRODUCTION

We study the problem of assigning robots with limited
Field-of-View (FoV) sensors to track multiple moving tar-
gets. We focus on scenarios where the number of robots is
large and solving the problem locally rather than centrally
is desirable. The robots may have a limited communica-
tion range and bandwidth. As such, we seek assignment
algorithms that rely on local information and limited, local
communication with the neighboring robots. We assume that
each robot has a number of motion primitives to choose
from. The assignment of targets to track is therefore coupled
with the selection of motion primitives for each robot. We
term this as the distributed Simultaneous Action and Target
Assignment (SATA) problem.

A motion primitive is a local trajectory obtained by ap-
plying a sequence of actions. We interchangeably use motion
primitives to refer to the trajectories as well as the final state
on them. A motion primitive can track a target if the target
is in the FoV of the robot. The set of targets tracked by
different motion primitives may be different (Figure 1). Our
goal is to assign motion primitives to the robots so as to track
the most number of targets. This problem can be viewed
as a version of set cover [1] where every target must be
covered by at least one motion primitive. However, we have
the additional constraint that only one motion primitive can
be chosen per robot. This is called as a packing problem [1].
The combination of these two problems is called a Mixed
Packing and Covering Problem (MPCP) [2].

The problem can also be formulated as a (sub)modular
maximization problem subject to a partition matroid con-
straint [3]. A sequential greedy algorithm, where the robots
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Fig. 1. Description of multi-robot task allocation for multi-target tracking.
There are five motion primitives per robot.

take turns to greedily choose motion primitives, is known to
yield a 2—approximation for this problem [4]. The sequential
greedy algorithm requires at least as many communication
rounds as the number of robots, which may be too slow in
practice. Consequently, we focus on local algorithms.

Fig. 2. Communication graph. The blue region indicates a radius-2
neighborhood of the red node. The red node can be unaware of the entire
network topology. A local algorithm that works for the red node only
requires a local information of nodes in the blue region. The same local
algorithm is applied to all nodes in the network.

A local algorithm [1] is a constant-time distributed al-
gorithm that is independent of the size of a network. This
enables a robot to depend only on the local inputs in a fixed-
radius neighborhood (Figure 2). The robot does not need
to know information beyond its local neighborhood, thereby
achieving better scalability. Floréen et al. [5] proposed a local
algorithm to solve MPCP using max-min/min-max Linear
Programming (LPs) in a distributed manner. We show how
to leverage this algorithm to solve SATA.

There have been many studies [6], [7] on cooperative
target tracking in both control and robotics communities. Yu
et al. [8] presented an auction-based decentralized algorithm
for cooperative tracking of a mobile target. Capitan et al. [9]
proposed a decentralized cooperative multi-robot algorithm
using auctioned partially observable Markov decision pro-
cesses. The performance of decentralized data fusion was



successfully shown under limited communication but theo-
retical bounds on communication rounds were not covered.

Morbidi et al. [10] presented a gradient-based control
scheme for active multi-target tracking. Their focus was not
on distributed control policies. Ahmad et al. [11] proposed a
least squares minimization technique for cooperative multi-
target tracking. However, they focused on localization, not on
the multi-robot multi-target assignment. Pimenta et al. [12]
adopted Voronoi partitioning to develop a distributed multi-
target tracking algorithm. However, their interest lied in
covering an environment coupled with multi-target tracking.

The works in [13], [14] and [15] proposed algorithms
to solve simultaneous task allocation and path planning,
similar to SATA. However, their approaches are centralized.
In our prior work [4] we addressed the problem of selecting
trajectories for robots that can track the maximum number of
targets using a team of robots. No bound on the number of
communication rounds was given, possibly resulting in all-
to-all communication in the worst case. Instead, we explicitly
bound the amount of communication.

Our contributions are as follows: (1) We show how to
adapt the local algorithm for solving SATA. (2) We perform
empirical comparisons with greedy and baseline centralized
algorithms. (3) We demonstrate the applicability of the
proposed algorithm through simulations.

II. PROBLEM DESCRIPTION

Let R and T be sets of robots and targets. R(k) =
{ri(k),...,ri(k),...,r|r|(k)} denotes the state of robots at
time k and T'(k+1) = {t1(k+1), ..., t;(k+1), ... t;7 (k+1)}
denotes the predicted state of targets at time k£ + 1. We
assume that the targets can be uniquely detected and two
robots know if they are observing the same target. Motion
primitives of é-th robot r;(k) at time k are denoted by
Pi(k) = {pi(k), ... P (k), ..., P{p: (k) }. Note again that
the term motion primitives in this paper represents the future
state of a robot after the corresponding feasible control input
is applied starting at time k.

We denote the sensing and communication ranges by RS
and RC. Predicted j-th target t;(k + 1) at time k + 1 is
said to be observable from m-th motion primitive of robot
i iff t;(k + 1) € RS(p,(k)). Likewise, a-th robot can
communicate with §-th robot iff r,(k) € RC(rg(k)) and
rg(k) € RC(rq(k)). We assume that RC(-) > 2RS(+). This
implies if there is a target j such that t;(k+1) € RS(p%, (k))
and t;(k + 1) € RS(pZ,(k)), then a-th and S-th robots can
communicate with each other. Therefore, neighboring robots
can share their local information with each other when they
observe the same targets.

We also assume that all the robots have synchronous
clocks leading to synchronous rounds of communication.
This is required in order to employ a greedy algorithm and
local algorithm that will be covered in Section III.

Each robot must choose one of its motion primitives
to maximize the tracking objective. We first show how to
formulate this as an Integer Linear Program (ILP). We define

two binary variables: x! and y!. z¢ = 1if p’, is selected

by r; and 0 otherwise. yf = 1 if r; is assigned to t; and O
otherwise. It follows:
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The objective is to assign the robots/primitives such that all
targets are equitably covered:
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where cg)m denotes weights on sensing edges E's between
m-th motion primitive of ¢-th robot and j-th target. cfm
can represent, for example, the distance between ¢; and pl,,.
Note that in case ¢; and p!, have uncertainty associated with
them, we can use the Bhattacharyya distance between the
corresponding distributions to compute ¢; .

Consequently, an optimal motion primitive pi* for all
robots can be selected based on z?, and y/. We term this
as the BoTTLENECK version of SATA.

We also define a WINNERTAKESALL variant of SATA
where the objective is given by,

arg max Z Z yf
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Here the goal is to maximize the quality of tracking (alter-
natively, number of targets that are tracked).

If we fix cim = 1 when p!, can observe t; and zero
otherwise, then the objective function becomes equal to the
number of targets tracked.

Both versions of the SATA problem are NP-Hard [16]. The
WINNERTAKESALL version can be optimally solved using
a Quadratic Mixed Integer Linear Programming (QMILP)
solver in the centralized setting. Our main contributions are
to show how to solve both problems in a distributed man-
ner: an LP-relaxation of the BoTTLENECK variant using a
local algorithm; and the WINNERTAKESALL variant using
a greedy algorithm. The following theorems summarize the
main contributions of our work.

Theorem 1. Let A g > 2 be the maximum number of motion
primitives per robot and A > 2 be the maximum number of
motion primitives that can see a target. There exists a local
algorithm that finds an Ag(1 + €)(1 + 1/h)(1 — 1/A7r)
approximation in O(hlog1/€) synchronous communication
rounds for the LP-relaxation of the BOTTLENECK version
of SATA problem, where h and € > 2 are parameters.

The proof follows directly from the existence of the local
algorithm described in the next section. If Ap =1 or Ap =
1, there exist local algorithms that give the optimal solution
(c.f. Theorem 1 from [5]).

Theorem 2. There exists a 2—approximation greedy al-
gorithm for the WINNERTAKESALL version of the SATA
problem for any € > 0 in polynomial time.

This follows from the fact that this is a modular maximiza-
tion problem subject to a partition matroid constraint [3].



III. DISTRIBUTED ALGORITHMS

A. Local Algorithm

In this section, we show how to solve the BOTTLENECK
version of the SATA problem using a local algorithm. We
adapt the local algorithm for solving max-min LPs [5] to
solve the SATA problem in a distributed manner.

Consider the tripartite, weighted, and undirected graph,
G = (RUPUT,FE) shown in Figure 3. Each edge ¢ € F
is either e = {r;, p},} with weight 1 or e = {t;,p},} with
weight ¢/ € C. The maximum degree among robot nodes
r, € R is denoted by Agr and among target nodes t; € T
is Ap. Each motion primitive p’, € P is associated with
a variable x! . The upper part of G in Figure 3 is related
with a packing problem (Equation 3). The lower part is re-
lated with the covering problem. The BOTTLENECK version
(Equation 2) can be rewritten as a linear relaxation of ILP:

maximize w

subject to
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Fig. 3. One instance of a graph for MPCP when there are three robot
nodes, six motion primitive nodes and three target nodes. The objective in
this example is to maximize the number of targets being tracked. Hence,
all weights are set to 1. In general, weights can be arbitrary values.

Floreen et al. [5] presented a local algorithm to solve
MPCP in Equation 4 in a distributed fashion. We show how
to adapt this to the BorTLENECK version of SATA. An
overview of our algorithm is given in Figure 4. We describe
the main steps in the following.

Start __| Solve the layered max-min LP

by using the algorithm in [4]
! G=(RUPUT,E) [ !

Construct an instance with
Ag= 2 by the reduction

Map the solution of the
layered max-min LP to an

original max-min LP

Round x%, values to
select motion primitives

Construct a layered max-min
LP by the reduction

End

Fig. 4. Flowchart of the proposed local algorithm.

1) Local Algorithm from [5]: The local algorithm in [5]
requires A = 2. However, they also present a simple local
technique to split nodes in the original graph with Ap >
2 into multiple nodes making Ar = 2. Then, a layered
max-min LP is constructed with h layers (Figure 5). The
details of the construction of the layered graph is given in
Section 4 of [5]. & is a user-defined parameter that trades-
off computational time with optimality. Layered graph breaks
the symmetry that inherently exists in an original graph.

L h=1

)

Fig. 5. Graph of the layered max-min LP with A = 2 that is obtained
from the original graph of Figure 3 after applying the local algorithm.

Authors in [5] proposed a recursive algorithm to com-
pute a solution of the layered max-min LP. The solution
for the original max-min LP can be obtained by mapping
from the solution of the layered one. The obtained solution
corresponds to values of ¢ . They proved that the resulting
algorithm gives a constant-factor approximation ratio.

Theorem 3. There exist local approximation algorithms for
max-min and min-max LPs with the approximation ratio
Ar(1+€)(14+1/h)(1—1/A7) for any Ag > 2, Ap > 2,

and € > 2, where h denotes the number of layers.
Proof. Please refer to Corollary 4.7 from [5] for a proof. [

Each node in the layered graph carries out its local
computation. Each node also receives and sends information
from and to neighbors at each synchronous communication
round. The layered graph is constructed in a local fashion
without requiring any single robot to know the entire graph.

2) Realization of Local Algorithm for SATA: To apply the
local algorithm to distributed SATA, each node and edge in
a layered graph must be realized at each time step. In our
case, the only computational units are the robots. Nodes that
correspond to motion primitives, pin € P, can be realized by
the corresponding robot r; € R. Nodes corresponding to the
targets are also realized by the robots. A target t; is realized
by a robot r; satisfying t; € RS(pi,). If there are multiple
robots whose motion primitives can sense the target, they can
arbitrarily decide who realizes the target node in a constant
number of communication rounds.

After applying the local algorithm, each robot obtains x?,
for corresponding p¢,. However, due to the LP relaxation,
x! will not necessarily be binary. For each robot we set
the highest z¢, equal to one and all others as zero. We
shortly show that the resulting solution after rounding is still



close to optimal in practice. Furthermore, increasing h results
in better solutions at the expense of more communication.
h = 0 is equivalent to the greedy approach where no robots
communicate with each other.

The following table shows the result of applying the local
algorithm to the graph in Figure 3. Three different values
for h were tested: 2, 10, and 30. In all cases, p5 and p}
have larger values of z,, than other nodes. Thus, the robot r
and the robot r3 will select p3 and pj as motion primitives,
respectively after employing a rounding technique to x),’s.

As the number of layers increases, the more distinct the
x;’, values returned by the algorithm. Another interesting
observation is that robot ry has the same equal value on both
motion primitives of its own no matter how many number
of layers is used. This is because all the targets are already
observed by robots ry and rs with higher values.

p,, 2, h=2 h=10 h=30
pl =zl = 05000 0.5000 0.5000
p; zl= 05000 05000 0.5000
pZ  z3= 06667 07591  0.7855
p? 2= 03333 02409 02145
p:  zi= 03333 02409 0.2145
pi zg= 06667 07591  0.7855
TABLE I

SOLUTION RETURNED BY THE LOCAL ALGORITHM FOR THE EXAMPLE
SHOWN IN FIGURE 3 WITH THE VARYING NUMBER OF LAYERS, h.

Algorithm 1 explains the overall scheme of each robot for
a distributed SATA. We solve the SATA problem at each time
step. In principle, we can replace each motion primitive with
a longer horizon trajectory and plan for multiple time steps
without affecting the computation time significantly.

Algorithm 1: Local algorithm

1 for r; . € Ry, do

2 Pk € P,i <—ComputeMotionPrimitives(r; j)
3 Find targets that can be sensed by p}, ,

4 Construct a h-hop communication graph

5 Apply local algorithm

6 | @& « Rounding(zl))

7 p.: < Motion primitive with 2}, =1

8 | ApplyAction(p)

9 k+—Fk+1

10 end

One of the advantages of the local algorithm is that even if
the communication graph is disconnected, each component
of the graph can run the local algorithm independently
without affecting the solution quality. The algorithm also
allows for the number of robots and targets to change. Since
each robot determines its neighbors at each time step, any
new robots or targets will be identified and become part of
the local layered graphs at the next planning timestep.

B. Greedy Algorithm

We use the greedy algorithm proposed in [4] and [17]
as the baseline comparison. The greedy algorithm requires
a specific ordering of the robots given in advance. The
first robot greedily chooses a motion primitive that can
maximize the number of targets being observed. Those
observed targets are removed from the consideration. Then,
the second robot makes its choice; this repeats for the rest
of robots. Note again that the greedy algorithm is for the
WINNERTAKESALL version of SATA.

Algorithm 2: Greedy algorithm
Input : Order of robots R

1 Initialize w(t;) =0 Vt; € T

2 for r; € R do

3 | forpi € P'do

o || Compute cl,, w/(p},) = ¥, max{u(ty),l,,}
5 end '

6 | Determine z¢, = argmaxw’(p%,) Vp!, € P°

7 Update w(t;) = max{w(tj),cz)m} vt eT

8 end

9 yg(—OVFiER, tjET

10 for t; € T do

1| T ¢ argmaxe,er )y c .l

12 yf +—1
13 end

As shown in Algorithm 2, the greedy algorithm runs in
|R| communication rounds at each time step. We define two
functions: w(t;) gives a quality of tracking for j-th target;
and w’'(p’)) gives the sum of quality of tracking over all
feasible targets using m-th motion primitive of i-th robot.
If, for example, ¢/, is used as a distance metric, the max
ensures that the quality of tracking for j-th target is only
given by the distance of the nearest robot/primitive. That
is, even if multiple primitives can track the same t;, when
counting the quality we only care about the closest one. The
total quality will then be the sum of qualities for each target.

Lemma 1. Greedy algorithm of Algorithm 2 gives a feasible
solution for the WINNERTAKESALL version of SATA.

The proof is given in the appendix.

A centralized-equivalent approach is one where the robots
all broadcast their local information until some robot has
received information from all others. This robot can obtain
a centralized solution. A centralized-equivalent approach for
a complete communication runs in 2 communication rounds
for receiving and sending data to neighbors. However, the
local algorithm and greedy algorithm take hlog(1/e) and
|R| communication rounds, respectively. Note that h < |R|
for most practical cases.

IV. SIMULATIONS

In this section, we evaluate empirically the performance
of the local algorithm and greedy algorithm in two settings.



A. Comparison Study

We compare the proposed algorithms with the QMILP
solution. The greedy algorithm and QMILP solve the
WINNERTAKESALL problem and local algorithm solves the
BoTTLENECK problem. However, we compare the total
number of targets covered by both approaches. We used
TOMLAB [18] to get the QMILP solution. TOMLAB works
with MATLAB and uses IBM’s CPLEX optimizer. An Intel
Core i7-5500U CPU @ 2.40GHz x 4 laptop with 16 GB
memory took a maximum time of around 4 seconds to solve
an instance with 200 targets and average target degree of 2.
Most of instances were solved in less than 2 seconds.

We randomly generated graphs similar to Figure 3 with
a given average degree for comparison. We start with the
upper half of the graph, connecting each robot to its two
motion primitives. Then we iterate through each motion
primitive and randomly choose a target node to create an
edge. Next, we iterate through target nodes and randomly
choose a motion primitive to create an edge. We also add
random edges to connect disconnected components (to keep
the implementation simpler). We repeat this in order to
get the required graph. We create new edges to random
primitives till we achieve the desired degree. We generated
cases by varying the degree of targets, number of targets,
and number of robots using the method described above.

Figure 6 shows the minimum, maximum, and the mean
number of targets covered by the local algorithm, greedy
algorithm and QMILP running 100 random instances for
every setting of the parameters. We also show the number of
targets covered when choosing motion primitives randomly
as a baseline. We observe that the local algorithm with
h = 2 performs comparatively to the optimal algorithm, and
is always better than the baseline. In all the figures, Ap = 2.

When the number of targets are 50 and 100 with degree 4
(Figure 6), the performance of the local algorithm does not
improve as the number of robots deployed increases, which
may seem counterintuitive. We conjecture that the reason
behind this is the locality of the proposed algorithm. Even
though more robots are used to track the same number of
targets, the average degree of the target remains the same.
Consequently, the communication graph for the robots be-
comes sparser. Since h is fixed for all cases, this implies that
each robot in layered graph reaches a smaller subset of the
total graph, leading to even more sub-optimal performance.
One avenue of future work is to analyze this in more depth.

B. Multi-robot Multi-target Tracking Simulation

The proposed local algorithm was implemented in Gazebo
(Figure 7). Five mobile robots were deployed to track thirty
targets (a subset of which were mobile) with a FoV of 3m
on the ground plane. Two motion primitives were used per
robot: (1) remain in place and (2) move a random distance
of up to 1m with a random heading between —30° and 30°.

At each time step, the local algorithm chooses mo-
tion primitives to maximize the number of targets tracked
(BorTLENECK version). We compared this with the greedy
algorithm. Figure 8 shows the trajectories of robots and

targets obtained from the simulation. Figure 9 compares the
number of targets tracked by the local and greedy algorithms
for a specific instance. Both algorithms have a sub-optimal
performance guarantee, with the greedy algorithm having a
better worst-case guarantee than the local one. However, in
practice, both strategies perform comparably.

V. CONCLUSIONS

We present a new approach for multi-robot multi-target
assignment. Our work is motivated by scenarios where the
robots would like to reduce their communication while
still maintaining some guarantees of tracking performance.
We used the local communication framework employed by
Floreen et al. [5] to leverage an algorithm that can trade-off
optimality with communication complexity. We empirically
evaluated this algorithm and compared it with the baseline
greedy strategy. Our immediate future work is to expand
the local algorithm to solve the WINNERTAKESALL Vversion
of SATA. Another extension would be to include search
primitives for exploration, in order to handle situations where
some targets fall outside the FoV of all robots.
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Fig. 7. Gazebo simulator showing five robots tracking thirty stationary and
moving targets (please refer to the attached video).
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APPENDIX
A. Proof of Lemma 1

Let w(t;) £ max{cg’m|m§n = 1, Vi,m}. Therefore, the
sum of quality of tracking over all targets is:

Y ow(ty) =Y max{c |« =1, Vi,m}

t;eT tEeT

= Z (Z max{ Z CZ,M%]’) 5)

t,eT ri€R pinEPi

— Y (X (X ).
t;e€T r,eR p};nepi
Equation 5 is obtained by taking into account the condi-
tional term of the first equation explicitly. The last equation
follows from the property that y! chooses the maximum
value of 3°; pi ¢} @}, among all robots, which is shown
in lines 10-13 of Algorithm 2. Therefore, the last equation
is equal to the inner term of Equation 3.



