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Abstract—We study the problem of reducing the amount of
communication in decentralized target tracking. We focus on
the scenario where a team of robots is allowed to move on the
boundary of the environment. Their goal is to seek a formation so
as to best track a target moving in the interior of the environment.
The robots are capable of measuring distances to the target.
Decentralized control strategies have been proposed in the past
that guarantee that the robots asymptotically converge to the
optimal formation. However, existing methods require that the
robots exchange information with their neighbors at all time
steps. Instead, we focus on decentralized strategies to reduce the
amount of communication among robots.

We propose a self-triggered communication strategy that de-
cides when a particular robot should seek up-to-date information
from its neighbors and when it is safe to operate with possibly
outdated information. We prove that this strategy converges
asymptotically to the desired formation when the target is
stationary. For the case of a mobile target, we use decentralized
Kalman filter with covariance intersection to share the beliefs
of neighboring robots. We evaluate all the approaches through
simulations and a proof-of-concept experiment.

Note to Practitioners—We study the problem of tracking a
target using a team of coordinating robots. Target tracking
problems are prevalent in a number of applications such as
co-robots, surveillance, and wildlife monitoring. Coordination
between robots typically requires communication amongst them.
Most multi-robot coordination algorithms implicitly assume that
the robots can communicate at all timesteps. Communication
can be a considerable source of energy consumption, especially
for small robots. Furthermore, communicating at all timesteps
may be redundant in many settings. With this as motivation,
we propose an algorithm where the robots do not necessarily
communicate at all times, and instead choose specific triggering
time instances to share information with their neighbors. Despite
the limitation of limited communication, we show that the
algorithm converges to the optimal configuration, both in theory
as well as in simulations.

Index Terms—multi-robot systems, target tracking, networked
control.

I. INTRODUCTION

Target tracking is one of the more well-studied problems in
the robotics community [1] and finds many applications such
as surveillance [2]–[4], crowd monitoring [5], [6], and wildlife
monitoring [7], [8]. We study active target tracking with a team
of robots where the focus is on actively controlling the state
of the robot. The robots can exchange information with each
other and then decide how to move, so as to best track the
target. It is typically assumed that exchanging information is
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beneficial. It is typical to design strategies by assuming that
the robots will exchange their information at each time step
irrespective of whether that information is worth exchanging.
In this paper, we investigate the problem of deciding when
is it worthwhile for the robots to exchange information and
when is it okay to use possibly outdated information.

The motivation for our work stems from the observation
that communication can be costly. For example, for smaller
robots, radio communication can be a significant source of
power consumption. The robots can extend their lifetime by
reducing the time spent communicating (equivalently, number
of messages sent). Our goal is thus to determine a strategy
that communicates only when required without considerably
affecting the tracking performance.

We study this problem in a simple target tracking scenario
first introduced by Martinez and Bullo [9]. Here, the robots are
restricted to move on the boundary of a convex environment.
They can obtain distance measurements towards a target
moving in the interior. The goal of the robots is to position
themselves so as to maximize the information gained from the
target. Our problem setup models scenarios where the robots
cannot enter into the interior of the environment. For example,
Pierson et al. [10] studied pursuit-evasion where the pursuers
are not allowed to enter “no-fly zones”. If the evader enters
a “no-fly zone” then the pursuers reposition themselves on
the perimeter of a convex approximation of the zone. Another
motivating application is that of tracking radio-tagged fish [8]
using ground robots that can move only along the boundary
of the environment.

The authors in [9] proposed a decentralized strategy where
the robots communicate at all time steps with their neigh-
bors and proved that it converges to the optimal (uniform)
configuration. Instead, we apply a self-triggered coordination
algorithm (following recent works [11], [12]) where each robot
decides when to trigger communications with its neighbors.
We apply this strategy to the aforementioned target tracking
scenario and compare its performance relative to the constant
strategy in simulations.

Next, we study the problem where the robots obtain noisy
measurements of the distance to the targets. In a decentral-
ized setting, robots can exchange information only with their
neighbors. As a result, their local estimates of the target’s
position may differ considerably, resulting in poor tracking
especially when the robots are not in a uniform configuration.
We show how to use a decentralized Kalman filter estimator
that fuses the beliefs shared by neighboring robots (at triggered
instances) to a common estimate.

Our main results assume that the robots have sufficiently
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large communication and sensing ranges. In Section V-B,
we present necessary conditions on the sensing and com-
munication ranges for our results to hold. We also sufficient
conditions for a modified version of the self-triggered strategy
to guarantee convergence.

Simulation results validate the theoretical analysis showing
that the self-triggered strategy converges to the optimal, uni-
form configuration. The average number of communication
is less than 30% that of the constant strategy. We also
demonstrate the performance of the algorithm through proof-
of-concept experiments with five simulated and two actual
robots coordinating with each other.

The rest of the paper is organized as follows. We start by
surveying the related works in Section II. We formalize the
problem in Section III. The self-triggered tracking strategy is
presented in Section IV, assuming that the target’s position is
known and is fixed. We relax these assumptions and present
two practical extensions in Section V for noisy measurements
and limited sensing and communication ranges. The simulation
results are presented in Section VI. We conclude with a
discussion of future work in Section VII.

A preliminary version of this paper was first presented
in [13] without the decentralized Kalman filter with covariance
intersection and the analysis for the limited communication
and sensing ranges (Section V), the Gazebo simulation exper-
iments, and the proof-of-concept experiment (Section VI).

II. RELATED WORK

Multi-robot target tracking has been widely studied in
robotics [14], [15]. Robin and Lacroix [14] surveyed multi-
robot target detection and tracking systems and presented
a taxonomy of relevant works. Khan et al. [15] classified
and discussed control techniques for multi-robot multi-target
monitoring and identify the major elements of this problem.
Hausman et al. [16] proposed a centralized cooperative ap-
proach for a team of robots to estimate a moving target. They
showed how to use onboard sensing with limited sensing range
and switch the sensor topology for effective target tracking.
Dias et al. [17] proposed a multi-robot triangulation method to
deal with initialization and data association issues in bearing-
only sensors. The robot communicates locally to exchange and
update the estimate beliefs of the target by a decentralized
filter. Franchi et al. [18] presented a decentralized strategy to
ensure that the robots follow the target while moving around it
in a circle. They assume that the robots are labeled. Similar to
our work, the robots attempt to maintain a uniform distribution
on a (moving) circle around the target. However, unlike our
work, they require that the robots constantly communicate with
their local neighbors.

Sung et al. [19] proposed a distributed approach for multi-
robot assignment problem for multi-target tracking by taking
both sensing and communication ranges into account. The goal
of their work is also to limit the communication between
the robots. However, they do so by limiting the number
of messages sent at each timestep but allow the robots to
communicate at all timesteps. Instead, our work explicitly
determines when to trigger communication with other robots.

Fig. 1. The mapping from convex boundary ∂Q to unit circle T.

Our work builds on event-triggered and self-triggered com-
munication schemes studied primarily by the controls com-
munity [12], [20]. Dimarogonas et al. [21] presented both
centralized and decentralized event-triggered strategies for the
agreement problem in multi-agent systems. They extended the
results to a self-triggered communication setting where the
robot calculates its next communication time based on the
previous one, without monitoring the state error. Nowzari and
Cortés [11] proposed a decentralized self-triggered coordina-
tion algorithm for the optimal deployment of a group of robots
based on spatial partitioning techniques. The synchronous
version of this algorithm converges comparatively with an all-
time communication strategy.

To the best of our knowledge, our paper is the first to
simultaneously handle both robot coordination [18] and target
tracking [17]. We focus on applying self-triggered control to
reduce the amount of local communication between neighbors.

III. PROBLEM FORMULATION

Consider a group of N robots moving on the boundary of a
convex polygon Q ⊂ R2. Let ∂Q denote the boundary of Q.
The robots are tasked with tracking a target with position o
located in the interior of Q. Let p1, ..., pN denote the positions
of the robots. We can map any point on ∂Q to a unit circle T
using the transformation ϕo : ∂Q → T given by

ϕo(p) =
p− o
‖p− o‖

(1)

as shown in Figure 1. We identify every robot’s position with
the corresponding point on the unit circle. That is, pi ∈ ∂Q ⊂
R2 is identified with θi = ϕo(pi) ∈ T, indicating the location
on the circle T of robot i. Let θ = (θ1, ..., θN ) ∈ TN denote
the vector of locations of all robots.

We assume that all robots follow simple first-order
continuous-time motion model. Each robot i knows its own
position exactly at all times. When two robots communicate
they can exchange their respective positions. We also assume
that all robots have sensors that cover the environment, and
can always communicate with their neighbors (i.e., robot i
can communicate with i + 1 and i − 1). In Section V-B, we
derive necessary and sufficient conditions of the sensing and
communication range.
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Let ωmax denote the common maximum angular speed1 for
all robots on the unit circle. Our results can be extended to
the situation where each robot has its own maximum angular
speed.

Martinez and Bullo [9] showed that the optimal configu-
ration for the robots that can obtain distance measurements
towards the target is a uniform configuration along the circle
where each pair of neighboring robots is equally spaced around
the target. That is, θi+1 − θi = 2π/N, ∀i ∈ {1, ..., N}. Opti-
mality is defined with respect to maximizing the determinant
of the Fisher Information Matrix (FIM). FIM is a commonly
used measure for active target tracking. Martinez and Bullo [9]
presented a decentralized control law that is guaranteed to
(asymptotically) converge to a uniform configuration when
a robot is allowed to communicate with only two of its
immediate neighbors. That is, a robot i can communicate with
only i−1 and i+1, along the circle. The analysis requires that
all robots know the position of the target exactly and that the
target remains stationary. In the same paper, they showed how
to apply the same control law in situations where the target’s
position is not known exactly and is instead estimated by
combining noisy range measurements in an Extended Kalman
Filter. They also evaluated the performance of the algorithm
empirically in cases where the target is allowed to move.

The control law in [9] assumes that neighboring robots
communicate at every time step. We call this the constant
strategy. Our objective in this work is to reduce the number of
communications between the robots while still maintaining the
convergence properties. We present a self-triggered strategy
where the control law for each robot not only decides how
a robot should move, but also when it should communicate
with its neighbors and seek new information. We show that the
proposed self-triggered strategy is also guaranteed to converge
to a uniform configuration, under the model and assumptions
described in this section.

IV. SELF-TRIGGERED TRACKING ALGORITHM

In this section, we present the self-triggered tracking al-
gorithm for achieving a uniform configuration along the unit
circle. This requires knowing the center of the circle (i.e.,
the target’s position) and assuming that this center does not
change. These assumptions are required for the convergence
analysis to hold. We later relax these assumptions and present
a practical version in the following section.

Our algorithm builds on the self-triggered
centroid algorithm [11] which is a decentralized con-
trol law that achieves optimal deployment (i.e., uniform
Voronoi partitions) in a convex environment. We suitably mod-
ify this algorithm for the cases where the robots are restricted
to move only on the boundary, ∂Q, and can communicate with
only two neighbors as described in the previous section. We
first present the control law for each of the robots that uses
the motion prediction set of its neighbors based on their last
known positions. Then, we present an update policy to decide

1Strictly speaking, each robot has a maximum speed with which it can
move on ∂Q. In Appendix A, we show how the maximum speed on ∂Q can
be used to determine ωmax.

Fig. 2. Robot i goes towards the midpoint of its Voronoi segment via exact
information from its neighbors.

Fig. 3. Motion prediction set, Ri
j , that each robot i maintains for its neighbors

j. θij is the last known position of robot j and τ ij is the time elapsed since
this last known position.

when a robot should communicate and seek new information
from its neighbors.

A. Control Law

The constant control law in [9] drives every robot towards
the midpoint of its Voronoi segment. The Voronoi segment of
the robot i is the part of the unit circle extending from (θi−1 +
θi)/2 to (θi + θi+1)/2. The constant control law steers robot
i towards the midpoint of its Voronoi segment V imid by using
real-time (at every time step2) information from its neighbors,
θi−1 and θi+1, as illustrated in Figure 2. We refer to the book
[22] for a comprehensive treatment on Voronoi segment.

In distributed self-triggered strategies, exact positions of the
neighbors is not always available in real-time. Consequently,
the algorithm must be able to operate on this inexact informa-
tion. The information that each robot i holds about its neighbor
j is the last known position of j, denoted by θij , and the time
elapsed since the position of robot j was collected, denoted
by τ ij . Based on this, robot i can compute the furthest distance
that j could have moved in τ ij time as ±φij where,

φij = ωmaxτ
i
j . (2)

Thus, robot i can build a prediction motion set Rij(θij , φij) that
contains all the possible locations where robot j could have
moved to in τ ij time (Figure 3).

2Denote one time step as a small time interval, ∆t.
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Fig. 4. Robot i goes towards the midpoint of its Voronoi segment via inexact
motion prediction about its neighbors.

In our algorithm, it is sufficient for robot i to only com-
municate with its neighbors i − 1 and i + 1. The predic-
tion motion range that robot i stores is given as Ri :=
{Rii−1(θii−1, φ

i
i−1),Rii+1(θii+1, φ

i
i+1)}.

The proposed self-triggered strategy uses these motion
prediction ranges Ri for defining the control law of robot i.
Since the robot has inexact information of its neighbors, the
midpoint of its Voronoi segment is a set instead of a point
(Figure 4).

Define:

θii−1,min =
(
θii−1 − φii−1

)
θii−1,max =

(
θii−1 + φii−1

)
θii+1,min =

(
θii+1 − φii+1

)
θii+1,max =

(
θii+1 + φii+1

)
.

Thus, we have:

Rii−1(θii−1, φ
i
i−1) = {β ∈ T|θii−1,min ≤ β ≤ θii−1,max},

Rii+1(θii+1, φ
i
i+1) = {β ∈ T|θii+1,min ≤ β ≤ θii+1,max}.

Then the minimum and maximum midpoints of robot i’s
Voronoi segment can be computed as,

V imid,min =
(θii−1,min + θi)/2 + (θi + θii+1,min)/2

2
, (3)

V imid,max =
(θii−1,max + θi)/2 + (θi + θii+1,max)/2

2
. (4)

The midpoint of its Voronoi segment
V imid ∈ [V imid,min, V

i
mid,max]. That is,

V imid,min ≤ V imid ≤ V imid,max. (5)

Substitute Equations 3 and 4 into Equation 5 yields,

θii+1 + 2θi + θii−1 − 2ωmaxτ
i

4
≤ V imid

and

V imid ≤
θii+1 + 2θi + θii−1 + 2ωmaxτ

i

4
,

then

−ωmaxτ
i

2
≤ V imid −

θii+1 + 2θi + θii−1

4
≤ ωmaxτ

i

2
.

Therefore, ∣∣∣∣V imid −
θii+1 + 2θi + θii−1

4

∣∣∣∣ ≤ ωmaxτ
i

2
. (6)

Thus, the angular distance between V imid and
θii+1+2θi+θ

i
i−1

4 is bounded by ωmaxτ
i

2 . In fact, the point
θii+1+2θi+θ

i
i−1

4 indicates the midpoint of i’s guaranteed Voronoi
segment gV si, defined as,

gV si =

{
β ∈ T

∣∣∣∣max
θi∈Si

|β − θi| ≤ min
θj∈Sj

|β − θj | , ∀j 6= i

}
where T1, . . . , Tn ⊂ T are a set of connected segments in T.
We refer to the report [23] for more details on the guaranteed
Voronoi segment. Thus, the guaranteed Voronoi segment of
robot i can be computed as,

gV si =

{
β

∣∣∣∣∣θi + θii+1,min

2
≤ β ≤

θii−1,max + θi

2

}
. (7)

Although robot i does not know the exact midpoint of its
Voronoi segment V imid, it can move towards the midpoint of
its guaranteed Voronoi segment gV imid instead, which is given
by,

gV imid =
(θi + θii+1,min)/2 + (θii−1,max + θi)/2

2
,

=
θii+1 + 2θi + θii−1

4
. (8)

In general, moving towards gV imid does not guarantee that
the robot moves closer to the midpoint of its Voronoi segment.
However, the statement holds under the following condition.

Lemma 1. Suppose robot i moves from θi towards gV imid.
Let θ′i be its position after one time step. If |θ′i − gV imid| ≥
|V imid − gV imid|, then |θ′i − V ′mid| ≤ |θi − V imid|.

The proof for this lemma follows directly from the proof
for Lemma 5.1 in [11]. Consequently, as long as the robot can
ensure that its new position θ′i satisfies |θ′i− gV imid| ≥ |V imid−
gV imid|, then it is assured to not increase its distance from the
actual (unknown) midpoint of the Voronoi segment. However,
the right-hand side of this condition also is not known exactly
since robot i does not know V imid. Instead, we can set an upper
bound on this term using Equation 6. We denote this upper
bound by ubdi := ωmaxτ

i

2 . Thus, we get the following result:

Corollary 1. Suppose robot i moves from θi towards gV imid.
Let θ′i be its position after one time step. If

|θ′i − gV imid| > ubdi, (9)

then |θ′i − V ′mid| ≤ |θi − V imid|.

Next, we present a motion control law that steers the robots
towards a uniform configuration on the circle. Intuitively, robot
i computes its guaranteed Voronoi segment (7) using the last
known positions of its neighbors and the real-time position of
itself. It then computes the midpoint of its guaranteed Voronoi
segment (8) and moves towards the midpoint until it is within
ubdi of it. Formally, the control, ui(tk), for robot i at time tk
is given by:

ui(tk) = ωi unit(gV imid − θi), (10)
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where,

ωi =


ωmax,

∣∣gV imid − θi
∣∣ ≥ ubdi + ωmax∆t,

0,
∣∣gV imid − θi

∣∣ ≤ ubdi,
|gV i

mid−θi|−ubdi

∆t , otherwise.

B. Triggering Policy
As time elapses, without new information the upper bound

ubdi grows larger until the condition in Equation 9 is not
met. This triggers the robot to collect the updated information
from its neighbors. There are two causes that may lead to
the condition in Equation 9 being violated. The upper bound
on the right-hand side, ubdi, might grow large because of
the time elapsed since the last communication occurred. Or,
robot i might move close to gV imid which would require ubdi
to become small by acquiring new information. The second
scenario might lead to frequent triggering when the robots are
close to convergence. We introduce a user-defined tolerance
parameter, σ ≥ 0, to relax the triggering condition. Whenever
the following condition is violated, the robot is required to
trigger new communication:

ubdi < max{‖θ′ − gV imid‖, σ} (11)

Furthermore, the motion control law is designed under the
assumption that the robot i and its two neighbors are located in
the counterclockwise order. That is, θi+1 > θi > θi−1. Since
the robots are identical, it is clear that there is no advantage
gained by changing the order of robots along the circle. In a
constant strategy, since the robots always communicate, they
know the real-time position of their neighbors and can thus
avoid the order being swapped. In a self-triggered strategy,
however, we only have a motion prediction set of the neigh-
bors. If there is a possibility that this order may be violated,
the robots must communicate and avoid it. We achieve this by
requiring the robot to maintain the following condition:

θii+1 − ωmaxτ
i
i+1 > θi > θii−1 + ωmaxτ

i
i−1 (12)

This ensures that even in the worst case, the robots have
not swapped their positions. Whenever there is a possibility
of this condition being violated, the robot i triggers a new
communication.

The complete self-triggered midpoint strategy is presented
below:

Algorithm 1: SELF-TRIGGERED MIDPOINT

1: while all robots have not converged:
2: for each robot i ∈ {1, ..., N} perform:
3: increment τ ii−1 and τ ii+1 by ∆t
4: compute Ri, gV si, gV imid, and ubdi
5: if Equation 11 OR Equation 12 is violated:
6: trigger communication with i+ 1 and i− 1
7: reset τ ii+1 and τ ii−1 to zero
8: recompute Ri, gV si, gV imid, and ubdi
9: end if

10: compute and apply ui as defined in Equation 10
11: end for
12: end while

C. Convergence Analysis

Algorithm 1 is guaranteed to converge asymptotically to a
uniform configuration along the circumference of the circle,
irrespective of the initial configuration, assuming that no two
robots are co-located initially. The proof for the convergence
follows directly from the proof of Proposition 6.1 in [11]
with suitable modifications. In the following, we sketch these
modifications.

In [11] the robots are allowed to move anywhere in the
interior of Q ⊂ R2 whereas in our case the robots are
restricted to move on ∂Q, equivalent to moving on the unit
circle T. Therefore, all the L2 distances in the proof in [11]
change to L1 distances. Instead of moving to the midpoint
of the guaranteed Voronoi segment, the robots in [11] move
to the centroid of a guaranteed Voronoi region. Instead of
communicating with the two clockwise and counter-clockwise
neighbors, the robots in [11] communicate with all possible
Voronoi neighbors. None of these changes affect the correct-
ness of the proof. We add an extra condition that triggers
communications to prevent robots from changing their order
along T. Since this condition only results in additional triggers,
it can only help convergence. Finally, since there is a one-to-
one and onto mapping between ∂Q and T, convergence along
T implies convergence along ∂Q.

V. PRACTICAL EXTENSIONS

In this section, we present two practical extensions of
our algorithm relaxing some of the assumptions given in
Section III.

A. Tracking of Moving Target with Noisy Measurements

If the true position of the target, o∗, is known, then we can
draw a unit circle centered at the target and use the strategy
in Algorithm 1 to converge to a uniform configuration along
the circle. According to the result in [9] this configuration
maximizes the determinant of the FIM. In practice, however,
we do not know the true position of the target. In fact, the
goal is to use the noisy measurements from the robots to
estimate the position of the target. Furthermore, the target may
be mobile. This implies that the (unknown) center of the circle
is also moving, further complicating the control strategy for
the robots.

We use an Extended Kalman Filter (EKF) that estimates the
position of the target (i.e., center) and predicts its motion at
every time step. The prediction and the estimate of the target
from an EKF is a 2D Gaussian distribution parameterized
by its mean, ô(k) and covariance Σ̂(k). The target’s state
prediction and update by EKF are described below.
Prediction:

ô−(k) = ô(k − 1),

Σ̂−(k) = Σ̂(k − 1) +R(k).

Update:

K(k) = Σ̂−(k)HT (k)(H(k)Σ̂−(k)HT (k) +Q(k))−1,

ô(k) = ô−(k) +K(k)(z(k)− h(ô−(k)))
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Σ̂(k) = (I −K(k)H(k))Σ̂(k)−

where R(k) and Q(k) are the covariance matrices of the
noise from target’s motion model and robot’s measurement,
respectively. h(ô−(k)) := ‖p(k) − ô−(k)‖2. z(k) denotes
the noisy distance measurement from the robot. H(k) is the
Jacobean of h(ô−(k)). At each time step, we use the mean of
the latest estimate as the center of the circle to compute the
θi values using the transformation in Equation 1.

In the centralized setting, a common fusion center can
obtain the measurements from all the robots and compute
a single target estimate, ô(k) at every time step. Therefore,
each robot will have the same estimated mean, ô(k), and
therefore the same center for the unit circle. However, in the
decentralized case, each robot runs its own EKF estimator
and has its own target estimate, ôi(k), based on only its own
measurements of the target. As a result, the centers of the unit
circle will not be the same, making convergence challenging.

If at any time step, a robot communicates with its neighbors,
then it can also share its estimate (mean ô(k) and covari-
ance Σ̂(k)) with its neighbors. Therefore, at these triggered
instances, each robot can update its own estimate by fusing
the estimates from its neighbors. We use the covariance
intersection algorithm, which is a standard decentralized EKF
technique, to fuse estimates under unknown corrections [24].

The covariance intersection algorithm takes two Gaussian
beliefs, (xa,Σa) and (xb,Σb), and combines them into a
common belief, (xc,Σc):

xc = Σc((Σa)−1xa + (Σb)
−1)−1xb)

Σc = (λ(Σa)−1 + (1− λ)(Σb)
−1)−1

Here, λ ∈ [0, 1] is a design parameter obtained by optimizing
some criteria, i.e., determinant or trace of Σc.

The rest of the process is similar to that in Algorithm 1.
The centralized EKF scheme is a baseline which we compare
against for the more realistic decentralized strategy. The results
are presented in the simulation section that follows.

B. Limited Communication and Sensing Range

Our main result assumes that the robots have sufficiently
large communication and sensing ranges. In this section, we
first present a necessary condition for the communication
range rc and sensing range rs. We then present a sufficient
condition on the communication range for a modified version
of our algorithm.

Theorem 1 (Necessary Condition). Let N be the total number
of robots. To guarantee the convergence to the optimal config-
uration when the robots do not know N , the communication
range rc cannot be less than Din sin π

N and the sensing
range rs cannot be less than Din

2 . Din indicates the diameter
of the largest radius circle contained completely inside the
environment.

Proof. Consider an arbitrary convex boundary as shown in
Figure 5-(a). We draw its inscribed circle Cin with radius rin
and diameter Din. To guarantee convergence without know-
ing N , the robots must be able to communicate with both

neighbors when they reach a uniform configuration. When
N = 4 (Figure 5-(a)), if the communication range among
any two robots, rc <

√
2rin =

√
2Din
2 , these four robots

cannot communicate with each other even when they are at
the uniform configuration. For any N , rc can be calculated by
using the cosine law,

r2
c = 2r2

in − 2r2
in cos

2π

N
.

Thus,
rc = 2rin sin

π

N
= Din sin

π

N
.

Thus, we obtain the necessary condition that rc cannot be less
than Din sin π

N .
If rs < rin, no robot can sense the target when the target is

at the center of the circle. Thus the sensing range rs cannot
be less than Din

2 .

Next, we propose a sufficient condition on the communica-
tion and sensing ranges to ensure convergence to the uniform
configuration. We need to make an additional assumption that
each robot can uniquely identify its forward and backward
neighbors. We also assume that the communication range is
the same for all the robots and is known to all the robots.
We present a modified version of our strategy that works with
limited communication range.
Modified Self-Triggered Strategy: If robot i cannot communi-
cate with either of its two neighbors, it does not move. If robot
i can only communicate with one of its neighbors, it moves
in the direction of the other neighbor with maximum velocity.
A robot keeps moving unless its motion will cause it to lose
communication with its neighbors. If robot i can communicate
with both of its neighbors, it applies the proposed control law
(Equation 10).

Theorem 2 (Sufficient Condition). If the communication
range rc ≥ L

N and the sensing range rs ≥ Dout, then
the modified strategy converges to the optimal configuration.
Here, L and Dout indicate the environment’s perimeter and
the length of the longest segment contained completely inside
the environment, respectively.

Proof. We define a communication chain (Figure 5-(c)) to be
the maximal set of consecutive robots, i, i+1, . . . , j, such that
i can communicate with i + 1, i + 1 can communicate with
i+ 2, and so on until j. We now show that irrespective of the
starting configuration, using the modified control law, all the
N robots will form a single chain.

We define length of a chain to be the distance along the
boundary (in the direction that contains the chain) between
the two extreme robots in a chain (Figure 5-(c)). We denote
two extreme robots as the robots at the two endpoints of the
chain.

Consider a chain of K robots. We show that the robots
in this chain will keep moving unless the length is greater
than or equal to L

N (K − 1) or the chain merges with another.
Extreme robots in a chain have only one neighbor that they
can communicate with. According to the strategy, these robots
will continuously move (in a direction away from the chain)
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(a) (b) (c)

Fig. 5. The example of four robots moving on an arbitrary convex boundary to show necessary condition: (a) and sufficient condition: (b) and (c). The red
solid circle indicates the robot.

with maximum velocity. Other robots between the two extreme
robots in the communication chain apply self-triggered control
law (Equation 10) to go towards the midpoint of its two
neighbors. Therefore, the length of the chain keeps increasing
as long as the robots are moving. Unless the chain merges with
another one, the robots will stop moving when the distance
between all consecutive pairs of robots is rc. Here, rc ≥ L

N . If
two consecutive robots are on the same environment edge, then
the distance along the boundary between the robots is exactly
equal to rc. If the two robots are on different boundary edges,
then the distance between the robots along the boundary will
be greater than rc (due to the convexity of the environment).
Therefore, the length of the chain when all K robots stop
moving will be greater than or equal to L

N (K − 1).
Next, we prove our claim that eventually all robots form a

single chain, by contradiction. Denote the separation between
two consecutive chains as the distance between the starting
(ending) robot of one chain and the ending (starting) robot
of another chain along the boundary of the environment (Fig-
ure 5-(c)). Suppose, for contradiction, that there exists M > 1
chains after all robots have stopped moving. Let K1, . . . ,KM

be the number of robots in the M chains. K1+· · ·+KM = N .
The separation between any two consecutive chains is

strictly greater than L
N . Furthermore, the length of any chain

is greater than or equal to L
N (Ki − 1). The perimeter of the

environment must be equal to the length of all chains and
the separation between all consecutive chains. Therefore, the
perimeter must be strictly greater than

L

N
(K1 − 1) + · · ·+ L

N
(KM − 1) +M

L

N
= L.

This contradicts with the fact that the perimeter of the envi-
ronment is exactly L. Thus, we prove all the robots eventually
form a single chain.

Finally, once we ensure that robots form a single chain,
then the convergence proof follows from the convergence of
the self-triggered policy.

VI. SIMULATION AND OUTDOOR EXPERIMENT

In this section, we evaluate the performance of the proposed
self-triggered tracking coordination algorithm. We first com-
pare the convergence time for the self-triggered and constant
communication strategies to achieve a uniform configuration
on a convex boundary (Section IV). Then, we demonstrate the
performance of the self-triggered and constant strategies for
moving targets.

A. Stationary Target Case

In this section, we compare the performance of the self-
triggered and constant strategies in terms of their convergence
speeds and the number of communication messages to achieve
a uniform configuration on the boundary of a convex environ-
ment. Here, we focus on the base case of known, stationary
target position. All results are for 30 trials where the initial
positions of the robots are drawn uniformly at random on
the boundary. Our MATLAB implementation is also available
online.3

Figure 6 shows snapshots of the active tracking process
under the proposed self-triggered strategy starting with the
initial configuration at time step k = 1 in Figure 6-(a) and
ending in a uniform configuration around the target at k = 760
as shown in Figure 6-(c). For this example, we assume that
the robots know the position of the stationary target. At each
time step, we use the map ϕo to find θi on the unit circle
(Equation 1), compute the control law as per Algorithm 1, and
apply the inverse map ϕ−1 to compute the new positions of the
robots on ∂Q. We set ∆t = 0.1 s and assume that each robot
has the same maximum angular velocity ωmax = π

180
rad
s .

In general, one can use the procedure given in the appendix
to compute ωmax for a given environment. Note that, the
convergence time depends on ωmax, which in turn, depends
on the shape of the environment assuming a fixed maximum
linear velocity. In Figure 7, we plot the convergence time for
six robots starting from a fixed configuration by varying ωmax

from π
180

rad
s to π

2
rad
s . It shows that the convergence time

approaches a limit with increasing ωmax.

3https://github.com/raaslab/Self-triggered-mechanism
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(b) k = 400
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(c) k = 760

Fig. 6. Self-triggered tracking with six robots moving on the boundary of a convex polygon with a known, stationary target. The robots took 760 time steps
to converge to the uniform configuration around the target.
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Fig. 7. The convergence time for six robots starting with same initial
configuration for increasing values of maximum angular velocity ωmax.

We first compare the convergence time of the two strategies
with the same starting configurations for 30 trials (Figure 8-
(a)). The convergence time, Ctime is specified as the timestep
k when the convergence error, Cerr, drops below a threshold.
We use 0.1N as the threshold, where N is the number of
robots. The convergence error term, Cerr, is defined as:

Cerr =
N∑
i=1

∣∣θi − V imid

∣∣ (13)

in the constant communication case, and

Cerr =
N∑
i=1

∣∣θi − gV imid

∣∣ (14)

in the self-triggered case.
The average number of communication messages is found

as:

Com =

∑N
i=1 com(i,Ctime)

N × Ctime

where com(i,Ctime) gives the total number of communica-
tions of a robot with its neighbors i at the end of Ctime.
Figure 8-(b) shows the Com in the self-triggered case. The
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Fig. 8. Comparison of the convergence time (a) and the number of communi-
cation messages (b) in constant and self-triggered strategies with a stationary
target at known position. The error bar indicates standard deviation.

number of communication messages in the constant com-
munication case is a constant. Figure 8-(a) shows that the
self-triggered mechanism converges comparatively with the
constant strategy.
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We also implemented our algorithm in ROS and performed
simulations in the Gazebo environment [25]. Figure 9 shows
an instance with six differential-drive Pioneer 3DX robots [26]
that can move in forwards and backwards direction.

Fig. 9. Gazebo environment where six simulated Pioneer 3DX robots are
tasked to track a target moving in the interior.
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Fig. 10. Comparison of convergence error and communication messages in
constant and self-triggered communication strategies using the setup shown
in Figure 9.

Figure 10-(a) shows that the constant communication strat-
egy converges faster than the self-triggered one with six

simulated robots. Changing the tolerance parameter σ affects
the convergence time of the self-triggered strategy. The smaller
the convergence tolerance σ, the faster the convergence which
comes at the expense of an increased number of messages.
Figure 10-(b) shows communication messages for both strate-
gies. The smaller the tolerance σ, the larger the number of
messages. The convergence tolerance σ acts as a trade-off
between the communication messages and the convergence
speed in the self-triggered case.

B. Moving Target Case

Next, we present simulation results for the realistic case
of mobile, uncertain target (Section V). We evaluate three
strategies: constant communication with centralized EKF, self-
triggered communication with centralized EKF, self-triggered
communication with decentralized EKF. All three algorithms
were implemented in Gazebo with six simulated Pioneer
robots and a simulated Pioneer target moving on a circular
trajectory. We assume that all the robots have the same
maximum linear velocity, vmax = 0.2m/s. We calculate the
linear velocity for each robot i by vi = ωi‖pi − ô‖2.
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self-triggered centralized EKF
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Fig. 11. Convergence error for mobile target tracking in constant commu-
nication with centralized EKF, self-triggered communication with centralized
EKF, self-triggered communication with decentralized EKF.

For a moving target with vo = 1.0m/s and ωo = 0.6rad/s,
Figure 11 shows all three algorithms have similar tracking
performance with respect to the convergence error, Cerr, over
time. However, the target estimate error Terr is smaller in the
centralized EKF cases than the decentralized case as shown in
Figure 12. The target estimate error is defined as:

Terr = ‖ô− o‖,

for the centralized case with ô indicating the centralized
estimate of the target, and

Terr =

∑N
i=1 ‖ôi − o‖

N
,

for the decentralized case with ôi indicating the target estimate
from each robot i.

Figure 13 shows the tracking performance of the self-
triggered communication decentralized EKF strategy in rela-
tion to the baseline constant communication centralized EKF
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Fig. 12. Error in target’s estimate for mobile target tracking in constant
communication with centralized EKF, self-triggered communication with
centralized EKF, self-triggered communication with decentralized EKF.

strategy as a function of the linear and angular velocities of
the target’s motion. We observe that the performance of the
self-triggered strategy is comparable to the baseline algorithm
except when the target moves in a large circle (Figure 13-(c))
and when the target moves too fast (Figure 13-(d)).

C. Proof-of-Concept Experiment

To further verify the tracking performance of the self-
triggered decentralized EKF strategy, we also conducted a
proof-of-concept mixed reality experiment. Due to limited
resources, we used five simulated Pioneer 3DX robots (
r1 ∼ r5) cooperating with one real Pioneer 3DX robot (r6) to
track one real Pioneer 3DX target moving with vo = 1.0m/s
and ωo = 0.6rad/s. The initial deployment for all seven
robots is the same as Gazebo experiment (Figure 9). The two
real Pioneer robots (robot 6 and target) and the trajectories
of all robots during tracking are shown in Figure 14-(a) and
(b). Figure 14-(c) shows the self-triggered communication
decentralized EKF strategy achieves a comparable tracking
performance w.r.t. the convergence error. The video showing
all the simulations and experiments is available online.4

VII. DISCUSSION AND CONCLUSION

In this paper, we investigated the problem of active target
tracking where each robot controls not only its own positions
but also decides when to communicate and exchange informa-
tion with its neighbors. We focused on a simpler target tracking
scenario, first studied in reference [9]. We applied a self-
triggered coordination strategy that asymptotically converges
to a uniform configuration around the target while reducing
the number of communication to less than 30% of a constant
strategy. We find that the self-triggered strategy performs
comparably with the constant communication strategy. Future
work includes extending the self-triggered strategy to decide
not only when to communicate information, but also when
to obtain measurements and which robots to communicate
with. We conjecture that the latter question is crucial for better

4https://youtu.be/UcsRCc9cfns

performance while tracking mobile targets. The self-triggered
strategy can also be applied to other domains with networked
controllers, e.g., for optimization of the networked industrial
processes [27], [28].

APPENDIX

CALCULATION OF ωmax

Assume the boundary of the convex environment ∂Q and
the position (or its estimate) of the target are known. And
Assume the robot has a maximum speed vmax with which it
can move on ∂Q. Thus, it can move as far as dmax = vmax∆t
in one time step ∆t. We assume that dmax is less than the
length of any edge of the polygon. Hence, a robot can cross
at most one vertex per time step. Then we split the calculation
of ωmax into three separate cases (Figure 15).

In all cases, let E i be the edge on which the robot is
located before moving a distance of dmax. Let lE i be the line
supporting the edge. In cases 1 and 2, we compute ωmax when
the robot remains on E i after traveling dmax, whereas in case
3 the robot goes from E i to E i+1

Case 1. The orthogonal projection of the target on lE i lies
within E i.
ω1,Ei

max corresponds to the case where the robot covers a
maximum angular distance with respect to the target in one
time step. Thus, the robot should be as close as possible to the
target when it moves dmax on the edge. ω1,Ei

max can be calculated
as ω1,Ei

max = θ
1,Ei
max

∆t giving ω1
max = minEi∈E{ω1,Ei

max}. Here θ1,Ei
max

is the angle shown in Figure 15. Since we assume ∂Q and the
target’s position (or its estimate) are known, we can calculate
the length of perpendicular bisector |ph1o|. Then, θ1,Ei

max can
be computed by applying Pythagorean theorem for |ph1o| and
dmax/2.
Case 2. The orthogonal projection of the target on lE i lies
outside E i.

Similar to case 1, the ωmax can be computed as ω2,Ei
max =

θ
2,Ei
max

∆t where ω2
max = minEi∈E{ω2,Ei

max}. Here, θ2,Ei
max is the larger

of the two angles made by the pair of lines joining target and
either of the endpoint of Ei and joining target and a point
dmax away from the corresponding endpoint. As one example
in Figure 15, robot starts from one vertex of the ∂Q, V2,
and travels dmax distance till the ending point pe2. Since ∂Q is
known, we know the position of its vertex V2, and can compute
the position of ending point, pe2 by knowing |V2p

e
2| = dmax

and ∂Q. Then we can compute |pe2o| and |V2o|. By using the
law of cosines, we can compute θ2,Ei

max, then obtain ω2,Ei
max.

Case 3. Robot crosses a vertex Vi within one time step.
We assume that within one time step ∆t, the robot moves

dVi1 on one edge and dVi2 on another edge. Since the robot
must spend some time at the vertex turning in-place, we have
dVi1 + dVi2 < dmax. We calculate d2 by

(d1 + d2)

vmax
+
θViro

ωro
= ∆t.

where θViro and ωro denote the rotation angle at the vertex Vi
and rotational speed of the robot, which are known. Then,
we show the calcualtion of θ3,Vi

max by an example in Figure 15
where robot starts from ps3, crosses the vertex by rotating θro
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Fig. 13. Comparison of Cerr for mobile target tracking with constant centralized EKF and self-triggered decentralized EKF w.r.t. the radius and velocities
(v and ω) of the moving target.
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Fig. 14. The trajectories of all the robots (five simulated robots, r1–r5, in Gazebo and two actual robots, r6 and the target) and convergence error for
self-triggered communication with decentralized EKF strategy.

Fig. 15. Computing ωmax.

and ends at pe3. Once we know d1, d2, θro, we can use the law
of cosines to calculate |ps3pe3|. Then apply cosine law again to
|ps3pe3|, |ps3o|, and |pe3o|, we can compute θ3

max. We use this
procedure to calculate θ3,Vi

max at the vertex Vi. Thus, the ω3,Vi
max

can be calculated by

ω3,Vi
max =

θ3,Vi
max

∆t
.

Then ω3
max can be specified as

ω3
max = min

(Vi,d1)
{ω3,Vi

max}.

Where Vi ∈ V and 0 ≤ d1 ≤ ∆t− θ
Vi
ro

ωro
.

Finally, ωmax can be computed as

ωmax = min{ω1
max, ω

2
max, ω

3
max}. (15)

If dmax is larger than the length of one edge or the sum
of lengths of several edges of the polygon, ωmax can also be
obtained using a similar procedure.
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