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Abstract—Physical unclonable functions (PUF) in silicon
exploit die-to-die manufacturing variations during fabrication
for uniquely identifying each die. Since it is practically a hard
problem to recreate exact silicon features across dies, a PUF-
based authentication system is robust, secure and cost-effective,
as long as bias removal and error correction are taken into
account. In this work, we utilize the effects of inherent process
variation on analog and radio-frequency (RF) properties of
multiple wireless transmitters (Tx) in a sensor network, and
detect the features at the receiver (Rx) using a deep neural
network based framework. The proposed mechanism/
framework, called RF-PUF, harnesses already-existing RF
communication hardware and does not require any additional
PUF-generation circuitry in the Tx for practical implementation.
Simulation results indicate that the RF-PUF framework can
distinguish up to 10000 transmitters (with standard foundry
defined variations for a 65 nm process, leading to non-idealities
such as LO offset and I-Q imbalance) under varying channel
conditions, with a probability of false detection < 103,
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[. INTRODUCTION

The recent advancements in cheap computing, communication,
wearable and implantable technologies have enabled a myriad of
devices to be connected through the Internet-of-Things (IoT).
Many of these devices continuously operate under mobile and
untrusted environments, containing potentially malicious
attackers. Hence, identifying and authenticating each transmitting
device in such a network is an imposing problem for the receiving
device. One of the traditional authentication protocols, called
symmetric-key cryptography, involves placing a secret key in a
non-volatile memory (NVM) or a battery-powered SRAM which
can subsequently be used to create a digital signature or hash
based encryption. However, this technique is vulnerable to key-
hacking and suffers from significant area and power overhead.
Because of these reasons, Physical Unclonable Functions (PUF),
that exploit manufacturing process variations to generate a unique
and device-specific identity for a physical system [1]-[5], are
becoming increasingly popular. PUFs are simpler, smaller and
more energy-efficient than NVM/SRAM-based solutions, and do
not require anti-tamper mechanisms to detect invasive attacks.

Based on the number of challenge-response pairs (CRP) that
the PUFs can handle, they are usually classified into strong and
weak PUFs. Weak PUFs support a small number of CRPs which is
linearly proportional to the hardware complexity of the PUF.
Strong PUFs, conversely, support a large number of CRPs and
hence can avoid polynomial time attacks. As a result, strong PUFs
are usually employed in device authentication applications.
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Fig. 1. Visualization of RF-PUF at a system level

A PUF-based authentication protocol can enable easy and
secure identification of devices in an IoT environment. When any
narrowband Tx device modulates digital data, the resulting wave
inherently contains device-specific unique analog/RF properties
such as frequency offset and I-Q imbalance. These non-idealities
are usually discarded/minimized at the receiver end as they are
irrelevant in terms of the transmitted information. However, if
those non-idealities are effectively harnessed using an in-situ
machine learning framework at the Rx, the entropy information
can be extracted for each of these transmitters, which leads to
secure identification. Fig. 1 presents the RF-PUF framework in
presence of channel impairments, wherein every transmitter work
as an instance of the PUF. Since RF-PUF requires no_extra
hardware at the Tx, it is even more interesting for an asymmetric
network (such as the body area network) where the Tx needs to be
low power and the Rx is a hub that can operate at a higher
bandwidth and power. Such a framework can find multiple
applications such as surveillance, forensic data collection and
intrusion detection [6]-[7].

The remainder of the paper is organized as follows: Section II
lists the recent works in the domain of RF authentication. Section
I describes the proposed RF-PUF, while Section IV presents the
performance parameters. Section V summarizes our contributions
and lists future directions and improvements.

II. RELATED WORK

RF fingerprinting [8]-[11] enables automatic identification of
wireless nodes in a network by extracting specific temporal and
frequency-domain properties during power-on. Two fundamental
techniques are usually adopted for RF fingerprinting — a transient
method and a steady-state method. The transient method offers
consistent and acceptable classification accuracy only when the
start and the end of the transient can be reliably identified [7].
Moreover, a high oversampling clock (0.5-5 Gs/s, as shown in [9]-
[10]) is required to properly analyse the transient properties. An
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alternative approach utilizes the steady-state properties of the Tx,
extracted when the circuit transients are stabilized. However, the
steady-state method requires fixed random channel access
(RACH) preambles along with techniques such as spectral
averaging or matched filtering [6]-[7], as the extracted properties
depend on the transmitted bit-stream. The steady-state analysis
method does not require sophisticated and high-power
communication modules, as the steady-state properties can easily
be identified. In this paper, we combine the concept of PUF with
RF fingerprinting and develop a system architecture that utilizes
the embedded RF properties of the Tx to authenticate wireless
nodes using a machine learning framework in the Rx. To the best
of our knowledge, this is the first work with a preamble-less
steady state approach which trains the learning engine with
multiple data streams and different channel conditions. RF-PUF
utilizes the inherent non-idealities in the TX, and hence no
additional hardware is required to generate the PUF identity,
which is an important feature of the proposed system.

III. RF-PUF: DEFINITION AND PROPERTIES

Although the PUF properties of the system originate from the
manufacturing process variations of the transmitters, the
identification of each node is done in the Rx sub-system which
extracts the following features from the received signal:

A. Frequency features

Every transmitter in a non-FDM wireless network should
ideally operate at a fixed carrier frequency. However, due to the
inherent variations in the oscillator, each Tx will have its unique
frequency offset. This offset/error works as a prime feature for
device identification as shown in [7] and [12]. Different standards
allow different limits for the frequency offset. For example, the
frequency error must be within 25 ppm of the center frequency
(2.412 GHz) for the IEEE 802.11b standard. For a normal
distribution, this corresponds to a standard deviation (o) of 20.1
kHz. An accurate and known reference clock in the Rx can
calculate frequency offsets for multiple transmitters. Alternatively,
a carrier synchronizer module (which already exists in a standard
Rx for LO offset compensation) can be employed in the receiver
that finds the frequency offset and compensates for it, as shown in
our implementation in Fig. 2. The machine-learning sub-system
identifies the Tx devices using this ppm offset as a prime feature.

B. I-Q features

The in-phase (I) and quadrature (Q) components of the Tx
signal contains unique amplitude and phase mismatches for each
Tx, which arises from the digital to analog conversion, power-
amplifier (PA) back-off and gain. Because of compressive
nonlinearity, the outer symbols in the constellation are affected
more than the inner symbols. Hence it is necessary to extract
amplitude and phase information for all symbols separately.

C. Channel features

The communication channel can also introduce time and
frequency dependent variations in the form of attenuation,
distortion and Doppler shift. To estimate and compensate these
non-idealities, an automatic gain control (AGC) block, a Root-
Raised Cosine (RRC) filter and a Doppler corrector is employed in
the Rx as indicated in Fig. 2. The RRC filter, helps reducing inter-
symbol interference (ISI), while the AGC module provides a
measure of the channel attenuation to an Artificial Neural Network
(ANN). Similarly, the Doppler corrector module estimates and
corrects the amount of Doppler shift due to mobility of Tx and Rx
in the network, and provides the information to the ANN for
compensation.
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Fig. 2. Simulation setup involving Tx and Rx for RF-PUF implementation

D. 16-QAM system features

In modern transceivers, 16-QAM is employed to achieve a
higher spectral efficiency. However, in our implementation, it also
helps in extracting enough [-Q features (amplitude and phase
imbalance) to identify the devices using the ANN.
E. Properties of the RF-PUF

The proposed system exhibits the properties of a strong PUF
[3] that makes it suitable for authentication applications:

(a) Constructability: A PUF class P is constructible when a
random PUF instance (p, € P) can be created by invoking a
specific procedure, P. Create.

pr < P.Create

In case of RF-PUF, each transmitter is a PUF-instance. The
technical limitations in the physical process of manufacturing the
RF transmitters serve as the creation procedure P. Create for the
PUF instances.

(b) Evaluability: A constructible PUF class P is said to be

evaluable when for a random PUF instance (p,- € P) and a random
challenge (x), it is possible to evaluate a response y.

y « P.Eval[p, (x)]

x is the input bit-stream/challenge to each Tx (RF-PUF
instance), and y is the unique response for Tx.

(¢) Reliability:  An  evaluable PUF class P is
reproducible/reliable if the intra-PUF-instance variation is
probabilistically lower than a system-defined small number.

For any PUF, reproducibility is often represented as the worst-
case difference ( Diya ) between two distinct evaluations
(y(x),y'(x)) on the challenge x for a particular PUF instance.

Dintra(x) = dist[y; (x), y1'(x)]

Dintrals the intra-PUF Hamming distance that serves as a
metric to measure the resilience of the RF-PUF to varying
environmental conditions (temperature, supply etc.). In an ideal
scenario, Diyira = 0%.

(d) Uniqueness: An evaluable PUF class P is unique if the
inter-PUF-instance variation is probabilistically higher than a
system-defined large number.

The measure of uniqueness can be represented as the
difference of the responses between two PUF instances
(y1(x), y,(x)) for the same challenge, x.

Dinter (%) = dist[y; (%), y2(x)]
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Fig. 3. Preamble-less Training Framework for the ANN. This method enables
on-the-fly authentication without knowing the expected bit-stream from the Tx.

The quantitative results for uniqueness and reliability are
evaluated in Section IV.

(e) Identifiability: A PUF class P is easily identifiable if it is
reliable and unique, and if the intra-PUF variation is
probabilistically lower than inter-PUF variation.

PrOb(Dintra(x) < Dinter(x)) ~1

The simulation results shown in Section IV indicate that the
worst case Diper 18 3.9 ppm while the corresponding Djprq 1S 2.9
ppm over 1000 Transmitters. This means that the instances are
identifiable for 1000 or more devices.

(f) PUF Strength: RF-PUF can support a large number of
challenge-response pairs (CRP), since we are using multiple
analog/RF properties to define a single instance of RF-PUF. For
n distinct features in the real number space, the total number of
CRPs for the RF-PUF will be 216", when the real-number space is
represented by 16-bit numbers. Evidently, the number of CRPs is
exponential in the number of features, and tends to a large number
for even small values of n (3-8). In other words, a probabilistic
polynomial time (PPT) adversary can correctly predict the
response to a new random RF-PUF instance/challenge with a
negligible probability (1/21™). This confirms that RF-PUF is a
“strong PUF” which is suitable for identification applications as
shown in [1].

F. Training the Neural Network

To account for data variability in evaluation stage and to enable
preamble-less operation, the neural network is trained in multiple
iterations, and with different pseudo-random bit-streams (PRBS).
The hyper-parameters, including the number of iterations required
to compensate the effects of data variability were optimized
aggressively. A feature matrix as shown in Fig. 3 was presented to
the neural network as a training dataset. The extracted channel

conditions for different training iterations were also presented as
features which helps the network to learn to compensate for the
channel variations. The number of hidden layers were also varied
and was optimized for performance (detection accuracy). During
Evaluation phase, a different pseudo-random data-stream from any
of the transmitters is provided to the ANN for a different channel
condition. Hence the neural network learns both data variabilities
and channel variabilities simultaneously (at the cost of more
training time) which leads to a robust system.

IV. PERFORMANCE METRICS

The proposed PUF is simulated using the MATLAB Neural
Network toolbox, and the End-to-End QAM simulation toolbox
with RF impairments and corrections. To model the statistical
manufacturing variabilities, foundry-provided process information
of a standard 65 nm technology is included in the simulations. A
total of 10,000 PUF instances were simulated in presence of
varying channel conditions.

A. Probability of False Detection

Fig. 4(a) shows the accuracy/probability of false detection of a
Tx device as a function of the total number of transmitters in the
network, which indicates that the error is < 107 for 4800
transmitters, and < 102 for 10,000 transmitters. By increasing the
number of neurons in the hidden layer from 10 to 50, the accuracy
is improved. However, increasing the number of neurons to 100
causes overfitting, and does not improve the performance of the
system even though the complexity and power cost of detection
increases.

B. Robustness to Channel

The communication channel is always affected by free-space-
path-loss, attenuation/noise in the medium (represented by E},/
N,), interference, Doppler shift and fading. The contribution of
(Ep/Ny) has the most dominant effect as shown in [13]. We have
analyzed and shown the effect of this channel noise on the
probability of false detection in Fig. 4(b). Inter-symbol
interference (ISI) leads to an increased error probability of = 0.02
in absence of the RRC filter when the mean Ej, /N, of the channel
is 15 dB, with a standard deviation of 10 dB. When the RRC filter
is employed, ISI is reduced which makes the extraction of the I-Q
features easier. This results in a reduced probability of error of 10
for the same amount if of E}, /N, variations as shown in Fig. 4(b).

In our implementation, the ANN is trained using variable data-
streams in multiple iterations, which also includes variable amount
of channel noise. As the number of training iterations increase, the
performance of the system tends towards the performance
achieved in fixed-preamble case. This overhead of having
additional training iterations is simultaneously useful in terms of
learning the channel variability, as each iteration will have a
different channel condition which the network learns to
compensate.

C. Reliability (Intra-PUF Hamming Distance) and Uniqueness
(Inter-PUF Hamming Distance)

Fig. 4(c) presents the Reliability and Uniqueness of RF-PUF
w.r.t. the input features provided to the ANN. Unlike a traditional
digital PUF with multi-bit output, RF-PUF inherently embeds the
unique signature of the Tx in the analog properties of the
transmitted message, and hence the Intra-PUF and Inter-PUF
distances can be plotted using the normalized parts-per-million
(ppm) variation of the input features. However, a transformation
of the feature spaces is required to represent the ppm variations of
multiple features on a single axis. It should be noted that the total
number of possible unique PUF instances is proportional to
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Fig. 4. (a) Probability of False detection as a function of the total number of transmitters in the system. (b) Probability of False detection as a function of the
standard deviation (o) of the (%) in the channel in presence of AWGN. (c) Worst case Intra and Inter-PUF distance with 1000 Transmitters and 50 hidden layers

w.r.t. geometric mean of normalized ppm variation of features.

™, 2®(n = number of features, 216= possible values for feature
i when represented with 16 bits), and hence we can intuitively
utilize the geometric mean of the ppm values of all the features for
a PUF instance. This geometric mean of the ppm values of the
features (for 1000 transmitters) is used as the X-axis in Fig. 4(c).

The worst case inter-PUF variation for 1000 transmitters is
found to be 3.9 ppm, while the corresponding intra-PUF variation
is 2.9 ppm. Hence, it is possible to uniquely identify the 1000
transmitters, but the probability of false detection keeps on
increasing as the number of transmitters reaches a few thousands,
as the difference between inter-PUF distance and intra-PUF
distance reduces.

D. Vulnerability to External Machine Learning Attacks

The RF-PUF employs supervised learning to uniquely identify
the PUF instances. However, for an external attacker, the problem
of correctly identifying a device in the network and masquerading
itself as the same Tx device remains an unsupervised learning
problem with a different learning framework. As it is not possible
to list all the CRPs in polynomial time, a PPT adversary takes a
very long time for the unsupervised learning.

Other PUF properties such as randomness (of the features),
bias and stability with respect to temperature and supply is not a
scope of this paper, and will be analyzed as a future work with
hardware implementation where such notions can be properly
justified.

V. CONCLUSIONS AND FUTURE WORK

A conceptual development of RF-PUF is presented in this
paper, supported by simulation results utilizing standard foundry-
defined variations for a 65 nm technology. The inherent
manufacturing non-idealities of a wireless Tx node can be
exploited as a strong PUF for device identification in presence of
channel imperfections and attenuation. An in-situ machine
learning framework is shown to detect up to 10,000 devices with
99% accuracy. RF-PUF enables low-cost secure identification
using intrinsic Tx properties embedded in the RF signal, without
any extra hardware cost, and without any requirement for
preamble-based or key-based authentication. The ANN in the Rx
can be implemented on an application processor (on-board,
already present in modern IoT nodes). As a future extension of

this study, methods of compensating Rx non-idealities will be
analyzed, along with efficient practical implementations using
software defined radios. The randomness and stability of RF-PUF
in presence of temperature and supply voltage variation will also
be analyzed as part of the future work.

ACKNOWLEDGEMENT

The work is supported in part by National Science Foundation
(NSF) SaTC, CNS Grant No. 1719235 and Semiconductor
Research Corporation (SRC) Grant No. 2720.001.

REFERENCES

[1] C. Herder et al., “Physical Unclonable Functionsand Applications: A
Tutorial,” Proceedings of the IEEE, 2014

[2] M.Yu et al.,, “Performance Metrics and Empirical Results of a PUF
Cryptographic Key Generation ASIC”, [EEE HOST, 2012.

[3] R. Maes, “Physically Unclonable Functions: Constructions, Properties
and Applications,” Ph.D. Thesis, KU Leuven, 2012.

[4] G. Komurcu et al., “Determining the quality metrics for PUFsand
performance evaluation of Two RO-PUFs,” IEEE NEWCAS, 2012.

[5] K. Xiao et al., “Bit Selection Algorithm Suitable for High-Volume
Production of SRAM-PUF,” [EEE HOST, 2014.

[6] R.M. Gerdes et al., “Device Identification via Analog Signal
Fingerprinting: A Matched Filter Approach,” NDSS, 2006.

[7] P. Scanlon et al., “Feature extraction approaches to RF fingerprinting for
device identification in femtocells,” Bell Labs Technical Journal, 2010.

[8] K.J.Ellis et al., “Characteristics of Radio TransmitterFingerprints,”
Radio Sci., 2001.

[9] J. Hall et al.,“Detecting Rogue Devices in Bluetooth Networks Using
Radio Frequency Fingerprinting,” Proc. CNN, 2006.

[10] O. H. Tekbas et al., “An Experimental Performance Evaluation of
aNovel Radio-Transmitter Identification System Under Diverse
Environmental Conditions,” Canad. J. Elec. and Comput. Eng., 2004.

[11] Rob Matheson, “Fingerprinting Chips to Fight Counterfeiting” [Online].
Auvailable: http://news.mit.edu/2015/fingerprinting-chips-fight-
counterfeiting-0501 [Accessed: 29-Sep-2017].

[12] P. Welch, “The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified
periodograms,” IEEE TAU, 1967.

[13] A. Iyer et al., “What is the right model for wireless channel
interference?,” IEEE Trans. Wireless Commun.,2009.

208 International Symposium on Hardware Oriented Security and Trust (HOST)



