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Abstract— Traditional authentication in radio-frequency (RF)
systems enable secure data communication within a network
through techniques such as digital signatures and hash-based
message authentication codes (HMAC), which suffer from key-
recovery attacks. State-of-the-art IoT networks such as Nest also
use Open Authentication (OAuth 2.0) protocols that are
vulnerable to cross-site-recovery forgery (CSRF), which shows
that these techniques may not prevent an adversary from copying
or modeling the secret IDs or encryption keys using invasive, side
channel, learning or software attacks. Physical unclonable
functions (PUF), on the other hand, can exploit manufacturing
process variations to uniquely identify silicon chips which makes
a PUF-based system extremely robust and secure at low cost, as it
is practically impossible to replicate the same silicon
characteristics across dies. Taking inspiration from human
communication, which utilizes inherent variations in the voice
signatures to identify a certain speaker, we present RF- PUF: a
deep neural network-based framework that allows real-time
authentication of wireless nodes, using the effects of inherent
process variation on RF properties of the wireless transmitters
(Tx), detected through in-situ machine learning at the receiver
(Rx) end. The proposed method utilizes the already-existing
asymmetric RF communication framework and does not require
any additional circuitry for PUF generation or feature extraction.
The burden of device identification is completely shifted to the
gateway Rx, similar to the operation of a human listener’s brain.
Simulation results involving the process variations in a standard
65 nm technology node, and features such as LO offset and 1-Q
imbalance detected with a neural network having 50 neurons in
the hidden layer indicate that the framework can distinguish up to
4800 transmitters with an accuracy of 99.9% (= 99% for 10,000
transmitters) under varying channel conditions, and without the
need for traditional preambles. The proposed scheme can be used
as a stand-alone security feature, or as a part of traditional multi-
factor authentication.
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Fig. 1. (a) Authentication in Human Voice Communication: Bob (the
receiver) can identify Alice (the transmitter) based on the unique voice
signatures, and not based on the contents of what Alice speaks. Mallory (the
impersonator) can also be identified (as not Alice), since his unique voice
signatures would be different from Alice. (b) Analogous System that utilizes
the proposed RF-PUF framework for secure radio communication.

I. INTRODUCTION

A. Background and Motivation

The advancements in sensor electronics, wearable
technology and mobile computing/communication platforms
have resulted in an unprecedented data deluge in the domain of
Internet-of-Things (IoT). According to CISCO’s Visual
Networking Index (VNI) based Global Mobile Data Traffic
Forecast, machine-to-machine (M2M) communication systems
are expected to have about 27.1 billion connected devices by
2021 [1]. Due to their inherent mobile nature, these devices
perennially operate under untrusted environmental conditions
and are exposed to a number of potentially malicious attacks.
The development of mobile hardware security has been
comparatively slower than the improvements in computation
power [2]. When these devices are required to be securely
authenticated using a symmetric-key implementation, a secret
key is usually placed in a non-volatile memory (NVM) or a
battery-backed SRAM and is subsequently used in a digital
signature or hash-based encryption. However, these techniques
are vulnerable to key-hacking (through invasive/semi-
invasive/software/side channel attacks) and come with
significant area and power overhead for the NVM/SRAM
implementation. The widely used OAuth 2.0 protocol [3] for
current [oT devices suffer from cross-site-recovery-forgery
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(CSRF) attacks, and may eventually become cumbersome as the
number of devices per user grows (OAuth requires the user to
manually authenticate every device in the network). Because of
these reasons, Physical Unclonable Functions (PUF) have
emerged as a promising alternative/augmentation which exploit
manufacturing process variations to generate a unique and
device-specific identity for a physical system [4]-[7]. PUF
implementations are simpler than memory-based solutions as
they consume significantly less energy and chip area than
expensive cryptographic hardware such as secure hash
algorithm (SHA) or public/private key encryption with
NVM/SRAM that may also require anti-tamper mechanisms to
detect invasive attacks.

PUFs are usually classified into strong and weak PUFs
depending on the number of challenge-response pairs (CRP) that
they can handle. Weak PUFs support a small number of CRPs
which are linearly related to the number of components used to
build the PUF. Strong PUFs, on the other hand, support a large
number of CRPs such that polynomial time attacks become
infeasible. These type of PUFs are usually employed in device
authentication applications [2].

IoT systems can significantly benefit from a PUF-based
authentication protocol, wherein the physical characteristics of
each transmitter in the wireless sensor network can be analyzed
and stored in a secure server as a general technique, thereby
augmenting or replacing traditional key-based authentication
schemes. In modern Digital Communication, ideal digitally
modulated data pass through device-dependent unique
analog/RF impairments (for example, frequency error/offset and
1-Q imbalance) in the transmitter chain, which are compensated
for at the receiver. These process-dependent non-idealities are
already present in the wireless communication signal path, and
are traditionally discarded/minimized as unwanted non-
idealities. In RF-PUF, we embrace those existing non-idealities
through an in-situ light-weight machine learning engine at the
receiver side, that extracts the ‘entropy’ and creates a ‘strong
PUF’ to securely identify the transmitters. This is similar to the
inherent authentication in human voice communication as
shown in Fig. 1(a). Bob (the receiver) can identify Alice (the
transmitter) based on the unique voice signatures, and not based
on the contents of what Alice says. Mallory (the impersonator)
can also be identified as his unique voice signatures would be
different from Alice. The source of entropy is in the vocal
signatures of speaker (no extra hardware for entropy extraction),
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Fig. 2. Visualization of RF-PUF at a system level [8]

whereas the decoding of the entropy is in the listener’s brain
(heavy lifting at the receiver). Fig. 1(b) shows the analogous
system (RF-PUF), wherein the unique signatures in each
transmitter are used for device identification in the brain of the
receiver, represented by the machine learning hardware. The
entire system is envisioned in Fig. 2 in presence of channel
impairments, with each of the transmitters inherently working as
a PUF instance [8]. Such an implementation not only helps in
authentication of physical nodes in resource-constrained IoT
environment, but also enables applications such as intrusion
detection, forensic data collection, defect detection/monitoring
and body-connected biosensors as shown in [9]-[12].

B. Our Contribution

We have previously demonstrated the methods of process-
detection in wireless radios [13]-[15] and the effect of variations
in analog/mixed-signal/RF properties of such radios to adapt it
for zero-margin operations [16]-[18]. In this paper, we build on
that expertise to identify radio instances based on their inherent
signatures automatically imparted on communicated signal,
leading to a detailed analysis of the PUF properties of radios for
enhanced physical layer security. The major contributions of
this work are as follows:

1) A conceptual development of RF-PUF is presented for an
asymmetric 10T network, which consists multiple low-cost, low-
power, distributed transmitters, and a single central hub as a
receiver. To the best of the authors’ knowledge, this is the first
work in this area for low-cost, preamble-less, intrinsic PUF-
based authentication of IoT nodes. This is in contrast to
traditional RF fingerprinting methods which are usually
preamble-based and/or software defined as discussed in the next
section.

2) Enabling RF-PUF operation without any extra-hardware
at the resource-constrained IoT node. As described in Section
III, RF-PUF does not require any additional on-chip/off-chip
circuitry for PUF implementation at the Tx. The proposed
scheme makes use of inherent variations resulting from factors
such as process variability (on-chip) and component tolerance
(on-board) for each transmitter. A method to compensate for
non-ideal Rx signatures is also proposed in Section V.

3) Conforming to our earlier work on on-hub analytics where
we proposed a method of staged inference using conditional
deep learning [12], a light-weight machine learning framework
is developed in the current work, which compensates for
receiver non-idealities, and accounts for both data variability
and channel variability at the same time. Since this is a non-
linear multidimensional classification problem, an Artificial
Neural Network (ANN) is employed as a learning engine.
Simulation results with ~ 10000 transmitters demonstrate =~

99% accuracy using supervised learning which proves the
practical feasibility of RF-PUF for IoT-based applications
targeted towards small to medium-scale smart systems with
about a thousand devices connected to a single gateway receiver.

In essence, the proposed method lends the biggest benefits
in asymmetric smart networks as 1) no extra hardware is
required at the resource-constrained IoT nodes, while the
heavy-lifting is performed by the gateway receiver, which is
similar to a listener’s brain, 2) the method can be employed as
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a stand-alone physical-layer security feature, or for multi-factor
authentication, in conjunction with network-layer, transport-
layer and application-layer security features.

The remainder of the paper is organized as follows: Section
II lists the most recent developments in the area of PUF and RF
authentication, along with their applications in the relevant
domains. Section III presents the architecture of the proposed
PUF in detail, while Section IV illustrates the performance
metrics of the proposed method. The simulation results, along
with the security aspects are analyzed in detail in Section V.
Finally, Section VI summarizes this paper and points to the
future directions.

II. RELATED WORK

The notion of Silicon PUFs was introduced by Gassend et al.
in [19], where the authors illustrated the use of PUF in anti-
counterfeiting applications by measuring the intrinsic delays in
a self-oscillating circuit. However, the additional requirement of
robustness in a large sample pool led to the inclusion of various
error-correction mechanisms at the system-level [20]-[23]. The
error correction improves the system reliability at the cost of
additional  software/hardware  burden on the PUF
implementation. As shown in [2], many of these techniques tend
to leak the secret keys that are used to generate the syndrome
bits. In such a scenario, a higher number of PUF bits are
generated first, and then are down-mixed to increase entropy.

RF fingerprinting has been a popular method to
automatically identify the wireless nodes in a network by using
the time and frequency-domain properties extracted during
transmitter power-on [24]-[27]. While the transient properties
are consistent, they offer acceptable classification accuracy only
when the beginning and the end of the transient can be reliably
identified [10]. Moreover, the analysis of transient properties
require very high oversampling rates (500 MS/s in [25] and 50
GS/s in [26]) which pose significant power and precision
requirements that lead to expensive receiver architectures. An
alternative and less adopted approach involves the use of steady-
state properties of the transmitters, which are extracted after the
communication loop transients are settled. However, the steady-
state signal is data-dependent in different transmissions (with
different bit-streams) which makes it unsuitable for
identification purpose. For this reason, previously reported
literature [9]-[10] use fixed random channel access (RACH)
preambles along with techniques such as spectral averaging or
matched filtering to correctly identify the transmitters. The
steady-state analysis method is relatively unexplored, but is
promising as it does not require sophisticated and power-hungry
receiver architectures. More importantly, the steady-state
portion of the signal can easily be identified as opposed to the
transient states during power-on.

In this study, we combine the concept of PUF with RF
fingerprinting to develop a system architecture that utilizes RF
properties of the transmitters to identify nodes using an in-situ
machine learning framework at the receiver. A preamble-less
steady state approach is adopted which is implemented by
training the learning sub-system with multiple data streams and
with different channel conditions. Although the proposed
approach utilizes manufacturing variabilities in the transmitters
for device identification (similar to state-of-the-art RF

fingerprinting [28]-[31]), RF-PUF is unique from RF
fingerprinting in 4 different aspects: (1) the operation for RF-
PUF is not preamble-based, (2) unlike transient mode RF
fingerprinting, RF-PUF does not require high oversampling
ratio at the receiver, (3) RF-PUF utilizes significantly higher
dimensionalities in the feature space than steady-state RF
fingerprinting that gives rise to its strong PUF properties
(Section III C.(f)) while providing justification for the
nomenclature, (4) RF-PUF compensates for the non-ideal
receiver signatures (Section V. A), thus allowing a large number
of devices/challenge-response-pairs. Machine learning had been
used in prior work [29]-[30] for device identification, but the
proposed work also identifies machine learning as a solution to
the practical challenge of receiver signature compensation that
often limits larger system implementations. As compared to
previous implementations such as the RF-DNA [32], RF-PUF
does not require any additional analog/RF hardware for PUF
implementation at the Tx as the features are selected such that
feature generation and extraction is ingrained in the transceiver
operation (RF-DNA involved measuring the reflected/refracted
EM waves based on the 3D-positioning of scattering antennas
which are different for each RF unit). Moreover, error-
correction and noise cancellation measures are also intrinsic to
the transceiver architecture, which increases the reliability of the
proposed RF-PUF without the need for any specific error
correction mechanism dedicated for the PUF operation.

III. PROPOSED PUF

This work primarily focuses on a technique of authenticating
devices within a low-cost swarm of IoT nodes, which can have
significant variation from node to node. If all the components
are tightly controlled during fabrication and manufacturing, the
standard deviation of variation will be less and the number of
unique devices which are correctly identified will reduce.
Interestingly, that will increase the cost of fabrication
significantly and hence it is cheaper and easier to embrace the
non-idealities (up to a point where it does not affect the overall
performance) which justifies the use of RF-PUF.

A. Features utilized in RF-PUF implementation

As described below, the PUF properties of the system
originate from the manufacturing variability of the Tx(s). The
identification of each node is performed in the Rx sub-system
which extracts multiple features from the received signals.

« Amplitude Offset

Phase Offset

Fig. 3. DC, Amplitude and Phase imbalance in 16-QAM
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Fig. 4. System-level simulation setup involving Transmitter and Receiver for RF-PUF implementation

(a) Frequency features: Every transmitter has its unique
frequency offset with respect to the ideal carrier frequency
because of inherent variations in the local oscillator (LO). This
offset has been used as a prime feature for device identification
in [10] and [33]. The allowable limits for the frequency offsets
can be different for different established standards. For example,
the frequency error must be within +25 ppm of the center
frequency for the IEEE 802.11b standard for WiFi (and within
+40 ppm for IEEE 802.15.4 which is one of the preferred
standard for IoT). This corresponds to a normal distribution with
standard deviation (o) of 20.1 kHz on either side of the 2.412
GHz center frequency for 802.11b. With a high-quality
reference clock (low jitter with zero mean) in the Rx, frequency
offsets for multiple Tx(s) in the system can be calculated. In our
implementation, a carrier synchronizer module (which already
exists in a standard receiver for LO offset compensation) is
employed in the receiver that finds the frequency offset and
compensates for it. The ppm value of the offset is provided to a
3-layer machine-learning framework for identifying the device.

(b) I-Q features: The amplitude and phase mismatch
between the in-phase (I) and quadrature (Q) components of the
transmitted signal is unique for different transmitters. Fig. 3
shows the nature of these imbalances and how they can impact
the constellation diagram at the receiver for a 16-QAM
(quadrature amplitude modulated) signal. Other transmitter
variabilities such as power-amplifier (PA) back-off and gain
variations also affect the constellation. Compressive
nonlinearity affects the outer symbols in the constellation more
than the inner symbols. Hence it is necessary to extract
amplitude and phase information for all symbols in the
constellation. These features, along with the frequency errors
from each transmitter has the potential to uniquely identify each
transmitter in the network.

(c) Channel features for compensation: The communication
channel introduces time and frequency dependent variations in
various forms such as attenuation, distortion and Doppler shift.
To establish reliable operation of the RF-PUF, these channel
properties need to be estimated and compensated. For this
purpose, an automatic gain control (AGC) block, a Root-Raised
Cosine (RRC) filter and a Doppler corrector is employed as
indicated in Fig. 4. The RRC filter, along with the AGC module,
helps reducing inter-symbol interference (ISI) and provides a
measure of the channel attenuation to an ANN. Similarly, the
Doppler corrector module estimates and corrects the amount of
Doppler shift due to any physical movement of the transmitters
and receivers in the network, and provides the information to the
ANN for channel compensation.

B. Communication System Example in RF-PUF: 16-QAM

Fig. 4 shows the entire transceiver system for RF-PUF
authentication. The 16-QAM transmitter does not have any
additional circuitry for PUF implementation. The receiver, on
the other hand, has multiple stages for RF signal processing and
simultaneously performs feature extraction at various stages. A
simple 3-layer neural network takes the extracted features as
inputs and identifies the transmitters based on training data.

C. Properties of the RF-PUF
The proposed system has the necessary and sufficient

properties of a PUF [5] that makes it suitable for
security/authentication applications:

(a) Constructability: A PUF class P is constructible if a
random PUF instance (p, € P) can be created by invoking a
particular creation procedure, P. Create: p, < P.Create
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RF-PUF aims to exploit the technical limitations that exist in
the physical process of fabricating the RF transmitters. Hence,
the manufacturing process itself serves as the creation procedure
[P. Create for each of the PUF instances (RF transmitters).

(b) Evaluability: A constructible PUF class P is evaluable if
for a random PUF instance (p,, € IP) and a random challenge (x),
it is possible to evaluate a response y: y « P. Eval[p,(x)]

For RF-PUF, x is the challenge input bit-stream to the
transmitter, and y is the unique analog response for each PUF
instance. The uniqueness in the response can be attributed to
multiple features, due to the die-to-die and within-die variations.

() Reproducibility: A PUF class P is reproducible/reliable
if it is evaluable and if the probability of intra-PUF variation
being lower than a system-defined small number is very high.

For the RF-PUF, the measure of reproducibility can be
defined as the difference ( Dinq ) between two distinct
evaluations (y(x), y'(x)) of a particular PUF on the challenge x.

Dintra(x) = dist[y; (x), y1'(x)]

Dintra 18 the intra-chip (intra-PUF) distance that serves as a
metric to measure the resilience of the RF-PUF to varying
environmental conditions. Reproducibility/reliability is also a
measure of stability as Dj,t- = 0% in an ideal scenario.

(d) Uniqueness: A PUF class P is unique if it is evaluable
and if the probability of inter-PUF variation being higher than a
system-defined large number is very high.

For the RF-PUF, the measure of uniqueness can be defined
as the difference of the responses between two PUF instances
(y1(x), ¥, (x)) evaluated with the same challenge x.

Dinter(x) = diSt[Yl (X), V2 (x)]

(e) Identifiability: A PUF class P is easily identifiable if it
is reproducible as well as unique, and if the probability of intra-
PUF variation being lower than inter-PUF variation is very high.

Prob(Dintra < Dinter) = 1

As will be seen in Section IV, RF-PUF simultaneously
exhibits reproducibility, uniqueness and identifiability. In the
simulation results shown in Section IV, the worst case Djpter
(3.9 ppm : geometric mean of ppm variations over all features)
was found to be larger than the corresponding Djp¢ra (2.9 ppm :
geometric mean of ppm variations over all features) for 1000
transmitters. These properties coupled with the physical
unclonability and unpredictability of the silicon manufacturing
process makes the RF-PUF implementation practically feasible.

(f) PUF Strength: The challenge for RF-PUF is a digital data
sequence, while the response contains the analog features
embedded in actually transmitted RF signal (and hence in the
received signal) which is unique for each Tx. Since the
challenge-response-pairs (CRPs) consist features which are real-
valued analog numbers, the total number of CRPs for m distinct
analog/RF features will be R™ where R represents all values in
the real number space within a range of +£3c around the
mean. When each of these features is quantized using a 16 bit
ADC, for example, R™ translates to 216™ which is a large
number even for small values of m (3-10). Hence, if a
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Fig. 5. Preamble-less Training for the ANN. This method enables on-the-fly
authentication without knowing the expected bit-stream from the Tx [8].

probabilistic polynomial time (PPT) adversary knows the
responses from k transmitters, it is possible to predict the

response for the (k + 1)-th transmitter only with a negligible

probability of (; ) This property makes RF-PUF a ‘strong

S16m
PUF’ which is suitable for authentication applications [2].

D. Training the ANN for Device Identification

The 3-layer ANN is trained in multiple iterations with
different pseudo-random bit-streams (PRBS) to account for data
variability in evaluation stage and to enable preamble-less
operation. The hyper-parameters, including the number of
training iterations (shown in Fig. 6(c), that represent sampling
and collection of data streams under dynamic channel
conditions which vary slowly during a single evaluation period
but can change significantly from one evaluation to another),
were optimized aggressively through scaled conjugate gradient
backpropagation algorithm, using variable number of epochs
and a target training-set-error. For the data presented in
subsequent sections, the number of training iterations was set to
10, with a stream length of 30,000 bits. The training dataset was
presented to the ANN as a n X m feature matrix as shown in
Fig. 5. The extracted channel conditions for the 10 iterations
were also presented as features so that the network learns to
compensate for the channel variations. The number of neurons
in the hidden layer was varied and was optimized for
performance (detection accuracy). During Evaluation phase, a
different pseudo-random data-stream from any of the n
transmitters is provided to the ANN in presence of a different
channel condition. This mode of training helps the neural
network to learn both data variabilities and channel variabilities,
thereby leading to a robust system.
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IV. PERFORMANCE METRICS

The proposed PUF is simulated using the Neural Network
toolbox in MATLAB, with a 16-QAM modulation scheme. The
manufacturing process variations of a standard 65 nm
technology is included during the simulations to model the
statistical variability in the range of (4 + 30). A total of 10,000
PUF devices were simulated under varying channel conditions.
Table I shows the mean and standard deviation of the transmitter
features and channel features that are used during simulations.
The LO frequency and frequency error follows the IEEE
802.11b standard. I-Q imbalance has a mean value of 0, while
the linearity of the power amplifier (PA) is defined by the back-
off value (w.r.t. 1 dB compression point). Ej, /N is the ratio of
energy per bit and noise which defines the signal to noise ratio
(SNR) at the receiver.

TABLEI
TRANSMITTER AND CHANNEL FEATURES USED FOR SIMULATION [34][35]

Standard Deviation

Feature Average (1) ()
LO Frequency 2.412 GHz 20.1 kHz (8.3 ppm)
1-Q Amplitude Imbalance 0dB 1dB
1-Q Phase Imbalance 0° 5
PA back-off (linearity) 30 dB 1dB
Ey/No 15dB 2dB
Doppler Shift 0 Hz 1Hz
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A. Probability of False Detection

Fig. 6(a) shows the probability of false detection of a Tx as
a function of the total number of transmitters (n_Tx) in the
network, which indicates that the error is < 102 up to 4800
transmitters, and < 10 for 10,000 transmitters. Fig. 6(b)
illustrates the probability of false detection of a transmitter as a
function of the number of neurons in the hidden layer of the
ANN (n_Hidden Layer). It is to be noted from both Fig. 6(a)
and Fig. 6(b) that the probability of an error in detection does
not reduce much when the n_Hidden Layer is more than 50.
Increasing the size of the neural network beyond this limit will
cause overfitting and will increase the power and area cost
without significant performance benefit.

Fig. 6 (c) shows the effect of training in multiple iterations
with variable data as compared to training with a fixed data-
stream (preamble). In case of preamble-based training, the ANN
is trained using only the fixed headers in the data-stream. In our
implementation, conversely, the ANN is trained using variable
data-stream in multiple iterations. As the number of training
iterations increase, the performance of the system tends towards
the performance achieved in fixed-preamble case. This overhead
of additional training iterations are also useful in terms of
learning the channel conditions and variabilities, as each
iteration has a different channel condition which the network
learns to compensate.
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Fig. 7. Results of randomness test for RF-PUF using NIST Test Suite [38]

B. Robustness to Noise, Dynamic Channel Variation and IS

Even for short-range (< 30 m) communication, the channel
is affected by noise/attenuation in the communication medium,
interference, Doppler shift and fading, out of which the
contribution of attenuation is the most dominant [36]. Fig. 6(d)
illustrates the effect of channel attenuation on the probability of
false detection. Without the RRC filter, inter-symbol
interference (ISI) increases which leads to an error probability
of = 0.02 in device identification when the standard deviation
of channel E}, /N, is 10 dB (with mean E, /N, = 15 dB). In
presence of the RRC filter at the Rx, it is easier to extract
features from the I-Q data for different transmitters, because of
a reduction in ISI. As a result, probability of error reduces to as
low as 107 for the range of variations shown in Fig. 6(d).

C. Intra-PUF Hamming Distance (Reliability) and Inter-PUF
Hamming Distance (Uniqueness)

Fig. 6(e)-(f) illustrates the Reliability and Uniqueness of RF-
PUF w.r.t. the input features. It is to be noted that unlike a
traditional PUF circuit that produces digital output, RF-PUF
embeds the unique signature of the transmitter in the RF
properties of the message signal, and hence the Intra-PUF and
Inter-PUF distances are plotted using the normalized parts-per-
million (ppm) variation of the features. To represent the ppm
variations of multiple features on a single axis, a transformation
of the feature spaces is required. Since the total number of
possible PUF instances is proportional to [T, N; (In = number
of features, N; = number of possible values for feature i), it is
intuitive to utilize the geometric mean of the ppm values of all
the features for representing a PUF instance.

The worst case inter-PUF variation with 1000 transmitters is
found from the simulations and is shown Fig. 6(f). The worst-
case inter-PUF difference thus defined is very close to the intra-
PUF difference which explains the high (in the range of 103 or
higher) probability of false detection when number of
transmitters are more than a few thousand (Fig. 6(a)).

D. Randomness and Bias

For the guessing entropy to be low, the randomness of the
PUF needs to be high, whereas the bias needs to be low. For the
simulations shown in this paper, the NIST recommended
random bits [37]-[38] are used to generate the features within a
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Fig. 8. Experimental Setup to extract physical transmitter properties. Two
software-defined-radios (SDR) @ 2.4 GHz are shown in this setup, exhibiting
a frequency difference of 23 kHz as non-ideality. The amplitude and phase
imbalance is captured in the GNU Radio software after reception.

range of (1 £ 30), as shown in Table 1. The resulting pass rates
for the RF-PUF output (normalized geometric mean of feature
values) is shown in Fig. 7, alongside the pass rates for NIST
recommended random bits (NIST RND). Evidently, the pass
rates for the PUF output are higher than 0.9 for each of the 15
tests, which matches closely with the NIST RND. Any bias in
the PUF output is refuted by the Frequency test, which exhibits
a pass rate > 0.95.

E. Experimental Validation of RF-PUF: Physical
Implementation with SDRs

To prove the feasibility of RF-PUF in hardware, an
experimental setup (as shown in Fig. 8) is developed using
software-defined-radios (SDR). The SDRs are ideally
programmed to operate at 2.4 GHz, with zero I-Q imbalance.
However, there will be both frequency error and I-Q non-
idealities in the practical scenario. The frequency error is
captured using a spectrum analyzer, while the I-Q imbalance
can be captured by configuring one of the SDRs as a receiver,
using the GNU Radio platform. Fig. 8 shows 2 SDRs, with a 23
kHz difference in their carrier frequencies. This difference in
frequency can be detected at the receiver side from the down-
converted [-Q data, by sensing the baseband signal over a
duration which is inversely proportional to the difference in
frequency. To generate enough number of unique classes that
help wvalidating the learning engine, multiple unique
transmitters are artificially emulated from these SDRs by
modifying the ambient temperature in a closed environment.
Changing the temperature in discrete steps of 5°C in the range
of 0°C-25°C modifies the Tx properties, and the receiver
considers every 5°C change in the temperature as a different
transmitter when it does not have any information about the
temperature. The non-ideality information from the 2 SDRs,
along with data from 8 other emulated transmitters are provided
as input to the neural network framework (Section II1.D), which
detects all 10 transmitters correctly. This confirms that the
neural network can identify multiple transmitters with a small
difference in their RF features. In a more realistic scenario, the
features from the transmitters need to be automatically
calibrated/compensated at the receiver w.r.t. different
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temperature and supply voltages before the classification using
the ANN. For that, the system would require a temperature and
supply sensing mechanism, and additional pre-processing at the
on-board application processor. Alternatively, the temperature
and voltage information can be directly provided to the neural
network so that it learns to compensate for the variations, which
would be included as a future work.

V. DISCUSSION ON RX SIGNATURES, ATTACK MODELS,
SECURITY AND ROBUSTNESS

A. Compensating Rx Signatures

It is evident from Fig. 6(a) that the machine learning
framework can support up to 10,000 transmitters with a
probability of false detection < 102 and up to 4800 transmitters
with a probability of false detection < 10-3. Fig. 6(b) indicates
that the required number of neurons in the hidden layer should
be within 50-100 to successfully detect the transmitters, which
can be implemented on a processor in case of a software-
defined-radio environment. While this is promising in terms of
the conceptual feasibility, the receiver non-idealities will pose
significant implementation constraints on the system.

For the initial system simulation, an ideal receiver has been
assumed which does not insert any signature of its own into the
feature set extracted from the transmitters. However, in a
practical scenario, the receiver will alter the signatures in the
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Fig. 11. One possible Replay Attack model: Adversary needs to perform its
own receiver signature compensation (-ARS*) and transmitter signature
compensation (-ATS*). The necessary conditions to successfully replay the
message from Alice with the original transmitter signature (TxS) are
ARS=ARS* and ATS=ATS*.

received signal. This can be taken care of using a loopback
analysis to find the receiver properties [39], post which the
system can be incrementally trained for such receiver non-
idealities. Alternatively, the receiver sub-system can be
corrected pre-emptively for non-idealities (values of which are
obtained through the loopback test) using a second set of LO
offset compensator (carrier synchronizer), AGC and I-Q
compensator modules as shown in Fig. 4.

Fig. 9 shows the training-based method for compensating the
receiver signatures. A second neural network learns the
functions to be employed on individual features to compensate
the non-idealities, and then performs the linear transformations
on each of those features. The compensated feature vector is
then provided to the original ANN that performs the device
identification. Fig. 10 illustrates the effect of this compensation
method. When the number of transmitters is more than 25, the
probability of false detection increases from 1077 in the ideal
receiver case to 102 in the practical receiver case without
compensation. With compensation, this value again reduces to
10°. When the number of transmitters is > 8000, the error is
about 102 in the case with receiver compensation, which is
sufficient for most smart-home applications.

B. Possible Attack Models

In [40], the possible attack mechanisms on a strong PUF are
classified into two primary categories: (1) the PUF re-use model
and (2) the malicious PUF model. In most practical applications,
the attack usually comprises of a combination of the two models.
The PUF re-use model is based on the scenario that an adversary
can have repeated temporary physical access to the PUF when
the PUF is communicating with an authenticating medium. This
presents the adversary an opportunity to model and replay the
responses. On the other hand, the malicious PUF model assumes
that either the PUF responses can be simulated using a software
algorithm, or the adversary can have direct access to all the
CRPs through a built-in logger program/implanted Trojan. Since
RF-PUF does not store any digitally encoded signature, it does
not suffer from the malicious PUF model. However, it can
potentially suffer from PUF re-use models, as described in the
next part of the discussion.
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(a) Replay attack model:

Replay attacks are theoretically possible in the proposed RF-
PUF based authentication system, as a wireless transmitter
can send identical digital data-streams repeatedly (in other
words, PUF re-use cannot be avoided). This scenario is
presented in Fig. 11. Alice, the Tx wants to send a message,
“Hi, 'm Alice” to the gateway receiver. This message
inherently contains the Tx signature (TxS). We assume that
the adversary (Ad) intercepts the transmitted data and in the
process, adds the attacker’s receiver signature (ARS) to the
signal. Subsequently, Ad compensates for the ARS using —
ARS*, which require high-speed and high resolution circuits
that can negate minuscule changes in voltage and time. To
successfully mimic Alice’s signatures, Ad needs to
compensate for its own Tx signatures (ATS) as well. This
also utilizes high speed and high resolution circuits and
compensates ATS using —ATS*. If ARS=ARS* and
ATS=ATS#*, the adversary can mimic Alice by sending the
same message and same signatures. However, implementing
both ATS and ARS compensation would require expensive
ADCs and DAC:s for achieving negligible residual errors.

One may argue that the machine-learning-based gateway
receiver compensation shown in Section V A. could also
need similar high-resolution ADCs. However, imperfect
compensations in the gateway receiver results in a small
residual error, which only introduces a constant shift in the
detection threshold for all the transmitters. On the other
hand, for the attacker model, both ARS and ATS
compensations have to be accurate. Otherwise, the replay
attack is imperfect as the replayed signal does not mimic
Alice’s signature, and hence the adversary may not be
successful in impersonating Alice. This limitation makes the
replay attack extremely costly in the RF-PUF scenario.

(b) Machine Learning (ML)-based modeling attacks:

The proposed system can also suffer from a machine-
learning attack as an external attacker can model the
responses (using a separate learning engine) from RF-PUF
through repeated access to the transmitted data.

However, it must be noted that the proposed system utilizes
a supervised learning algorithm to uniquely identify the PUF
devices. For an external attacker, mimicking a particular
transmitter will translate to an unsupervised learning
(clustering) problem, and hence the modeling accuracy will
directly depend on the ratio of the number of CRPs accessed
by the attacker to the total number of CRPs [41]. The
modeling time, on the other hand, will depend on the number
of CRPs that the adversary has access to. Hence, there exists
a trade-off between the modeling time and accuracy, which
is described with an example in the next section.

C. Countermeasures against PUF re-use Attacks

In [42], the authors implemented a strict one-time-usability
protocol to avoid PUF re-use and modeling attacks. However,
for our application, one-time-use is not feasible, as the
transmitters (i.e. the PUF instances) need to send data whenever
they are required to. As shown in [40], an alternative way to
thwart such attacks is to simultaneously incorporate two
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Fig. 12. Comparison of RF-PUF with various other PUFs available in
literature. The values for False acceptance rate (FAR) and False Rejection Rate
(FRR) for other PUFS are taken from [44].

additional properties during PUF implementation: (1) erasability
and (2) certifiability. Erasability requires that the single
responses from the PUF would be made impossible to read back
without affecting other responses. This facilitates tamper-
detection, but requires logical reconfigurability and additional
control circuitry to be implemented on-chip. Certifiability, on
the other hand, signifies that a PUF response must be checked
offline (without any external “Trusted Authority”) for
possibilities of tampering, or any change in the PUF properties.
This also requires additional circuitry in each PUF instance. A
detailed analysis of the additional circuitry required for
erasability and certifiability is out of scope of this work.

In the absence of additional circuits for erasability and
certifiability, RF-PUF can suffer from external ML attacks. In
this section, we perform an estimate of the training time for an
ML attack in order to demonstrate its practical limits for a
problem with high dimensionality. As shown in Section III C.(f),
the number of CRPs for the RF-PUF is 2™ where m is the
number of features considered. For a nominal value of m=5, the
the number of CRPs become 280 ~ 1024, [43] shows that a
machine-learning based attack model on 10% CRPs takes 267
days to get completed on an INTEL Quadcore Q9300 processor.
102* CRPs will result in significantly higher training time,
leading to a wait time of several years before completing the
attack.

D. Security and Robustness

In Fig. 12, RF-PUF is compared with various other PUFs in
state-of-the-art literature [44]. Two well-known metrics — false
acceptance rate (FAR) and false rejection rate (FRR) are used to
define the security and robustness, respectively, for the PUFs. A
low value for both FAR and FRR ensures that the authentication
is both secure and robust. However, there is a trade-off between
these two quantities which can be controlled by the detection
threshold of PUF inferencing mechanism (the machine learning
framework for RF-PUF). If the inferencing is done by a
threshold which is much higher than the inter-PUF distance,
FAR increases while FRR reduces, which means better
robustness. On the other hand, if the decision is made using a
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threshold which is significantly lower than the inter-PUF
distance, FAR reduces while FRR increases, leading to higher
security. By varying the detection threshold, different levels of
FAR and FRR can be achieved.

With a small number of transmitters (= 50), the FAR and
FRR for RF-PUF along the equal error line is very close to the
pairwise-compared (P.C.) Ring Oscillator PUF [45], and is
much better than the other PUFs in Fig. 12. As the number of
transmitters increase, the overall error rate increases as the inter-
PUF distances reduce. However, depending on the application
scenario, the detection threshold within the machine learning
framework can be altered, leading to either highly secured or
highly robust systems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a conceptual development of RF-PUF is
presented along with a feasibility study showing that the
inherent RF properties arising from the manufacturing process
in a wireless node can be exploited as a strong PUF for device
authentication in asymmetric IoT networks without any
additional hardware at the transmitters. Using an in-situ machine
learning based framework, up to 10,000 transmitters can be
detected with about 99% accuracy. The proposed method also
eliminates the need for preamble-based or key-based
identification of modern IoT nodes and enables low-cost secure
authentication using the intrinsic properties embedded in the RF
signal that does not have any extra hardware cost at the
transmitter. Consequently, the proposed scheme does not
consume any additional power at the transmitter side. The
receiver, however, requires two neural networks which can be
implemented using the on-board microprocessor at a nominal
power cost (additional 3-5% overhead when the neural networks
are powered on [46]-[47]) which is not significant if the network
is asymmetric. As a future direction, more advanced methods of
receiver signature compensation will be analyzed along with
circuit techniques to implement erasability and certifiability,
leading to practical and efficient implementation of the RF-PUF
hardware. A formal or experimental validation of the achievable
protection degree against different attack models will also be
analyzed as a part of the future work. One other research
direction involves the stability analysis of RF-PUF in presence
of temperature and supply voltage variation.
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