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ABSTRACT

Denial-of-Service attacks have rapidly increased in terms of fre-

quency and intensity, steadily becoming one of the biggest threats

to Internet stability and reliability. However, a rigorous compre-

hensive characterization of this phenomenon, and of countermea-

sures to mitigate the associated risks, faces many infrastructure

and analytic challenges. We make progress toward this goal, by

introducing and applying a new framework to enable a macroscopic

characterization of attacks, attack targets, and DDoS Protection

Services (DPSs). Our analysis leverages data from four indepen-

dent global Internet measurement infrastructures over the last two

years: backscatter traffic to a large network telescope; logs from

amplification honeypots; a DNS measurement platform covering

60% of the current namespace; and a DNS-based data set focusing

on DPS adoption. Our results reveal the massive scale of the DoS

problem, including an eye-opening statistic that one-third of all

/24 networks recently estimated to be active on the Internet have

suffered at least one DoS attack over the last two years. We also

discovered that often targets are simultaneously hit by different

types of attacks. In our data, Web servers were the most prominent

attack target; an average of 3% of the Web sites in .com, .net, and

.org were involved with attacks, daily. Finally, we shed light on

factors influencing migration to a DPS.
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1 INTRODUCTION

Denial-of-Service (DoS) attacks have rapidly increased in frequency

and intensity, with recent reports of attacks reaching 1Tbps [1].

The rise of the DoS-as-a-Service phenomenon (e.g., booters) [2],

has dramatically expanded the population of potential perpetrators,

who can now purchase the execution of attacks powerful enough

to saturate 1-10Gbps links. Events like the recent attack against

Dyn [3], or the DNS root server system [4], have demonstrated the

vulnerability of critical Internet infrastructure to DoS attacks.

The rise of DoS attacks has stimulated a new market for DDoS

Protection Services (DPSs), i.e., external services aiming at filtering

and dropping malicious traffic before it reaches the intended target.

Several authors of this paper have empirically shown an increasing

trend in the adoption of DPSs [5]. But a rigorous characterization

of the DoS phenomenon itself faces tremendous challenges, rooted

in the need for sustained operational infrastructure to capture in-

dicators of a variety of different types of DoS attacks, as well as

complex data fusion techniques that must integrate heterogeneous

raw data sources as well as meta-data to support classification and

correlation of attack events.

We offer a set of contributions toward this goal, by introducing

and applying a new framework to enable a macroscopic charac-

terization of attacks, attack targets, and mitigation behaviors. We

leverage four distinct data sets that cover a recent two-year period

(March 2015 - Feb 2017). We use two raw data sources that provide

signals of DoS attack events and complement each other: (1) the

UCSD Network Telescope [6], which captures evidence of DoS at-

tacks that involve randomly and uniformly spoofed IP addresses;

and (2) the AmpPot DDoS honeypots [7], which witness reflec-

tion and amplification DoS attacks ś an attack type that involves

specifically spoofed IP addresses. Our data sets reveal more than

20M DoS attacks targeting about 2.2M /24 IPv4 network blocks,

which is more than one-third of those estimated to be active on the

Internet [8, 9]. Furthermore, we discover 137 k cases where both

randomly spoofed attacks and reflection and amplification attacks

were simultaneously launched against the same target.

We also find that most DoS attacks (e.g., about 69% for TCP-based

attacks) targeted Web servers, so we analyze this prominent class

of target in more detail using the OpenINTEL DNS measurement

platform. We find that two-thirds of all registered Web domains

that we observe were hosted on IP addresses targeted by attacks

during our two-year measurement period. On average, on a single

day, about 3% of all Web sites were involved in attacks (i.e., by being

hosted on targeted IP addresses). This includes attacks on several

large Web hosting companies.



IMC ’17, November 1ś3, 2017, London, UK Mattijs Jonker et al.

Finally, we study the extent to which such attacks forced Web

hosters to migrate to DDoS protection services. Based on OpenIN-

TEL data that specifically focuses on DPS providers [5], we discover

that 4.3% of the attack targets we observe migrate to a DPS follow-

ing an attack. To understand determining factors that motivate or

accelerate migration, we correlate attack duration, repetition and

intensity with migration events. While repetition and duration do

not significantly influence DPS migrations, we observe that intense

attacks significantly accelerate the migration process.

The remainder of this paper is organized as follows. Section 2

provides background on DoS attacks and DPSs. Section 3 describes

the four data sets we use. Sections 4, 5, and 6 analyze our com-

prehensive set of attack events, their impact on Web servers, and

the effect of attacks on migration to a DPS, respectively. Section 7

describes related work. Section 8 offers a set of future directions.

Section 9 concludes the paper.

2 BACKGROUND

2.1 Denial-of-Service Attacks

DoS is commonly achieved through resource exhaustion, either at

the server side (e.g., by sending more requests than it can handle)

or at the infrastructure level (e.g., by saturaring a network link).

Depending on how attack traffic is generated, DoS attacks can be dis-

tinguished into direct and reflection attacks. Direct attacks involve

traffic sent directly to the target from some infrastructure controlled

by the attackers, e.g., their own machines, a set of servers, or even a

botnet under their command. To conceal this infrastructure and to

impede countermeasures and attribution, these attacks oftentimes

employ random spoofing, i.e., faking the source IP addresses in at-

tack traffic. In contrast, in reflection attacks, third party servers are

involuntarily used to reflect attack traffic towards the victim. This

is possible as connection-less protocols have no means of checking

whether a request was sent legitimately or with a (specifically)

spoofed IP address. An attacker can thus simply spoof requests in

the name of the victim, causing the reflectors’ replies to be sent to

the victim. To make matters worse, many protocols that allow for

reflection also add amplification, causing the amount of reflected

traffic sent towards the victim to be many times greater than that

sent towards the reflector initially [10] ś a problem affecting both

old protocols as NTP and IGMP [11, 12] as well as newer protocols

such as DNSSEC [13].

Since these attacks try to overwhelm a service by a sheer mass

of requests, they are referred to as volumetric attacks. Beyond that

there are also semantic attacks, which do not necessarily aim for

resource exhaustion but rather exploit flaws in the attacked services

themselves, e.g., by sending a malformed request that causes the

service to crash. However, this type of attack has to be tailored

specifically to work against a given service, whereas volumetric

attacks are service agnostic. In this paper we focus on volumetric

attacks.

2.2 DDoS Protection Services

DDoS Protection Services offer means for attack mitigation. They

may offer various types of mitigation solutions, which can rely on

in-line appliances, require network traffic diversion to the cloud

(i.e., the DPS infrastructure), or be a hybrid and do both. Volumetric

attacks are typically better dealt with in the cloud, whereas semantic

attacks can be mitigated in-line [14, 15]. In this paper, we focus

on protection where network traffic diversion is required (i.e., all

but strictly in-line solutions). Diversion is usually implemented

through the DNS or through the Border Gateway Protocol (BGP).

The DNS can be leveraged for network traffic diversion in a

manner similar to how content delivery networks implement load

balancing [16]. It is common for DPS providers to combine this ap-

proach with a reverse proxy that sits between potentially malicious

requests and protected Web sites, so that only benign requests are

forwarded to the customer’s Web server. Alternatively, the DPS

can announce a customer-used BGP prefix (e.g., a /24) to divert all

customer-destined traffic to the DPS. Traffic is then scrubbed by

the DPS before being sent back to the customer’s network by using,

e.g., a Generic Routing Encapsulation (GRE) tunnel.

The type of customer and the type of attack determine the po-

tential use of either DNS or BGP. While a hoster with a significant

number of Web sites and machines may require BGP-based protec-

tion of their entire infrastructure, a DPS customer who needs only

to divert traffic destined to a single host (or even a single Web site

hosted on a shared server) can do so by relying on the DNS. Our

methodology identifies both types of network traffic diversion.

3 DATA SETS

In this paper, we analyze and correlate four data sets, all of which

cover a two-year period, from March 1, 2015 to February 28, 2017.

The first two data sets contain DoS attack events with different

characteristics. Specifically, one contains attack events inferred

from backscatter to a large network telescope (Section 3.1.1). The

other contains events logged in globally placed amplification hon-

eypots (Section 3.1.2). The third data set is derived by a large-scale,

active DNS measurement that provides, among other information,

mapping of domain names to IP addresses (Section 3.2). The fourth

and final data set tracks which Web sites outsource protection to a

DPS (Section 3.3).

3.1 DoS Attack Events

3.1.1 Randomly Spoofed Attacks. The first data set contains at-

tack events inferred from backscatter packets reaching the UCSD

Network Telescope [6], a largely-unused /8 network operated by

the University of California San Diego. Network telescopes, also

called darknets, passively collect unsolicited traffic ś resulting from

scans, misconfigurations, bugs, and backscatter from denial-of-

service attacks, etc. ś sent to routed regions of the address space

that do not contain any hosts. The UCSD Network Telescope covers

approximately 1/256 of the IPv4 address space. Any sizable attack,

i.e., one that involves many randomly and uniformly spoofed IP

addresses, should therefore be visible on this darknet.

To identify randomly spoofed denial-of-service attacks in the

data collected at the telescope, we implemented the detection and

classification methodology described by Moore et al. [17] as a

Corsaro [18] plugin that we have also released publicly as open

source [19]. Our plugin uses the same three-step processes de-

scribed by Moore et al.: first, we identify and extract backscatter

packets, then we combine related packets into attack łflowsž based
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start end #days source #events #targets #/24s #/16s #ASNs

2015-03-01 2017-02-28 731

Network Telescope 12.47M 2.45M 0.77M 31057 25990

Amplification Honeypot 8.43M 4.18M 1.72M 41678 24432

Combined 20.90M 6.34M 2.19M 43041 32580

Table 1: DoS attack events data.We consider two years of data from the UCSDNetwork Telescope and from aDoS amplification

honeypot to inferDoS attack events. Over the two yearswe observemore than 20million events targeted atmore than 2million

/24 network blocks.

on the victim IP address, and finally we perform attack classification

and filtering.

Specifically, we classify a packet as backscatter if it is a response

packet, i.e., TCP SYN/ACK, TCP RST, ICMP Echo Reply, ICMP Des-

tination Unreachable, ICMP Source Quench, ICMP Redirect, ICMP

Time Exceeded, ICMP Parameter Problem, ICMP Timestamp Reply,

ICMP Information Reply, or ICMP Address Mask Reply. We then

aggregate such packets into flows based on the victim IP address

(i.e., the source IP address of the backscatter packets), and we expire

flows using the same conservative 300 second timeout described

by Moore et al. In the final attack classification and filtering step,

we compute statistics about the number of unique spoofed source

IP addresses, the number of different ports used, and four metrics

of estimated attack intensity: the overall number of packets and

bytes, the attack duration, and the maximum packet rate per second

(in any given minute). We use the same conservative thresholds

described by Moore et al. to filter low-intensity attacks, discarding

those with: (i) fewer than 25 packets, (ii) a duration shorter than

60 seconds, and (iii) a maximum packet rate lower than 0.5 pps.1

While the maximum packet-rate can be used as an indicator of

the attack intensity, this statistic also reflects the capability of the

victim to endure the attack. That is, a high-intensity attack to a well-

provisioned victim will likely result in a higher observed maximum

packet rate than the same attack directed at a poorly-provisioned

victim.

3.1.2 Reflection and Amplification Attacks. The second data set

contains events logged by AmpPot [7]. This honeypot aims to track

reflection and amplification DoS attacks by mimicking reflectors.

To be appealing to attackers, AmpPot emulates several protocols

known to be abused.2 This way, AmpPot can be found by attackers

scanning for reflectors and be łabusedž in subsequent DoS attacks.

During an attack, an attacker sends spoofed requests allegedly

coming from the victim to AmpPot. In order not to cause harm

in actual attacks, AmpPot only replies to sources sending fewer

than three packets per minute. However, recording these requests

allows us to infer various information about the attack, including

the IP address of the victim, the start and end of the attack, but also

the request rate, which can be used as a measure of intensity. To

distinguish attacks from other traffic (e.g., scans for reflectors), we

only consider events exceeding 100 requests.

An initial set of eight honeypots was installed in November

2014. The set has since been expanded to 24 honeypots. To prevent

skew in the dataset by either country or autonomous system, the

1A packet rate of 0.5 pps to the telescope corresponds to an estimated packet rate
of 128 packets per second to the victim (the number should be multiplied by 256).

2The protocols QOTD, CharGen, DNS, NTP, SSDP, MSSQL, RIPv1, and TFTP.

honeypots are distributed both geographically3, as well as logi-

cally, among various cloud providers and machines operated by

volunteers. It has been shown that by making the honeypots attrac-

tive to attackers (in terms of the the amplification that attackers

can achieve), 24 honeypot instances are sufficient to catch most

reflection and amplification DoS attacks on the Internet [7].

3.1.3 Attack Coverage and Target Metadata. Many types of DoS

attacks involve spoofed IP addresses. Any sizable DoS attack that

involves randomly and uniformly spoofed IP addresses should be

visible on the UCSD Network Telescope. Moreover, 24 honeypot

instances catch most reflection and amplification attacks, which

involve specifically spoofed IP addresses (i.e., that of the victim).

Our data sets of attack events therefore complement each other in

terms of the DoS attack types that they register.4

Table 1 summarizes both data sets. The telescope data set has

12.47 M randomly spoofed attack events, involving 2.45M unique

targets (i.e., unique IP addresses). The honeypots data set has 8.43M

reflection attacks, targeting 4.18M unique targets. We defer a fur-

ther discussion of these data sets until Section 4. Both data sets of

attack events contain target IP addresses to which we add metadata

on geolocation using NetAcuity Edge Premium Edition data [20]. We

also add metadata on BGP routing by using Routeviews Prefix-to-AS

mappings data [21].

3.2 Active DNS measurements

The telescope and honeypots data sets contain per attack event the

IP address of the attacked target. To evaluate the potential effect

of attacks on the Web we need a historical mapping between Web

sites and the IP addresses on which they were hosted. To obtain

this mapping, we rely on the large scale, active DNS measurement

performed by the OpenINTEL platform5 [22]. The OpenINTEL plat-

form collects daily snapshots of the content of the DNS by struc-

turally querying all the domain names in a full zone, i.e., Top-Level

Domain (TLD), for their Resource Records (RRs). The measurement

data includes IP address mappings, i.e., A records. In this study we

identify the Web sites that are potentially affected by attacks by

looking for A records on www labels that, at the time of an attack,

resolved to the attacked IP addresses.6

We use a subset of the TLDs that OpenINTEL measures. Table 2

shows the details of this data set. We use data for the three generic

TLDs (gTLDs) .com, .net, and .org. For each of the three gTLDs,

311 honeypots are located in America, 8 in Europe, 4 in Asia and 1 in Australia.
4Attacks in which network traffic is sent to victims directly (e.g., by botnets that

do not spoof source IP addresses) are not covered by the two data sets that we use.
5https://openintel.nl/
6The presence of a www label in the DNS is taken as an indicator that Web content

was present (or intended) at the time of an attack. We did not probe for Web content.
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we show the total number of Web sites over the two-year period.

For example, for .com (the largest TLD), a total of 173.7 millionWeb

sites were seen. The data points column shows the total number

of collected data points, examples of which are CNAME and A RRs.

The total number of data points is 1.258 trillion. The size column

shows the size of the compressed measurement data using Apache

Parquet columnar storage [23], with a total of 28.4 TiB. The three

gTLDs cover roughly 50% of the global domain namespace [24].

On the last day of the studied, two-year period the three gTLDs

account for 153 million active www domain names.

start #days source #Web sites #data points size

2015-03 731

.com 173.7M 1045.9 G 23.5 TiB

.net 21.6M 121.0 G 2.8 TiB

.org 14.7M 90.7 G 2.1 TiB

Combined 210.0M 1257.6 G 28.4 TiB

Table 2: Active DNS data set. We use two years of DNS data

collected by the OpenINTEL platform to inferWeb sites and

associated IP addresses for the .com, .net, and .org gTLDs.

In this data set we find 210M domains that we classify as

Web sites (i.e., those with a www label).

3.3 DDoS Protection Services

We are interested in understanding if DoS attacks prompt Web sites

to oursource protection to a DPS. Our data set on DPS providers

contains usage information for all Web sites in the three previ-

ously mentioned gTLDs. We created this data set by using the

methodology that we previously published in [5]. This methodol-

ogy relies (also) on OpenINTEL data. The created data set covers

the use of ten DPS providers. Nine out of ten are leading commer-

cial providers [25]. Specifically, these are Akamai, CenturyLink,

CloudFlare, DOSarrest, F5 Networks, Incapsula, Level3, Neustar,

and Verisign (as in [5]). The tenth is an extension; we added Virtu-

alRoad, a non-commercial provider that protects Web sites run by

journalists, activists, and human right workers. By adding Virtual-

Road we include in our analysis also attack targets that would not

normally outsource protection to commercial DPS. Table 3 shows

the details of the data set in terms of the total number of Web sites

that we associate with each of the ten providers, over the two-year

period. In Section 6, by correlating the DPS use data set with the

DoS attack events and the active DNS measurements data sets, we

study if (and when)Web sites start outsourcing protection following

an attack.

4 ANALYSIS OF ATTACK EVENTS

A third of the Internet is under attack. Together, our data sets

of attack events account for 20.90M attacks, targeting 6.34Munique

IP addresses, over a two-year period (Table 1). We observe a total

of 2.19M unique /24 network blocks that host at least one target,

which is about a third of the ∼6.5M /24 blocks recently estimated

to be active on the Internet [8, 9]. For repeated attacks against the

same IP address, we see fewer events per target IP in the honeypots

data than in the telescope data, which we attribute to more follow-

up in randomly spoofed attacks. Combined numbers for both data

provider #Web sites

Akamai 5.86M

CenturyLink 0.87M

CloudFlare 4.27M

DOSarrest 7.04M

F5 3.58M

Incapsula 3.78M

Level 3 0.47M

Neustar 10.78M

Verisign 4.34M

VirtualRoad < 100

Table 3: DDoS Protection Service use. For each of the 10 DPS

providers that we consider, we identify the Web sites they

provide protection services for by using the DNS data from

OpenINTEL.

sets also show overlap in targets, which we investigate further in

this section.

Around 30 k DoS attacks a day are visible. Figure 1 shows sta-

tistics over time for the two years’ worth of attack events. The top

graph shows randomly spoofed attacks, i.e., those in the telescope

data set. The attacks curve shows the number of events seen on

each day, which averages out to about 17.1 k daily. The unique tar-

gets curve is noticeably lower than the attacks curve, in each day,

highlighting that some targets are hit more than once on the same

day by randomly spoofed attacks.

The middle graph of Figure 1 shows statistics over time for attack

events in the honeypots data set. The average number of attacks is

about 11.6 k daily. In this case, the unique targets and attacks curves

are not as far apart as for randomly spoofed attacks, reflecting a

lower average number of events per target IP address.

Finally, the bottom graph in the same figure shows the combi-

nation of attack events from both data sets. In total, we observe

an average of 28.7 k attacks per day. The curve of unique targets is

not the sum of the unique targets seen in each data set individually.

This is because some targets are hit by both randomly spoofed and

reflection DoS attacks on the same day, which we investigate in

more depth at the end of this section.

The combined events as well as the individual time series reveal

spikes and plateaus in terms of the number of attack events. We

evaluate outliers in Section 5, where we study the potential effect of

(intense) attack events on theWeb. A takeaway from these results is

that each day we see attacks on tens of thousands of unique target

IP addresses, spread over thousands of autonomous systems, as

shown by the targeted ASNs curves.

By-country target ranking follows Internet space usage pat-

terns,with somenotable exceptions.We rank themost-commonly

targeted countries, based on the geolocation metadata of target IP

addresses. Table 4a shows that more than one fourth of randomly

spoofed attack targets geolocate to the United States, with 25.56%

(or 625 k) of all unique IP addresses. China follows second, with

10.47% of targets. These two countries also rank first and second

for reflection attacks in Table 4b, respectively with 29.5% and 9.96%

of 4.18M unique target IP addresses. In general, we find that the
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7 RELATEDWORK

We group related work into three areas of study. The first one

pertains to efforts to characterize DoS attacks in general. Such

characterizations include, for example, target properties (e.g., ge-

olocation), traffic characteristics (e.g., protocols used), and attacker

properties (e.g., malware fingerprinting). The second area is con-

cerned with efforts to measure the effects of attacks. And the third

one focuses on attack mitigation.

In 2006, Moore et al. [17] characterized DoS attacks by analyzing

events inferred from backscatter packets to a large network tele-

scope. The authors analyze 22 traces of 1-2 weeks each, captured

between 2001-2004, totalling 68.7 k events. We incorporated their

methodology in our work. Their initial trace is 14 years older than

our telescope data set. Comparing results, ours show that the DoS

landscape has since changed. As an example, while still dominant,

TCP’s presence in randomly spoofed attacks has reduced. Moreover,

we find a prevalence of single-port attacks.

Krämer et al. [7] and Thomas et al. [28] both present a charac-

terization of attacks from events captured in a set of amplification

honeypots. While in both papers the focus is more on reflection

attacks in general, in this paper we focus on the correlation with

randomly spoofed attacks and on target characteristics. A different

view on DoS attacks is given by Santanna et al. [2], who study traf-

fic and source characteristics of the attacks generated on-demand

by means of a set of 14 booters. Differently from our paper, this

research focuses on the attackers (i.e., the misused infrastructure).

To our knowledge, the last study to characterize DoS attacks at

scale by combining multiple, independent data sets dates back to

2006, when Moa et al. used three data sets [29] in their work. Two

data sets came from anomaly detection systems and a third was

inferred from backscatter. Their analysis covers 35 k attack events,

measured over a month, which does not compare in scale with our

study. The authors find a TCP preference similar to Moore et al.,

using the same methodology.

More recently, in 2015, Wang et al. [30] analyzed a set of 51 k

attack events derived from botnet Command & Control (C&C).

Their data set covers a seven-month period and accounts for attacks

launched using 674 botnets of 23 different botnet families. They

too find joint attacks, in their case by different botnet instances.

Furthermore, they show that Web services (i.e., HTTP) are the

preferred target of many attacks.

The industry regularly releases reports that characterize attacks

and trends [31ś34]. However, these reports are based on customer-

specific data, and oftentimes do not state the scientific method

used.

In terms of attack effects, Welzel et al. measured the impact of

botnet attacks by monitoring for targets in botnet C&C [35]. Their

study covers 646 unique targets, acquired from 14 botnet instances

of two botnet families (DirtJumper and Yoddos). Following attack

commands, the authors systematically measure the victims for

adverse effects. Occassionally they find that the IP address of a Web

site changes following an attack, e.g., in an attempt to mitigate,

by pointing it to localhost. In a few cases the IP address change is

made to (quote) łprofessional load balancing and DDoS protection

services,ž but this is not investigated further.

Noroozian et al. [36] study the consequences of victimization

patterns in targets of DDoS-as-a-Service (e.g., booters). Their focus

is on the demographics of the target population. Their results show,

among others, that most of the victims are users in access networks,

and that the number of attacks in broadband ISP is proportional to

the number of ISP subscribers. Similarly to us, their study is also

based on two years of data from the AmpPot project. However, we

focus in capturing a larger spectrum of attack events by correlating

amplification honeypots data with network telescope data.

In terms of effects at a higher level, a DoS attack can have finan-

cial consequences for a company, which could face an increase in

security costs, or a loss of customers following an attack [37]. While

DDoS intensity peaked at 400 Gbps [38] in 2014 and to 600 Gbps in

early 2016 [39], the race to the largest DDoS has already reached

1Tbps in late 2016 with the attack against the hosting company

OVH [1]. However, it is not only about how heavy the hammer is,

it is also about what it might break. The DDoS attack performed

by the Mirai botnet against the service and DNS provider Dyn [3]

has provoked a cascading effect that prevented East Coast users to

access services such as Twitter, Spotify, or Reddit.

As for mitigation, although the concept of regional cleaning

center was already described in 2004 [40], in recent years DDoS

protection services have become more and more popular. In pre-

vious work we showed a clear trend in adoption [5], but we did

not investigate if there is correlation between attack events and

migration. To the best of our knowledge no other work addresses

the link between attacks and DPS use at scale.

8 FUTURE WORK

We imagine several directions to improve the coverage and depth

of our measurement and analysis system:
• We provide a comprehensive view of randomly spoofed

and reflection and amplification attacks, but a bigger chal-

lenge is development and integration of other attack data

sources, e.g., unspoofed volumetric attacks, semantic attacks.

By demonstrating the utility of a platform for this type of

data fusion, we hope to inspire the community to consider

what cooperation would be required to expand the set of

data sources.
• Operating such a platform continuously would allow to elim-

inate the bounding problem, i.e., we do not know which

attacks took place before, nor do we know which Web sites

migrated to a DPS after, our observation period.
• We examined migration to only ten DPS providers, so we

mistakenly infer instances of migration to some other form

of protection (e.g., Google) as non-migrating. For now we

avoid making claims related to the non-migrators, but a more

comprehensive view of the DPS ecosystem would improve

the fidelity of our inferences.
• We currently consider 50% of the global DNS name space, a

constraint of the OpenINTEL DNS measurement infrastruc-

ture. If OpenINTEL could expand to obtain visibility of other

Top Level Domains, we would expand our ability to identify

and characterize attacks on Web sites.
• We interpret an A record for a www domain name as an indica-

tor of Web service, though the IP address may host no Web
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site. We could add functionality to validate the existence of

a Web server before inferring an impact on its reachability.

More generally, we could see if the targeted IP addresses run

other services.
• We examined the effect of attacks on the migration of Web

sites to protection services. As future work, and without

adding any other data sources, we could map targeted IP

addresses to authoritative name servers, and study the po-

tential effect of attacks on the DNS itself. A potential effect

is, e.g., the migration of an authoritative name server to a

DPS.

9 CONCLUSIONS

We have established a framework for a more thorough scientific

approach to macroscopic characterization of the DoS ecosystem by

systematically integrating and correlating large, diverse data sets

captured by existing global Internet measurement infrastructure.

We integrated data from a large network telescope, honeypots in-

strumented to observe reflection DoS attacks, and a platform for

large-scale active DNS measurements. We augmented these three

sources with meta-data such as BGP prefix-to-AS, IP geolocation,

and identifiers of DDoS Protection Services and hosting providers.

We then developed functionality to extract macroscopic as well as

detailed insights about DoS attacks and their impact on Internet

infrastructure. Our analysis demonstrates the potential of sustained

operation of such infrastructure, and extensions of our analysis

approach, in terms of providing situational awareness and inform-

ing Internet research, operations and policy communities about

a growing threat to Internet stability and reliability. While most

of the measurement infrastructure that enables this work already

collects data in near-realtime, a significant challenge is enabling

near-realtime data fusion, extraction, correlation and visualization

to maximize its utility. Our experience in developing this frame-

work, and performing the rigorous characterization of two years of

DoS activity, presents a first step in what we hope can become a

badly needed source of longitudinal data about the health of what

is now our primary communications fabric.
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