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Figure 1. Illustration of the question to solve.

as illustrated in Figure 1b, and thus reconnection can occur on this plane. However, this 2-D plane is not the

only possible choice. We take another 2-D plane in Figure 1c, and there are also in-plane antiparallel magnetic

fields for reconnection as illustrated in Figure 1d although the in-plane field strength changes on this plane.

Therefore, the question to ask is, given differentmagnetic field and plasma conditions on two sides of the cur-

rent sheet, on which plane will reconnection proceed? Since the reconnection x line (marked by the orange

dashed line in Figures 1a and 1c) is always perpendicular to the corresponding 2-D reconnection plane, the

goal is equivalent to determining the orientation of the x line. We will quantify the x line orientation by the

angle 𝜃 respected to the y0 axis (for simplicity, we choose y0 to be the direction where the guide field By0
is uniform). Hypotheses to this well-defined question were proposed. They include minimizing the in-plane

current (Gonzalez & Mozer, 1974; Sonnerup, 1974), maximizing the reconnection outflow speed (Swisdak &

Drake, 2007), maximizing the reconnection rate (Aunai et al., 2016; Hesse et al., 2013; Liu et al., 2015; Schreier

et al., 2010), or maximizing the oblique tearing growth rate (Liu et al., 2015). On the other hand, other than a

few studies in literature (Liu et al., 2015; Schreier et al., 2010), there are notmany attempts to study this funda-

mental nature of magnetic reconnection using first-principle 3-D simulations. To resolve the reconnection x

line in the electron scale will require a fully kinetic description. Thus, we use both 3-D and 2-D particle-in-cell

(PIC) simulations to explore this issue. After knowing the optimal orientation favored by the local physics, we

further study the response of the system when the x line is forced to misalign with the optimal orientation.

This result reveals the potential format of the interplay between the global and local controls.

The structure of this paper is outlined in the following. Section 2 describes the simulation setup. Section 3

measures the x line orientation in the large 3-D simulation. Section 4 identifies the nonideal term in Ohm’s

law that breaks the frozen-in condition. Section 5 shows the comparisonwith companion 2-D simulations and

theories. Section 6 studies the response of the x line when it is forced to proceed at an orientation not favored

by the local physics. Section 7 summarizes and discusses our results.

2. Simulation Setup

In this paper, kinetic simulations were performed using the electromagnetic PIC code VPIC (Bowers et al.,

2009). The employed asymmetric current sheet (Aunai, Hesse, Zenitani et al., 2013; Hesse et al., 2013; Liu et al.,

2015; Pritchett, 2008) has the magnetic profile, B0 = B0(0.5 + S)x̂0 + B0ŷ0 with S = tanh[(z − 3di)∕L], which

corresponds to a shear angle 𝜙 ≃ 82.87∘ across the sheet. This profile gives B2×0 = 1.5B0 and B1×0 = 0.5B0
where the subscripts “1” and “2” correspond to the magnetosheath and magnetosphere sides, respectively.

The initial current sheet has a half thickness L = 0.8di, and it is shifted from z = 0 to z = 3di to accommodate
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the larger structure expected in the weaker field side; the opening angle of the reconnection exhaust bound-

ary on this side should be larger (Liu et al., 2018). The plasma has a density profile n = n0[1 − (S + S2)∕3] that

gives n2 = n0∕3 and n1 = n0. The uniform total temperature is T = 3B20∕(8πn0) that consists of contributions

from ions and electrons with ratio Ti∕Te = 5. Themass ratio ismi∕me = 25. The ratio of the electron plasma to

gyrofrequency is𝜔pe∕Ωce = 4where𝜔pe ≡ (4πn0e
2∕me)

1∕2 andΩce ≡ eB0∕mec. In the presentation, densities,

time, velocities, spatial scales, magnetic fields, and electric fields are normalized to n0, the ion gyrofrequency

Ωci , the Alfvénic speed VA ≡ B0∕(4πn0mi)
1∕2, the ion inertia length di ≡ c∕𝜔pi , B0 and VAB0∕c, respectively.

The x line orientationwill be quantified by the angle 𝜃 respect to the y0 axis illustrated in Figure 1. A clockwise

rotation gives a negative 𝜃. We can rotate the simulation box along the z axis by 𝜃box so that x̂ = cos𝜃boxx̂0 −

sin𝜃boxŷ0 and ŷ = sin𝜃boxx̂0 + cos𝜃boxŷ0. The resulting magnetic field in the new coordinate will be

Bx(z) = Bx0(z)cos𝜃box + By0sin𝜃box,

By(z) = −Bx0(z)sin𝜃box + By0cos𝜃box.
(1)

In a 2-D system, the orientation of the x line is fixed in the out-of-plane direction. This machinery allows us to

study reconnection at a given x line orientation 𝜃 = 𝜃box.

Theprimary3-Dcasehas𝜃box = 0∘, and it has adomain size Lx×Ly×Lz = 256di×256di×24di and4, 096×4, 096×

384 cells. The boundary conditions are periodic both in the x and y directions, while in the z direction they are

conducting for fields and reflecting for particles. We use 200 particles per cell. Adopting the methodology in

Liu et al. (2015),we localize theperturbation inboth the x and y directions to initiate reconnection. Companion

2-D and 3-D simulations with a much shorter y extent (Ly = 32di) at a few representative oblique angles 𝜃box
are designed to compare and contrast with the primary 3-D case.

3. X Line Orientation

Magnetic reconnection is initiated at the center of the simulation domain. The reconnection x line forms and

spreads. In a slab geometry, a reconnection x line is best defined by the line of vanishing Bz , which is sand-

wiched between newly generated reconnected field Bz . The peak current density also serves as a good proxy

to study the x line orientation when the x line is quasi-2-D (Liu et al., 2015). The total current density |J| at
y = 0 and time 184∕Ωci is shown in Figure 2a. To study the orientation of this x line, we then take the x-y cut

of a few quantities across the location of the intense current at z∕di ≃ 3.5. The current density in Figure 2b

captures the distinct x line that is microscopically narrow but macroscopically long on the x-y plane. A movie

that shows the evolution of |J| can be found in the supporting information. The x line in this case is surpris-

ingly laminar and quasi-2-D, unlike most 3-D simulations where turbulence impacts the current sheet. The

large guide field has suppressed the drift-kink instability (Karimabadi et al., 2003). The mild variability of the

x line occurs when the intense current spreads and merges with the current intensified by the background

tearing modes at two ends of this primary x line. For reference, the orientations of the asymptotic magnetic

fields on both sides are marked by the yellow dashed arrows. The field strength is proportional to the arrow

length. A straight line at orientation −13∘ is also plotted for comparison. This is the x line orientation previ-

ously determined by the simulation in a 4 × 4 × 1.5 smaller spatial domain (illustrated by the green dashed

box at the upper right corner of Figure 2b) and 3 times shorter evolution time (60∕Ωci) (Liu et al., 2015). In con-

junction with Liu et al. (2015), the comparison demonstrates that this well-defined x line sustains the same

orientation for at least (184 − 60)∕Ωci = 124∕Ωci , and we do not expect this orientation to change in a larger

simulation. While the x line extent in Liu et al. (2015) is ≃ 20di, the x line in this larger simulation spread to a

spatial length≃ 200di, suggesting that the x line extent in this regime is purely limited by the system size and

there is no intrinsic length limitation in the 3-D system. In a slab geometry, the reconnectedmagnetic field Bz
normal to the current sheet most faithfully captures the x line because it marks the change of the field-line

connectivity. The Bz reversal in Figure 2 shows a similar orientation. The Alfvénic flow reversals serve as the

strong indicative evidence ofmagnetic reconnection in in situ observations (e.g., Burch et al., 2016). The locus

of outflow reversal locations, as captured by Vex and Vix in Figures 2d and 2e, also suggests a similar orien-

tation. Also, note that in Figure 2c the clear stripe structure of Bz arises from the dominant oblique tearing

modes that spontaneously grow from the ambient current sheet. The associated plasmoids are observed in

Figure 2a for |x| ≳ 75di, outside of the outflow region of the primary reconnection x line. These stripes make

a similar orientation at−13∘, and this fact has an implication for the x line stability that will be discussed later.
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Figure 2. Quantities at time 184∕Ωci . In (a) the total current density |J| on a 2-D plane where y = 0. The white arrows
show the in-plane electron velocities. In (b) the x-y cut of |J| across the location of the intense current near the x line.
Similarly, in (c), the reconnected field Bz ; in (d), the electron outflow Vex ; and in (e), the ion outflow Vix . On top of the
figures, yellow arrowed lines in (b) illustrate the magnetic fields on two sides of the current sheet, and white dashed
lines in (b)–(e) have 𝜃 = −13∘ .

4. Break of the Frozen-in Condition

The sharp spatial gradient adjacent to the electron-scale diffusion region makes the ambient plasmas

nongyrotropic. Figure 3a shows the nongyrotropy calculation (Aunai, Hesse & Kuznetsova 2013) Dng ≡

2
√∑

i,j N
2
ij
∕Tr(P)where the nongyrotropy tensor N = P − Peg measures the difference between the full pres-

sure tensor and its gyrotropic approximation. Here Peg ≡ Pe⟂I + (Pe‖ − Pe⟂)b̂b̂ with Pe‖ ≡ b̂ ⋅ Pe ⋅ b̂ being

the electron pressure parallel to the local magnetic field and Pe⟂ ≡ [Tr(Pe) − Pe‖]∕2 being the pressure per-

pendicular to the local magnetic field. The intense Dng traces the diffusion region and the sharp outflow

exhaust boundaries. To assess the break of the electron frozen-in condition, we analyze the composition of

the nonideal electric field (along the vertical white dashed line) using the electron momentum equation

(i.e., Ohm’s law)

ene(E + Ve × B∕c) + ∇ ⋅ Pe +me∇ ⋅

(
neVeVe

)
+me

𝜕

𝜕t

(
neVe

)
= 0. (2)

In order to beat the PIC noise in this calculation, it is customary to ensemble average quantities. Since the

meaning of “anomalous dissipations” arising from an ensemble average (either in a given space extent; Che

et al., 2011; Le et al., 2017; Price et al., 2016 or time duration; Le et al., 2017) remains unclear (Le et al.,

2018), here we average the entire equation without further splitting the nonlinear terms into a product

of averaged quantities. The ensemble-averaged quantities are marked by the angle bracket in Figure 3b.

⟨Q⟩ ⋅ b̂ indicates that the entire quantity Q is time averaged using 1,000 frames within duration 1.7∕Ωci ,
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Figure 3. In (a) the measure of the nongyrotropy (Dng) of the pressure tensor. In (b) the decomposition of the nonideal
electric field. The charge e and electron mass me are normalized to unity in our presentation.

then it is dottedwith the averagedunitmagnetic vector b̂ ≡ ⟨B⟩∕⟨B⟩. This shows the (time-averaged) quantity

in the (time-averaged) parallel direction.

The peak nonideal electric field E + Ve × B∕c (red) in the parallel direction is primarily supported by the

pressure tensor ∇ ⋅ Pe (green), and it closely resembles that in the corresponding 2-D simulation (Hesse

et al., 2016; Lu et al., 2013). To further identify the key contribution in the full pressure tensors, it is useful

to evaluate the divergence of its gyrotropic approximation. A similar decomposition is also analyzed in the

observations of Magnetospheric Multiscale (MMS) mission (Genestreti et al., 2018; Rager et al., 2018). Outside

of the diffusion region,∇ ⋅ Peg ⋅ b̂ (brown) is a good approximation of∇ ⋅ ⟨Pe⟩ ⋅ b̂. The contribution from the

gyrotropic approximation vanishes near the location of the peak nonideal electric field, indicating that the

primary contribution to the pressure gradient comes from the nongyrotropy. This is consistent with the idea

made by theDng measurement in Figure 3a. We can further decompose the gyrotropic pressure gradient into

∇ ⋅Peg ⋅ b̂ = 𝜕‖Pe‖−(Pe‖−Pe⟂)𝜕‖ ln⟨B⟩where 𝜕‖ ≡ b̂ ⋅∇. The simulation result suggests that the gyrotropic con-

tribution can be approximated by∇ ⋅Peg ⋅ b̂ ≈ 𝜕‖Pe‖. That is, the parallel gradient of the parallel component of

the pressure tensor (magenta diamonds). The validity of this approximation is also observed in previous 3-D

simulations (Liu et al., 2013).

5. Companion 2-D Simulations and Theories

Unlike the 3-D systemwhere the x line has sufficient freedom to choose an optimal orientation, in 2-D systems

the orientation of the x line is always fixed to the out-of-plane direction because of the translational invari-

ance along this direction. Taking advantage of this artifact, we can study the property of reconnection in a

specified orientation. On different oblique planes, the strength of the in-plane magnetic field varies accord-

ing to equation (1). The in-plane component of magnetic field reverses sign for 𝜃box ∈ [−56.3∘, 26.6∘], and

reconnection could operate on any of these oblique planes. In Figure 4a, we show the evolution of reconnec-

tion rates on few oblique planes ranging from 𝜃box = −25∘ to 10∘ . These rates are measured by calculating

the change of the in-planemagnetic flux in between the X and O points. Themeasurement suggests that the

reconnection rate ismaximized at theorientation around−13∘ (red curve in Figure 4a), consistentwith theori-

entationmanifested in the 3-D simulation. This comparison between 3-D and 2-D systems demonstrates that

reconnectionproceeds near themaximal reconnection rate. (As an aside, this tendency ofmaximizing the rate

revealed in 3-D simulations echoes the hypothesis used to derive the normalized asymmetric reconnection

rate 0.1 in recent work Liu et al., 2018.)
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Figure 4. In (a) the evolution of the reconnection rate (E) measured on a sample of oblique planes at different 𝜃box .
In (b), “Hesse et al.,” “Cassak-Shay,” “Birn et al.,” and “Liu et al.” are the predicted reconnection rates from different
models. “Tearing” shows the tearing growth rate derived in Appendix A and “Tearing-de” is the modified growth rate in
a de scale sheet. The measured rates from (a) are plotted as magenta diamonds. Each curve is normalized to its
maximum value.

Prompted by this agreement, we now compare our results to the prediction from different rate models.

Cassak and Shay (2007) derived an expression of reconnection rate based on conservation laws, Erec ∝

(Bx1Bx2)
1∕2(Bx1 + Bx2)

−1∕2(Bx1𝜌2 + Bx2𝜌1)
−1∕2. Later, Birn et al. (2010) included the effect of compression and

enthalpy in the calculation. Hesse et al. (2013) proposed that the reconnection rate is proportional to the avail-

able magnetic energy based on the reconnecting component Erec ∝ B2
x1
B2
x2
, which always leads to a maximal

rate at the bisection angle. Recently, Liu et al. (2018)modeled the reconnection rate as a function of the open-

ing angle made by the upstreammagnetic field. A prediction is attained bymaximizing themodel rate under

the geometrical constraint imposed at the magnetohydrodynamics scale. Finally, since the stripe made by

the dominant oblique tearing modes (presumably the fastest growing tearing modes) appears to be parallel

to the x line orientation (Figure 2c), we also derive the growth rate of collisionless oblique tearing modes in

Appendix A. It is not too surprising to see the dominant tearing mode sharing an orientation similar to that

of the x line at its nonlinear state, because a tearing mode is the linear stage of spontaneous reconnection.

As demonstrated in the next section, the fastest growing oblique tearing becomes active when the x line is

forced to be oriented at an angle different from the optimal orientation.

These predicted reconnection rates are plotted in Figure 4b as a function of the x line orientation 𝜃. To facili-

tate the identification of the optimal angle, each curve is normalized to its maximum. For reference, 𝜃 = −13∘

(the x line orientation) and 0∘ (the y0 axis) are marked by the vertical dashed lines. We also plot the peak

reconnection rates measured in Figure 4a as magenta diamonds. The linear growth rates of oblique tear-

ing modes are plotted as a cyan dashed curve. The growth rate based on a thick current sheet maximizes at

𝜃 ≃ −8∘. However, secondary tearing modes often grow from the nonlinear current sheet of de scale thick-

ness and the tearing-mode simulation in a de scale sheet (Liu et al., 2015) showed the dominantmodewith an

orientation close to 𝜃 ≃ −13∘. After accounting for a narrow sheet at de scale, a modified theory (also derived

in Appendix A) is plotted as the orange dashed curve. Two of the closest predictions of the x line orientation

for this case are provided by Hesse et al. (2013) at the bisection angle 𝜃 ≃ −14.87∘ and the maximum of the

modified tearing growth rate at 𝜃 ≃ −13.8∘. To distinguish which model works better in general will require
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Figure 5. The evolution of reconnection in a companion 3-D simulation using Ly = 32di and 𝜃box = 0∘. The color shows
the electron flow speed in the y direction (Vey ).

a thorough parametric study. Nevertheless, these predictions range from 𝜃 ≃ −8∘ to −25∘ and are clearly off

the y0 axis at 𝜃 = 0∘. The observed x line orientation falls within this predicted range.

6. Orientation Versus Stability—A Numerical Experiment

At Earth’s magnetopause, the initial reconnection line could be preconditioned by the global geometry and

external forcing when a relatively planar solar wind touches the bell-shaped magnetosphere at the dayside.

The local tangent of such a reconnection line may not necessarily align with the optimal orientation favored

by the local physics. It is thus interesting to explore the stability of reconnection in a 3-D systemwhen the x line

does not point to the optimal orientation. Asmentioned earlier, when the Ly boundary is extremely short, the

quasi-2-D system fixes the x line to the y direction and completely suppresses anymode that has a finite ky . In

the following numerical experiments, we make Ly short to fix the x line in the y direction but long enough to

allow the development of oblique tearingmodes, which can spontaneously lead to competing reconnecting

modes at different orientations.

In order to fit one oblique tearing mode of wavelength 𝜆 at orientation 𝜃 inside the simulation domain, it

requires Ly ≥ 𝜆∕sin𝜃 (see Appendix B), and this wavelength needs to satisfy 2π∕𝜆 ≲ kc = [(1∕2 + bgtan𝜃)
2 +

1]1∕2∕L for the unstable condition of tearing modes (i.e., Δ′≳0 calculated in the Appendix A). For an oblique

tearing mode to grow at the optimal orientation 𝜃 = −13∘ in the initial current sheet of L = 0.8di, it

requires Ly ≳ 15.5di. The fastest growingmode typically has a wave number around kc∕2, and this will require

Ly ≳ 31di. Thus, we choose Ly = 32di, that should provide sufficient room for the oblique tearing mode to

grow at this optimal orientation if its growth is desired. This y extent is 8 times shorter than the primary 3-D

case, as illustrated by the green dashed box marked in Figure 2c. In addition, we apply a perturbation that is

uniform in the y direction to initiate the x line.

In the first case, we keep 𝜃box = 0. The evolution of reconnection is shown in Figure 5. The color shows the

electron velocity Vey . The most pronounced feature is the turbulence in Figures 5c and 5d, which is absent

in the large 3-D case (Figure 2). Here we explain what gives rise to this turbulence. First of all, note that the

primary x line points more or less in the y direction as initiated by the perturbation and soon enforced by

the periodic boundary condition in the y direction. However, secondary tearing modes emerge on top of the

primary x line in Figures 5a and 5b. These tearing modes are oblique to the primary x line in the y direction,

as illustrated by the Bz structure on the x-y plane in Figures 8a and 8b. Not too surprisingly, this structure is

parallel to the optimal orientation at 𝜃 = −13∘ as marked by the white dashed line. The system radiates sec-

ondary tearing modes to adjust the orientation, but this attempt is destined to fail because of the large-scale
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Figure 6. The evolution of reconnection in a companion 3-D simulation using Ly = 32di and 𝜃box = −13∘. The color
shows the electron flow speed in the y direction (Vey ).

orientation enforced by the periodic y boundary. The fast-streaming electrons resonated by tearing modes

form intense electric current, which needs to close itself since ∇ ⋅ J ≃ ∇ ⋅ (∇ × c2B∕4π) ≃ 0 in the nonrel-

ativistic limit. The intense current structure leaves one y boundary at an oblique angle will come back from

the other side farther downstream, forming a tearing chain along the entire separatrix and constantly feed-

ing complexity back to the periodic system. In contrast, the x line and separatrix are quiet in the primary 3-D

case (Figure 2).

In the second case, we rotate the simulation box to 𝜃box = −13∘ so that the y axis is along the optimal x line

orientation. The evolution is shown in Figure 6. A secondary tearing mode appears in Figure 6a and soon dis-

appears in the outflow. This secondary tearing mode forms structure parallel to the y direction, as expected,

and it is easier to be advected out coherently and be merged in the outflow. The reconnection x line is thus

Figure 7. The evolution of reconnection in a companion 3-D simulation using Ly = 32di and 𝜃box = −35∘. The color
shows the electron flow speed in the y direction (Vey ).
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Figure 8. The Bz structure in the x-y plane that contain the x line in companion 3-D simulation using Ly = 32di .
In (a) and (b) 𝜃box = 0∘, in (c) and (d) 𝜃box = −13∘ , and in (e) and (f ) 𝜃box = −35∘. The white dashed lines mark
the orientation (𝜃 = −13∘) favored by the local physics.

considerably less turbulent. Oblique modes of smaller spatial scale later develop along the separatrix further

downstream (Figure 6c). These modes could be lower hybrid drift modes or weaker oblique tearing modes.

They eventually spread out and reach the x line (Figure 6d), perhaps, due to the combination of the x and

y periodic boundaries. In the third case shown in Figure 7, we rotate the simulation box to 𝜃box = −35∘.

Secondary tearing modes emerge and linger around the x line. This case further confirms that the secondary

tearing modes do emerge along the optimal x line orientation, as shown in Figures 8e and 8f. Note that since

theprimary outflow speeddrivenby thepreselected x line only varies as a functionof the x location, segments

on an oblique structure at different x locations are thus advected in different speeds (before the entire struc-

ture enters the region of a uniform Alfvénic outflow). Thus, the tilt angle of the oblique structure can become

larger further downstream.

In short, these numerical experiments suggest that when the primary x line is forced to point at an ori-

entation not favored by the local physics, the system radiates oblique tearing modes to adjust itself. The

resultingoblique structuremakes reconnectiondifficult to regain a coherentquasi-2-D structure inside a small

periodic box.

7. Summary and Discussion

We studied the x line orientation and its stability using PIC simulations, showing that the x line in a large

3-D system (i.e., a proxy of an open system) proceeds along the orientation that maximizes the reconnection

rate. The resulting diffusion region is laminar and the nongyrotropic feature of the pressure tensor breaks

the frozen-in condition. In contrast, when the x line is externally forced to misalign with this optimal orien-

tation, secondary oblique tearing modes develop to adjust the orientation. Inside a small periodic system,

the oblique structure can hardly be expelled and merged. The fast-streaming electrons resonated by tearing

modes quickly spread over the entire system, constantly feeding complex structure back to the periodic sys-

tem and leading to turbulence. Based on these numerical experiments, we conclude that the reconnection x

line needs not be as turbulent as observed in small periodic simulations.

At Earth’s magnetopause, a global reconnection line that misaligns with the optimal orientation favored by

the local physics is expected to radiate secondary oblique tearingmodes. However, the relatively large system
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may provide a sufficient room for the x line to adjust its orientation and to resume its natural, quieter state.

To accurately model this reaction would require more realistic initial conditions, boundary conditions, and

global external drives that are not yet feasible in a full PIC simulation. One possibility is that a misaligned

reconnection linewill break up into smaller segments, which each are ideally aligned. This could explain local-

ized bursts of reconnection in connection with flux transfer events. Note that the turbulence driven by the

lower hybrid drift instability (LHDI) was discussed inMMS observation (Ergun et al., 2016; Graham et al., 2017)

and the associated event studies using 3-D PIC simulations (Le et al., 2017; Price et al., 2016). For the param-

eters studied in this case, the LHDI appears to be relatively weak at the x line as shown in Figure 2a or 3a.

The effect of LHDI on the x line is not the focus in this work, but the potential boundary effect inside a small

periodic system also deserves future investigation. Note that this work does not imply that the generation of

secondary flux ropes is entirely excludedwhen the x line develops along the optimal orientation. For instance,

flux ropeswere observed in the vicinity of the x line during tail reconnection (Wang et al., 2015, 2010). Instead,

this work suggests that an x line is inclined to generate secondary tearing modes when it misaligns with the

optimal orientation.

We emphasize that an important nature of magnetic reconnection is revealed in this 3-D simulation; the

comparisonbetween theobservedorientation and companion 2-D simulations in Figure 4a shows that recon-

nection tends to proceed at or, at least, near the maximal reconnection rate. This fact can be crucial for the

explanation of the fast rate value of order 0.1; a recent model (Liu et al., 2017, 2018) suggests that the recon-

nection rate profile as a function of the opening angle made by the upstream magnetic field is relatively flat

near this optimal state, and it has a value of order 0.1.

In summary, this study advances our understanding of the 3-D orientation and stability of the asymmetric

reconnection x line. This result could help interpret the local geometry of reconnection events observed by

MMS and, perhaps, help determine an appropriate LMN coordinate (Denton et al., 2018). The question we are

exploring is also relevant to the upcoming European Space Agency-Chinese Academy of Sciences joint mis-

sion, Solar windMagnetosphere Ionosphere Link Explorer, whichwill study the development of reconnection

lines at Earth’s magnetopause using X-ray and ultraviolet imagers.

Appendix A: Collisionless Tearing Growth Rate

In addition to obtaining an optimal orientation by maximizing the reconnection rate, it is also interesting to

consider the competition of linear tearing modes that lead to spontaneous reconnection.

We consider the collisionless tearing stability of this configuration for an arbitrary wavevector k = kxx̂ + kyŷ

corresponding to oblique angle 𝜃 ≡ tan−1(ky∕kx) and resonance surface zs = −L×arctanh(1∕2+bgtan𝜃)+3di
at F ≡ k ⋅ B = 0. In the outer region, the magnetohydrodynamic model is used to obtain an eigenmode

equation (Furth et al., 1963) of the form 𝜓̃ ′′ = (k2 + F′′∕F)𝜓̃ , where 𝜓̃(z) is the perturbed flux function at

the oblique plane and k2 ≡ k2
x
+ k2

y
. By combining the approximate solutions for kL ≪ 1 and kL ≫ 1 in

the same manner as in Baalrud et al. (2012), we get the drive for tearing perturbations (Furth et al., 1963)

Δ′ ≡ lim𝜖→0(1∕𝜓̃)[d𝜓̃∕dz]
zs+𝜖
zs−𝜖

≃ (𝛼2∕k)(F−2
−∞

+F−2
∞
)−2kwhere 𝛼 ≡ (dF∕dz)z=zs . Plugging in our configuration,

it gives

Δ′ ≃
2[(1∕2 + bgtan𝜃)

2 + 1]

kL2
− 2k. (A1)

The upper bound of the unstablewave number is kcL ≲ [(1∕2+bgtan𝜃)
2+1]1∕2. Using the standardmatching

approach (Daughton et al., 2011; Drake & Lee, 1977) to the kinetic resonance layer gives

𝛾 ≃
d2
e
Δ′

ls
kvthe, (A2)

where vthe ≡ (2Te∕me)
1∕2 is the electron thermal speed and de ≡ c∕𝜔pe is the local electron inertial length

at the resonant surface. ls is the scale length of the magnetic shear defined in k∥ = k ⋅ B∕|B| ≈ [𝜕(k ⋅

B∕|B|)∕𝜕z]z=zs (z − zs) ≡ k(z − zs)∕ls. It is derived to be

ls =
Lbg(1 + tan2𝜃)1∕2

[1 − (1∕2 + bgtan𝜃)
2]cos𝜃

.
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Figure B1. The system size Ly that perfectly fit an oblique mode of angle 𝜃 and wavelength 𝜆.

The dominant mode typically has a wavelength kL ∼ kcL∕2, and it is roughly 0.5. Based on this wave number

(kc∕2), the growth rate at the different oblique angle is shown by the dashed cyan curve in Figure 4b, which

has a maximum at 𝜃 ≃ −8∘.

The width of the resonant surface Δ is determined by the resonant condition (Drake & Lee, 1977) 𝛾 ≃

k‖vthe = (kΔ∕ls)vthe, and it should be limited by the thickness of the current sheet L. Thus, by comparing with

equation (A2) we can derive Δ′de ≃ Δ∕de ≤ L∕de. For L∕de ≤ 1, we have Δ′de ≤ 1. On the other hand,

equation (A1) with k ≃ kc∕2 suggests Δ′de ≃ 1∕(L∕de) ≥ 1 in the same limit. It is thus clear that the theory

breaks down for a narrow sheet L∕de ≤ 1. As a quick remedy, we argue Δ′de ≃ 1, and thus, 𝛾 ≃ dekvthe∕ls for

L∕de ≤ 1. This modified rate for a de scale sheet is plotted as the orange dashed curve in Figure 4b, which has

a maximum at 𝜃 ≃ −13.8∘, comparable to the oblique angle (≃ −13∘) of the dominant mode observed in a

de scale sheet (Liu et al., 2015).

Appendix B: TheMinimum Box Size Required for an ObliqueMode

To perfectly fit an oblique mode of angle 𝜃 and wavelength 𝜆 inside a box of periodic y boundary, as shown

in Figure B1, it requires Ly = N𝜆∕sin𝜃 where N is a positive integer. For Ly >𝜆∕sin𝜃, the mode can at least

partially manifest its orientation. For Ly < 𝜆∕sin𝜃, such a mode is impossible to grow due to the effect of the

periodic boundary.
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