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Abstract 

By means of density functional theory (DFT) computations, we designed porous 

hexagonal boron oxide (ph-BO) monolayer, which is purely planar, and has uniform 

pores in diameter of 6.27 Å. Its high binding energy, absence of imaginary phonon 

dispersions, and outstanding thermal stability suggest that it is possible to synthesize 

ph-BO monolayer experimentally. Interestingly, ph-BO is an indirect semiconductor 

with a rather wide band gap (5.23 eV) comparable to hexagonal boron nitride, and its 

band gap is rather robust against external strains. ph-BO is promising for many 

applications because of its exceptional electronic and optical properties, especially in 

the deep-UV range.  
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1. Introduction 

Since the experimental realization of graphene in 2004,1 numerous 

two-dimensional (2D) materials beyond graphene have been extensively 

investigated,2-10 including those made of single elements, such as group IV 

silicene,11-18 germanene,19-24 and stanene,5,25-28 group V phosphorene,29-35 arsenene36-38 

and antimonene.36,38-42 These new materials not only greatly enriched the 2D materials 

family, but also revolutionized modern physics, chemistry and materials science, 

among others. However, most 2D materials have narrow band gaps less than 2.0 eV, 

which seriously hinder the applications of 2D materials in blue- and UV-light range. 

Therefore, it is of great importance to theoretically or experimentally search for stable 

semiconducting 2D materials with wide band gaps. 

The group III monolayers did not escape the attention. The structures and 

electronic properties of 2D nanosheet of boron, namely borophene, have been 

extensively investigated,43-50 and recently have been grown on Ag(111) substrates.51-52 

Boron can easily form oxides in nature. Boron oxides have three common forms: 

boron monoxide (B2O), boron suboxide (B6O) and boron trioxide (B2O3). The 

high-pressure syntheses of graphite-like53 and diamond-like54 structures of B2O have 

been reported, however, later experimental55 and theoretical56 investigations showed 

that the graphite-like structure is not stable. B6O is built of eight icosahedra, which are 

at the apexes of the rhombohedral unit cell, and displays great hardness and high 

chemical inertness.57 B2O3 is the most ordinary form of boron oxide in nature. Glass 

boron trioxide (g-B2O3)58 is one of the best glass-formers,59 in which the 

https://en.wikipedia.org/wiki/Rhombohedral
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six-membered boroxol rings (B3O3) consisting of alternating 3-coordinate boron and 

2-coordinate oxygen are supposed to be the building blocks.60,61 However, g-B2O3 is 

lack of low-pressure polymorphism, its crystallization has never been succeeded from 

a dry melt at ambient pressure so far. Interestingly, Ferlat et al. computationally 

designed some new low-pressure B2O3 polymorphs using BO3 triangle and B3O6 

boroxol rings.59 The sublattices of these new B2O3 polymorphs are flat, and can be 

considered as B2O3 monolayers with BO3 and B3O6 triangle units (Figure S2, see 

Supporting Information). 

Experimentally, Al2O3 protecting boron oxide thin films by atomic layer 

deposition method using BBr3 and H2O as precursors,62 and boron oxide nanowires by 

infrared irradiation of B and B2O3 powders on Mg metal surface63 have already been 

realized, though these nanostructures are unstable with respect to moist air, and it was 

found that upon heating in the absence of air boron oxide can transform to boron-only 

nanowires.64 Moreover, the bulk boron oxides have been used as catalysts65 and 

protective surface treatments.66 However, there is sparse work focusing on boron 

oxide 2D materials. 

Recently, King and his coworkers proposed that the planar boron monoxide 

clusters (BnOn)67 would be energetically more favorable than the twisted ones when 

the number of boron monoxide dimer is over 18 (n > 18).68 Using the same B6O6 

dimer as building block, (B2O2)n double-ring tubular clusters69 and boroxine based 

buckyballs and cages70 have been theoretical studied. On the other hand, Yang and his 

coworker reported B4O 2D semiconductor and B6O 2D Dirac nodeline semimetal.71 
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The extraordinary advances of 2D materials and the purely planar structures of BnOn 

clusters inspired us to answer the following questions: can we construct boron 

monooxide 2D materials using such building blocks? would they possess rather high 

stability and have wide band gaps?  

Herein, by means of systematic density functional theory computations (DFT) 

computations, we theoretically designed a 2D material, namely porous hexagonal 

boron oxide (ph-BO), which is a wide band gap semiconductor. Our computations 

showed that this monolayer is of rather high thermodynamic, dynamic and thermal 

stabilities, and it is the global minimum among boron monoxide 2D materials. ph-BO 

also has rather robust mechanical strength and efficient absorption in deep-UV light 

range. All the exceptional properties endow the porous ph-BO monolayer promising 

applications in electronics and optoelectronics. 

2. Computation Methods 

Our DFT computations were performed using a plane wave basis set with the 

projector-augmented plane wave (PAW)72 to model the ion-electron interaction as 

implemented in the Vienna ab initio simulation package (VASP).73 The electron 

exchange-correlation functional was treated using generalized gradient approximation 

(GGA) in the form proposed by Perdew, Burke and Ernzerhof (PBE). The energy 

cutoff for ph-BO monolayer was set to 500 eV. The vacuum space is more than 10 Å, 

so that the interactions between adjacent layers can be ignored. The 9×9×1 

Monkhost-Pack k points and 10-5 eV convergence tolerances were used for geometry 

optimizations, self-consistent calculations and electronic calculations. We carried out 



 6 

both spin-polarized and spin-unpolarized computations and ensured that ph-BO has 

no magnetism. 

Since PBE functional tends to underestimate the band gaps, while the 

Heyd-Scuseria-Ernzerhof (HSE06)74 screened-hybrid functional was proven to give 

reliable band structures,75 we computed the electronic property of ph-BO using both 

PBE and HSE06 functionals by VASP code. For HSE computations, the random phase 

approximation (RPA) method was employed to compute the optical properties of 

ph-BO monolayer, the 9×9×1 and 21×21×1 k points were used for electronic and 

optical property calculations, respectively.  

To examine the dynamic stability of ph-BO, we calculated the phonon 

dispersions at the PBE level of theory using ultrasoft pseudopotentials implemented in 

CASTEP code.76 A 2×2×1 supercell, 13×13×1 Monkhost-Pack k points, a cutoff of 

500 eV, and 10-6 eV convergence tolerances were employed for phonon computations 

through finite displacement method. 

To verify the thermal stability of our newly predicted monolayer, we performed 

ab initio molecular dynamics (AIMD) simulations using an all-electron method in 

DMol3 code since it is computationally less demanding.77-78 In AIMD simulations, the 

double numerical plus polarization (DNP) basis set and PBE functional were adopted; 

a 2×2×1 supercell was annealed using NVT canonical ensemble at different 

temperature of 500, 1000, 1500, and 2000 K, and each simulation lasted for 10 ps 

with a time step of 2.0 fs. 

We also searched for the low-energy 2D planar BO monolayers using the 
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particle-swarm optimization (PSO) method as implemented in CALYPSO code.79 The 

optimizations were performed by VASP code using PBE functional. In our 

calculations, the population size was set to 50, and the number of generation was set 

to 50. Unit cells containing 6 boron atoms and 6 oxygen atoms were considered. 

 

3.  Results and discussion 

3.1 Geometric Structures 

The optimization of lattice constant of ph-BO calculated is 7.82 Å (Figure S1). 

The optimized structure of ph-BO monolayer is purely planar, and has uniformly 

distributed pores with the pore diameter of 6.27 Å (Figure 1a). The B-O bond lengths 

are all 1.39 Å, and the B-B bonds are 1.72 Å, which are very close to those (1.385, 

1.717 Å, respectively) in the planar B10O10 cluster composed by B6O6 dimers (named 

as B10-1 in Ref.70). 

To scrutinize the bonding nature of ph-BO, we calculated its electron localization 

function (ELF).80 The ELF is a useful method to analyze the chemical bond 

classification through providing information about electron localization in molecules 

and solids. ELF can be described in the form of a contour pot in real space with values 

ranging from 0 to 1. The region with 1 indicates completely localization of electrons, 

0 stands for a very low electron density area, while 0.5 indicates an area with 

homogenous electron gas. For ph-BO monolayer, the isosurface of ELF at 0.75 au is 

concentrated in two main parts: the middle of B-B bonds and the B-O bonds 

(especially around oxygen atoms) (Figure 2a). In the ELF sliced perpendicular to (001) 
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direction (Figure 2b), the values of the above mentioned two domains are larger than 

0.8 au, which indicate that B-B and B-O are strong valence bonds, contributing to the 

durable ph-BO framework. 

 

 

Figure 1. Top and side views (a) of geometric structure of ph-BO. The pink and red 

atoms represent B and O atoms. The B-O, B-B bond lengths are identical, respectively. 

For clarity, (2 × 2 × 1) supercells are used here. Phonon dispersions (b) of the fully 

relaxed ph-BO monolayer structure. 

 

 

Figure 2. The isosurface of ELF plotted with a value of 0.75 au (a); and the ELF 

sliced perpendicular to (001) direction (b) for ph-BO monolayer. 

Mechanical properties are important characteristics for a material, which can 
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help classify and identify materials. Thus, we also studied the mechanical properties 

of ph-BO through in-plane Young’s modulus. Possessing hexagonal structures, the 

mechanical properties of ph-BO are isotropic, and the Young’s modulus (Ya = Yb) of 

ph-BO is 71.83 N/m. For comparison, the Young’s modulus of ph-BO is smaller than 

those of β12 borophene (Ya = 189 N/m and Yb = 210 N/m).50 However, the Young’s 

modulus of our newly predicted ph-BO is larger than that of silicene (Ya = Yb =60 

N/m),50 and is comparable to those of phosphorene (Ya = 25.50 N/m, Yb = 91.61 

N/m),81 suggesting that ph-BO has great mechanical property and potential in various 

nanoscale device applications. 

 

3.2. Thermodynamic, Dynamic and Thermal Stabilities 

The stability and the possibility of experimental realization are vital for any 

designed materials. Thus, we systematically evaluated the thermodynamic, dynamic 

and thermal stabilities of ph-BO monolayer.  

First, we examined the thermodynamic stability of ph-BO monolayer by 

computing its binding energies (Eb) defined as  

Eb = (6EB + 6EO - EBO) / 12 

Where EB, EO and EBO are the total energies of the boron atom, oxygen atom and unit 

cell (One unit cell is composed of six boron and six oxygen atoms). The computed 

binding energy of ph-BO monolayer is 6.68 eV/atom. In comparison, the binding 

energies of the B2O3 monolayer with BO3 and B3O6 triangle units (Figure S2) are 6.97 

and 6.99 eV/atom, respectively. It is the presence of the B-B homo-element bonds that 
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lead to the slightly lower binding energy of ph-BO monolayer than the corresponding 

X2O3 2D structures. Compared with the 2D elemental layers, ph-BO has higher 

binding energy than χ3 borophene (5.90 eV/atom)82 and β12 borophene (denoted 

v1/6-borophene) (5.89 eV/atom) at the same theoretical level.49-50 It is the strong 

covalent B-O bond that result in the high thermodynamic stabilities of the 2D boron 

oxide. 

Secondly, we examined the dynamic stability of ph-BO monolayer by computing 

its phonon dispersions. The absence of imaginary frequency in the phonon dispersions 

(Figure 1b) confirm that ph-BO is dynamically stable. 

We further examined the thermal stability of ph-BO by AIMD simulations 

(Figure 3). Fortunately, ph-BO monolayer well maintained its hexagonal structure at 

temperatures up to 1500 K. At 2000 K, the structure of ph-BO is corrupted with some 

broke B-B bonds. Note that ph-BO will have enough energy to cross the barrier and 

turn to disordered state at temperatures between 1500 and 2000 K. These simulations 

indicate that ph-BO monolayer has high thermal stability. 
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Figure 3. Snapshots of ph-BO equilibrium structures at (a) 500K, (b) 1000K, (c) 

1500K and (d) 2000K at the end of 10 ps AIMD simulations. 

 

Moreover, our PSO search revealed that the ph-BO monolayer as we designed is 

global minima of boron monoxide planar structures in 2D space. The other two 

low-lying energy boron monoxide, namely as BO-2 and BO-3 (Figure S4), have 

binding energies (6.64 and 6.62 eV/atom, respectively) 40 and 60 meV/atom smaller 

than ph-BO. Thus, the high thermodynamic, dynamic and thermal stabilities of ph-BO, 

as revealed by our computations of binding energies, phonon dispersions and AIMD 

simulations, strongly indicate that it is highly practicable to realize ph-BO 

experimentally. 

3.3. Electronic properties 

To study the electronic property of ph-BO, we computed its band structures as 

well as total and partial density of states (DOS and PDOS) (Figure 4). In band 

structures of ph-BO monolayer, there is no band lines across the Fermi level, wherein, 
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the conduction band minimum (CBM) is at K point (0.333, 0.333, 0), and valence 

band maximum (VBM) is at G point (0, 0, 0). Thus, ph-BO monolayer is 

semiconducting with indirect band gap of 3.59 (PBE). For comparison, the band gap 

of ph-BO (3.59 eV) is much smaller than those of the B2O3 monolayers with BO3 and 

B3O6 triangle units (5.26 eV and 6.88 eV, respectively, computed at the same PBE 

level of theory in this work). Checking DOS and PDOS plots revealed that the bands 

close to the Fermi level are mainly attributed to the hybridization of p orbitals of 

boron and oxygen atoms.  

 

 

Figure 4. Band structures and partial density of states of ph-BO monolayer (by PBE 

functional). 

 

Because the PBE functional tends to underestimate band gaps, we also employed 

HSE06 functional to get more accurate band gap value of ph-BO monolayer. The 

HSE06 band gaps for ph-BO is 5.23 eV, which correspond to UV range. Sharing 

similar electronic characteristics with hexagonal boron nitride (h-BN, band gap = 

5.2-5.9 eV),83-87 ph-BO monolayer is a typical wide band gap material, and is 
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expected to present emission/absorption wavelengths in the ultraviolet light. 

Since the external strains are unavoidable, especially in the fabrication of 

nanostructures and thin films, we further studied the change of band gap values of 

ph-BO under in-plane biaxial strains. Though PBE underestimates the band gaps of 

semiconductors, the variation tendency is expected to be reliable. Therefore, the 

computations of strain effect were performed by PBE functional, under a constant unit 

cell with volume constraint; and the axial unit cell length l is determined by the 

percentage strain  (l = l0 (1 + )), where l0 is the unit cell length of the optimized, 

unstrained nanostructure. Upon strains  ranging from -5% to 3% in the monolayer 

plane from a and b directions, the energy of ph-BO monolayer increases with the 

increasing compression or expansion strains (Figure S5). The indirect semiconductor 

characteristic of ph-BO monolayer persists, but the band gap values increase upon 

stretching, while decrease upon compressing (Figure 6). Under -5% to 3% strains, the 

band gaps of ph-BO monolayer change from 3.38 to 3.64 eV. The change upon strains 

in such a range is 0.26 eV for ph-BO monolayer, which indicates that the wide band 

gap character of ph-BO is rather robust against external strains.  
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Figure 5. The change of band gap values under in-plane strain ranged from -5% to 3% 

with the view of the directions of strains. 

 

3.4. Optical properties 

The wide band gap of ph-BO suggests its promising applications in deep-UV 

range. To further explore its optical property, we computed the dielectric function of 

ph-BO. Herein, the transverse dielectric function ε(ω) below was used to describe the 

optical properties of materials.  

ε(ω)=ε1(ω)+iε2(ω) 

Where ω is the photon frequency, ε1(ω) is the real part and ε2(ω) is the imaginary 

part of dielectric function. 

From the imaginary part of dielectric function, the curves of [100] and [010] are 

degenerate and dominant (Figure 6), and the threshold energy of dielectric function 

appear at around 5.13 eV. The threshold energy is close to the band gap value (both 

are in HSE06 theory level), which verifies the accuracy of our calculations. This peak 

corresponds to the optical transition between the top of valence band and bottom of 
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conduction band, which is called fundamental absorption edge. The predominant 

peaks for ph-BO monolayer from [100]/[010] orientation are at 7.46, 10.26, and 16.32 

eV. Notably, the large area under the [100]/[010] curve (ca. 5-18 eV) indicate its high 

absorption coefficients in ultraviolet light range. Therefore, the prominent electronic 

and optical properties endow ph-BO highly promising as high-power electronics, blue 

light-emitting diodes (LED), deep-UV light emitters and blue-violet laser diodes.88-89 

 

 

Figure 6. Imaginary parts of dielectric functions for ph-BO monolayer. 

 

4. Conclusion 

By means of systematic DFT computations, we designed a purely planar 

nanostructure with uniform pores, namely porous hexagonal boron oxide (ph-BO) 

monolayer. Due to strong B-O bonds, ph-BO monolayer has rather high stability, as 

illustrated by its high binding energy, absence of imaginary frequency dispersions, 

and well-maintained structure at high temperatures, which strongly indicate the 

feasibility for its experimental realization. 

Notably, ph-BO monolayer is indirect semiconductor with rather wide band gap 
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comparable to hexagonal boron nitride, and its band gap is rather robust against 

external strains. ph-BO monolayer has high absorption efficiencies in deep-UV light 

range, which endow it great promise in electronics and optoelectronics, especially 

high-power electronics, deep-UV light emitters and blue-violet laser diodes. We hope 

that our newly designed ph-BO monolayer will inspire more efforts on 2D main group 

oxide materials with wide band gaps.  
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