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Abstract: We investigate 29Si nuclear magnetic resonance (NMR) chemical shifts, δiso, of silicon
nitride. Our goal is to relate the local structure to the NMR signal and, thus, provide the means
to extract more information from the experimental 29Si NMR spectra in this family of compounds.
We apply structural modeling and the gauge-included projector augmented wave (GIPAW) method
within density functional theory (DFT) calculations. Our models comprise known and hypothetical
crystalline Si3N4, as well as amorphous Si3N4 structures. We find good agreement with available
experimental 29Si NMR data for tetrahedral Si[4] and octahedral Si[6] in crystalline Si3N4, predict
the chemical shift of a trigonal-bipyramidal Si[5] to be about −120 ppm, and quantify the impact of
Si-N bond lengths on 29Si δiso. We show through computations that experimental 29Si NMR data
indicates that silicon dicarbodiimide, Si(NCN)2 exhibits bent Si-N-C units with angles of about 143◦

in its structure. A detailed investigation of amorphous silicon nitride shows that an observed peak
asymmetry relates to the proximity of a fifth N neighbor in non-bonding distance between 2.5 and
2.8 Å to Si. We reveal the impact of both Si-N(H)-Si bond angle and Si-N bond length on 29Si δiso in
hydrogenated silicon nitride structure, silicon diimide Si(NH)2.

Keywords: silicon nitride; NMR; DFT; GIPAW

1. Introduction

Silicon nitride is a hard (bulk modulus of γ-Si3N4—290 GPa [1]) and oxidation-resistant material
that finds a broad variety of applications: from engine parts, ball bearings, cutting tools, thermal
shock resistant ceramics [2], to dielectric materials in electronics [3], heterogeneous catalyst support [4],
ceramic fibers [5], or nanowires [6]. Better knowledge of the local structure is essential for broadening
the range of applications of this kind of materials.

Over the last decade several studies addressed NMR calculations of crystalline and amorphous
silica and silicates [7–10]. Those studies show the power of state-of-the-art quantum-chemical
calculations to support experimental characterization and analytics [11,12]. Computationally-enhanced
29Si NMR spectroscopy enables extracting information on Si-O-Si angle distribution [8] as well as
Q-unit speciation [9] and the degree of condensation of the silica network in sol-gel-derived SiO2-RxOy

glasses [10]. Combining experimental and computational NMR studies allowed to resolve the debate
of the abundance of boroxol rings in vitreous B2O3 [13].

Here we provide—for the first time—GIPAW [14] calculations for silicon nitride in crystalline
and amorphous form. Our goal is to relate the local structure of Si in nitrides to 29Si NMR δiso. We
explore known and hypothetical crystalline structures of Si3N4 to reveal the effect of coordination
number on 29Si NMR and provide predictions for the chemical shift of 5-coordinated Si in nitrides,
which have not been experimentally found yet. We take a closer look on the effects of local structure
on 29Si δiso for Si[6] and Si[4] species. We explore a variety of local geometry features in amorphous

Materials 2018, 11, 1646; doi:10.3390/ma11091646 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-3321-6671
https://orcid.org/0000-0003-4782-2805
http://dx.doi.org/10.3390/ma11091646
http://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/11/9/1646?type=check_update&version=2


Materials 2018, 11, 1646 2 of 16

Si3N4 models and reveal the effect of certain local structure parameters on 29Si NMR signal. We also
consider two different types of compounds comprising SiN4 tetrahedra, but differently-connected N
atoms: silicon carbodiimide Si(NCN)2 and silicon diimide Si(NH)2.

2. Computational Methods

We perform density functional theory [15] calculations using the Vienna Ab Initio Simulation
(VASP) package (version 5.3.5) [16,17]. We use the projector augmented wave (PAW) method [18,19]
and approximate electron exchange and correlation by the Perdew-Burke-Ernzerhoff (PBE) generalized
gradient approximation (GGA). For optimizations of both amorphous and crystalline models we rely
on standard pseudopotentials provided with the VASP package and use an energy cutoff of 500 eV
for the expansion of the wave function into the plane-wave basis set. We sample the Brillouin zone at
the Γ-point only for amorphous models, while we choose appropriate k-point meshes for crystalline
models. NMR calculations are carried out using the GIPAW algorithm [14] as implemented in the VASP
code. For those we choose an energy cutoff of 600 eV and find 29Si NMR chemical shifts converged to
better than 0.2 ppm.

For calibration of chemical shifts we compute silicon nitride polymorphs as well as ternary
M-Si-N structures with structural data taken from the Inorganic Crystal Structure Database [20]:
α-Si3N4 [21], β-Si3N4 [22], γ-Si3N4 [23,24], BaSi6N8 [25], Li2SiN2 [26], and SrSi6N8 [27]. Keeping the
reported experimental lattice parameters constant we first optimize atomic positions (forces lower than
5 meV/Å) and, thereafter, compute absolute 29Si NMR chemical shifts. Results of NMR calculations are
given in Table 1 together with experimental data. The relation between computed absolute chemical
shifts and experimental isotropic chemical shifts is shown in Figure 1. A best fit is obtained by a linear
relation with the slope of unity:

δiso = σiso + 338.6 (1)
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Table 1. Experimental 29Si NMR chemical shifts, δiso, computed absolute shifts, σiso, and predicted δiso

of Si sites in a variety of crystalline silicon nitrides. The predicted value δiso
calc is based on a fit to the

data; see Figure 1 and Equation (1).

Structure Site δiso
exp (ppm) σiso

comp (ppm) δiso
comp (ppm)

BaSi6N8 [25]
1 −54.3 −394.4 −56.2
2 −28.0 −366.2 −28.0

Li2SiN2 [26] 1 −34.7 −374.5 −36.3

SrSi6N8 [27]
1 −52.0 −391.1 −52.9
2 −28.0 −365.8 −27.6

α-Si3N4 [21,28]
1 −48.9 −385.4 −47.2
2 −46.8 −384.7 −46.5

β-Si3N4 [22,28] 1 −48.7 −386.7 −48.5
γ-Si3N4 [23,24,29] 1 (Si[4]) −50.0 −390.2 −52.0

Similar relations have been used previously for polymorphs of SiO2 as well as for a variety of
silicates [7,10]. Using this calibration, computed chemical shifts agree with experimental data with
a maximum deviation of 2 ppm.

The spinel-type γ-Si3N4 is the only silicon nitride exhibiting a six-fold octahedrally-coordinated
Si[6] site, with a chemical shift of −225 ppm [29]. To investigate more highly coordinated Si
sites (CN = 5, 6, 7) and their 29Si chemical shifts, we computed a series of hypothetical crystalline
structures with composition Si3N4. Model structures are generated from binary A3X4- and ternary
A2BX4-structure types by replacing all cations with Si and all anions with N. Crystallographic data of
these structures is provided in the Supporting Information.

Amorphous silicon nitride models are generated by two different approaches. A set of network
models was generated using a modified Wooten, Winer and Waire (WWW) algorithm [30–32] with
subsequent DFT optimizations. Another set of models was produced by molecular dynamics
simulations (MD) using the empirical potential of Garofalini et al. [33] integrated into the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [34]. In a recent study we showed
that this potential produces structures with low defect concentrations and close to a DFT local
minimum [35]. We followed a standard melt-quench procedure by first heating the system to 8000 K
and then quenching it in 280 ps (∆t = 1 fs) down to room temperature. Finally, we optimized all models
within DFT as described above.

3. Results and Discussion

3.1. Effects of Coordination Number—Known and Hypothetical Crystalline Si3N4 Structures

In Figure 2 we collect computed 29Si NMR chemical shifts of Si sites in a variety of known and
hypothetical silicon nitride, Si3N4, structures as a function of their nitrogen coordination number.
Structural data as well as computed 29Si NMR chemical shifts of each model are provided in the
Supporting Information (Table S1).

In general, higher coordination number lowers the shielding of Si nucleus causing decrease in
chemical shift. This is consistent with observations of chemical shifts in polymorphs of SiO2 and
silicates, where NMR chemical shifts of Si[6] have significantly more negative values (−191.1 ppm
for stishovite [36], in the range from −210 to −220 ppm for silicophosphates [37]) than Si[4]. In
particular, 29Si NMR chemical shifts of tetrahedrally coordinated Si[4] sites fall into the range from −37
to −57 ppm. Notably, examples of relatively high δiso values of −26.5 ppm and −30.2 ppm are two
models, in which Si[4] sites are engaged into two 2-rings.

Among the five-fold coordinated Si[5]-sites, a trigonal-bipyramidal coordination (4 sites) yields
δiso of −115 to −121 ppm. A square pyramidal Si[5] (two sites) is shifted to less negative δiso values,
we found −76.4 ppm and −98.7 ppm, respectively. Two Si[5] sites appearing with shifts lower
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than −140 ppm are better described as 5 + 1 coordination, with a distance of only 2.5 Å to the 6th
nitrogen neighbor. We discuss the impact of such “extended” bonds on 29Si NMR chemical shifts more
thoroughly for amorphous systems further below.
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Figure 2. Relation between experimental data and computed absolute 29Si NMR chemical shifts of
Si sites in a variety of crystalline silicon nitrides. The calibration curve is a linear fit (unit slope) to
the data.

We compute the 29Si NMR chemical shift of octahedrally coordinated Si[6] in spinel-type γ-Si3N4

to −228.4 ppm, which is consistent with the experimental value of −225 ppm [29]. Hence, our
calibration is justified and applies even for significantly larger chemical shifts. The (almost perfect)
octahedral coordination of Si in γ-Si3N4 falls onto the lowest values of chemical shifts, however. Values
of δiso for other six-fold coordinated Si[6] sites fall into the range from −150 ppm to −230 ppm. We
note that one “outlier” appears at −125 ppm. It displays strong differences of Si-N bond lengths to its
neighbors, which is analyzed below.

We computed only one site for each three-fold (trigonal) coordinated Si[3] and seven-fold
(pentagonal bipyramidal) coordinated Si[7]. They align with the overall trend: δiso of Si[3] is significantly
higher than for Si[4], and δiso of Si[7] (which is better described as 5 + 2 coordination) is comparable to
the lowest values of Si[6].

3.2. Impact of Local Structure—Distortions of Crystalline Si3N4 Models

The key factor impacting 29Si NMR chemical shifts of four-fold tetrahedrally-coordinated Si[4]

sites in silicates, where Si is coordinated by four (bridging) O atoms, is the Si-O-Si bond angle on
neighboring oxygen atoms [7–10,36,38–40]. Hence, experimental 29Si NMR data can be used for
structural investigations, for instance in silicate glasses [7–9], and experimental “resolution” can be
enhanced by thorough computational studies. The importance of the bond angle at O—rather than
bond distances to and angles at the Si site—stems from the fact that silicates display almost perfect
tetrahedral Si sites. Furthermore, the dependence of δiso on the Si-O bond distance is rather weak.

In silicon nitrides Si sites are coordinated by N atoms. With N typically being three-fold
coordinated by Si (for instance in α-Si3N4 and β-Si3N4), the parameter corresponding to the bond
angle at O in oxide systems then is the degree of pyramidalization of N. Similar to the bond angle at O,
the pyramidalization at N characterizes the localization of electrons at the anion site which, in turn,
impacts the shielding at the Si nucleus and, consequently, the 29Si NMR chemical shifts. We express the
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pyramidalization of N as the ratio of height h of N above the plane formed by its three coordinating Si
atoms and average Si-N bond length d (see Figure 3a). The parameter h/d, thus, is a measure of how
much the N atom is out of the plane formed by its three Si neighbors.

The model structure best suited to study this potential correlation between pyramidalization and
29Si NMR chemical shifts is that of (hypothetical) wII-Si3N4, which the willemite-II structure [41–43].
With a single Si site and only two independent structural parameters, lattice parameter and one
positional parameter of N, it allows a facile change of pyramidalization while maintaining constant Si-N
bond distances. Thus, we compute the 29Si NMR chemical shift for a series of different pyramidalization
at N and results are shown in Figure 3b. Essentially, δiso changes less than 1 ppm over a wide range
until the N is so far above the plane that Si-N-Si angles are smaller than those in a regular tetrahedron
(109.47◦). Only for extreme distortions does a decrease of 29Si δiso occur. This, however, is in this
special case augmented by an increase of Si coordination from 4 to 8.
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Figure 3. (a) Representation of the pyramidalized N atom. (b) changes in 29Si NMR chemical shift with
increase of the degree of pyramidalization of N atom expressed as the relation of height of nitrogen over
the plane of its neighboring Si atoms (h) to the Si-N bond length (dSi-N). The correlation was obtained
for the wII-Si3N4 model by changing the N position while adjusting cell parameters to maintain a Si-N
bond length of 1.733 Å.

To highlight the impact of Si-N bond lengths on 29Si NMR chemical shifts we scale the structure
of β-Si3N4 by changing cell parameters while keeping fractional coordinates constant, and further
compute NMR of those “scaled” structures. The results are shown in Figure 4 and are compared with
similar data obtained for α–cristobalite SiO2. Interestingly, the bond distance dependence of δiso for
tetrahedral Si[4] is very similar for SiO2 and Si3N4. However, for the range of typical bond distances
occurring in oxides and nitrides of silicon, a change in bond distance has significantly different impact
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on δiso. As mentioned earlier, typical Si[4]-O bond lengths fall into a range of 1.6–1.7 Å, and small (up
to 0.05 Å) bond length variations yield only small (<1 ppm) changes of 29Si NMR chemical shifts. On
the other side, typical Si[4]-N bond lengths are about 1.7–1.8 Å. In this range the slope of the curve is
about significantly steeper, and a change of 1 pm (0.01 Å) in bond length yields about a 1 ppm change
in chemical shift.
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Figure 4. Correlation between average Si-O or Si-N bond lengths and 29Si NMR chemical shifts.
The y-axis has been adjusted to allow better comparison between the curves. The correlations are
obtained by the scaling of SiO2 α-cristobalite and β-Si3N4 models, respectively.

The bond length dependence of 29Si NMR chemical shifts appears significantly more pronounced
for six-fold coordinated Si[6]. In Figure 5a we plot δiso for Si[6] in (hypothetical) crystalline models as
a function of the average Si-N bond length around that site. The graph includes data for the octahedral
Si[6] site in spinel-type γ-Si3N4 obtained by scaling the structure. Due to its location at a high-symmetry
position, the Si[6] site in spinel-type γ-Si3N4 exhibits six equal Si-N bonds.
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Figure 5. (a) 29Si δiso of Si[6] sites in hypothetical crystalline Si3N4 plotted versus average Si-N bond
length. The inserted line represents data for the Si[6] site in spinel-type γ-Si3N4, computed after scaling
the structure. (b) Deviation of the computed 29Si NMR δiso for the distorted Si[6] sites plotted versus
the difference between shortest and longest Si-N bond for that site. The dashed line represents a linear
fit to the data.

If we regard the data for the Si[6] site in spinel-type γ-Si3N4 as a benchmark curve characterizing
the bond length dependency for Si[6] sites, we notice some significant discrepancies among the
computed chemical shifts. Strong deviations from the curve only occur towards higher δiso values,
and are related to distorted coordination environments around the Si[6] sites. Most important is
an asymmetry among the Si-N bond lengths of that site. To illustrate this, we plot the deviation of the
computed 29Si NMR δiso for the distorted Si[6] site as a function of the difference between the shortest
and the longest Si-N bond for that site (Figure 5b). The data shows clearly the strong influence that
an irregular environment can have on the chemical shift of Si[6].

3.3. Special Case of the Silicon Dicarbodiimide—A Bond Angle Dependence for a SiN4 Environment

Computation of 29Si NMR chemical shifts and their comparison with experimental data also
provide further insights into the riddle of silicon carbodiimide, Si(NCN)2. The structure of Si(NCN)2

is isostructural to β-cristobalite SiO2 [44], with the complex carbodiimide anion [NCN]2− replacing
the oxide O2−. With its relation to the cristobalite SiO2-system, Si(NCN)2 comprises SiN4-tetrahedra,
and since the N atoms are bonding to Si and C, there is a bond angle appearing at N. The experimental
structure of Si(NCN)2 (sp.gr. Pm–3m, (221)) exhibits linear Si-N-C angles with very short Si-N and
N-C distances, and is considered an “average” structure only. Computational studies indicate that
the lowest energy configuration of Si(NCN)2 exhibits bent Si-N-C angles and relates best to the
structure of α-cristobalite SiO2 [45]. However, density functional theory calculations using a variety of
exchange-correlation functionals yield much larger lattice parameters than observed [45]. Only recently,
negative thermal expansion (NTE) of Si(NCN)2 was proposed as the mechanism for a contraction of
Si(NCN)2 at higher temperatures, and a strong NTE effect was indeed measured [46,47].

The experimental 29Si NMR chemical shift determined for the Si[4] site in Si(NCN)2

is δiso = −103 ppm [44]. Computations approach this value only within scaling studies of the proposed
lowest energy model (sp.gr. P–4n2, (118)), shown in Figure 6a. Agreement between computed and
experimental chemical shift is present, if the cell volume of the computed tetragonal model adopts
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a value of V = 219 Å3. A cubic cell with the same volume will have a lattice parameter of a = 6.025 Å,
which is only slightly smaller (by 2.5%) than the experimental cell parameter of 6.189 Å.
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Figure 6. (a) Computed 29Si NMR δiso of the proposed P4n2-Si(NCN)2 obtained by contracting the
volume of the structure. The chemical shift is plotted versus the corresponding “cubic” lattice parameter,
a = V1/3. (b) The relation between the computed 29Si NMR δiso and the average Si-N-C angle around
Si site. Experimental data of δiso in Si(NCN)2 is −103 ppm [44].

Another way to support the likelihood of bent Si-N-C angles is to develop a correlation function
between 29Si NMR chemical shift value and Si-N-C bond angle at the N–following similar work for
polymorphs of SiO2 and other silicates [7,10]. Starting with a (asymmetrical) distortion of the cubic
structure of Si(NCN)2, we optimize the model for a variety of volumes. As a result we obtain a set
of structures with almost constant bond lengths, but quite different Si-N-C angles. We compute 29Si
NMR chemical shifts for both Si[4] sites in those structures and plot δiso as a function of the average
Si-N-C angle around each site. The resulting linear correlation function is shown in Figure 6 (bottom).
A chemical shift of −103 ppm as in the experiment is related to an average Si-N-C bond angle of
143◦—and a linear angle can be excluded, similar to the case of β-cristobalite SiO2.
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3.4. Amorphous Si3N4

In recent years, DFT calculations have become an indispensable tool enhancing the analytical
strength of experimental NMR studies of glasses and amorphous materials [8–10,13,40,48]. Several
experimental 29Si NMR studies of amorphous silicon nitride, Si3N4, have been reported [5,49,50]. They
show a typical broad “peak” located at δiso ≈ −46 to −49 ppm. The width of the peak, typically,
is a full width at half maximum (FWHM) of 20–30 ppm, depending strongly on the quality of the
material and its residual hydrogen content. A characteristic feature of many spectra is an asymmetry
towards more negative values, as shown in Figure 7 [49].
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Figure 7. Replotting the data of 29Si NMR of amorphous Si3N4 according to the results of Carduner
et al. in [49]. (1) the full line refers to the experimental 29Si NMR data. (2) and (3) are two Gaussian
distributions (centered at −46 ppm and at −60 ppm) used for decomposing the asymmetric
experimental curve. (4) is the sum of (2) and (3). The ratio of areas under Gaussians 2 and 3 is
approximately 7:1.

To analyze the correlations between structure and chemical shifts in amorphous Si3N4, we
generated a variety of amorphous models comprising 112 or 224 atoms. On one side we used a network
approach and on the other classical MD with an empirical potential [33]. After DFT optimization the
models exhibit predominantly Si[4] (on average about 2% Si[3], 4% Si[5]) and N[3] species (4% N[2],
6% N[4]). About a quarter of all N atoms are involved in 2-ring structures. While we compute the
chemical shifts for all Si sites, we only consider Si[4] bonded to N[3] not involved in 2-rings in our
further analysis. Essentially, network and classical MD models provide the same quality of NMR data.

We first study the impact of pyramidalization of N and of the Si-N bond length on 29Si NMR
chemical shifts, which is shown in Figure 8. For the wide range of distortions our models exhibit, we
find that most of the computed δiso data fits well between −40 ppm and −60 ppm. None of the models
shows extreme pyramidalization, and Si-N bond lengths fall well between 172 and 180 pm. We note,
however, that the data of δiso for Si-N bond lengths does not align well with the correlation obtained
by scaling β-Si3N4. Moreover, it shows a higher scatter for longer bond lengths. Both of these issues
will be addressed later. Overall, none of these plots reveals a systematic trend that may help to explain
asymmetry of the experimental 29Si NMR data of amorphous Si3N4.

We then explored further correlations between 29Si NMR chemical shifts and structural parameters.
Among many hypotheses we studied, the proximity of the fifth closest N atom—the next-nearest
beyond the four bonding N atoms—to the Si[4] site stood out. This correlation between 29Si NMR
chemical shift and distance of the fifth closest N to Si is shown in Figure 9. In contrast to crystalline
models of α-Si3N4 and β-Si3N4, where the first coordination shell of Si[4] is well-defined and
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the next-nearest neighbor is another Si atom, an amorphous structure may comprise N atoms as
next-nearest neighbor in proximity to Si[4]. Interestingly, our process of distorting N positions in
wII-Si3N4 to achieve higher pyramidalization (Figure 3b) also brings additional neighbors (four at
a time) into the coordination sphere of the Si site, which is why we include that data in Figure 9.
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Figure 8. 29Si NMR δiso in amorphous Si3N4, plotted versus average degree of pyramidalization of
neighboring N atoms (a) and average Si-N bond length (b). Red dots and lines depict the correlations
obtained for distortions of crystalline models, wII-Si3N4 (left) and β-Si3N4 (right), respectively.

Figure 9 shows that within a “critical” distance of 2.8 Å a fifth neighboring N atom has significant
impact on the 29Si NMR chemical shift. Thus, a possible explanation for the observed asymmetry
of the (see Figure 7) is the proximity of a fifth N in non-bonding distance between 2.5 and 2.8 Å.
Previously, Carduner et al. proposed some influence of N albeit in a much further distance of 3.8 Å [28].
We find that the intrusion of additional N atoms into the coordination sphere of Si is also the principal
reason for changes in δiso when distorting wII-Si3N4 models earlier. The pyramidalization of N was
a geometrical effect going along the much stronger impact of increasing the coordination of Si. Figure 9
indicates that the changes in 29Si NMR chemical shifts upon distorting wII-Si3N4 are consistent with
the proximity effects observed in amorphous models.
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Figure 9. 29Si NMR δiso plotted versus the distance to the 5th nearest N atom. Black-and-white dots
represent computed results for the amorphous models. Red dots and line are results for distorted
wII-Si3N4 models (see Figure 3b).

Having revealed the obvious influence of a fifth N atom in the coordination sphere of Si on its
29Si chemical shift, we can identify those impacted sites and eliminate them from the correlation
between 29Si δiso and average Si-N bond length. Hence, we obtain a new correlation diagram shown
in Figure 10. If we plot the deviation of δiso of amorphous Si3N4 from the correlation line β-Si3N4 for
a given average bond length, we obtain the residual, which is given in Figure 10b. This residual is
centered almost at 0 and, as we tested, is independent from bond length. While the far majority of data
falls within +/−10 ppm of the projection obtained from scaling β-Si3N4, we see that a few Si[4] are still
deviating by up to 30 ppm in chemical shift.

For the experimental data of Carduner et al. shown in Figure 7 we can now also estimate the
number of Si atoms impacted by proximity of 5th N. Decomposing the total asymmetric curve using
two symmetric Gaussian contributions, we find one centered at −46 ppm (σ = 6 ppm) and the other at
−60 ppm (σ = 5 ppm). The ratio of areas under the two curves is 7:1, and can be interpreted that in the
amorphous structure about 12% of Si encounter a 5th neighboring N in close proximity.
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Figure 10. Cont.
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Figure 10. (a) Correlation between 29Si δiso and average Si-N bond length for Si [4] without a fifth
N within 2.8 Å. Red dots and line depict the correlation obtained for scaling crystalline β-Si3N4.
(b) Histogram of deviations of data points of amorphous Si3N4 from the correlation line β-Si3N4
(“Residual”).

In further systematic analysis we looked for correlations between 29Si δiso—or any residual—and
various geometrical parameters and properties. Among these were tetrahedral angles at Si[4],
distance to the next Si, computed charge on N, local density around Si[4], and involvement of Si[4] in
small-membered rings, especially 3-membered rings. None of these tests revealed further pronounced
effects on 29Si NMR chemical shifts in Si3N4.

Overall, our results agree well with experimentally measured 29Si NMR spectra of amorphous
Si3N4 or Si3N4 nanopowders, which feature a broad peak centered at −46 to −49 ppm with FWHM
of around 25 ppm and distorted towards lower δiso values [5,49,50]. We find that the asymmetry can
be related to Si[4] sites with a fifth N atom in proximity closer than 2.8 Å. We note, however, that
contamination with oxygen and the presence of oxynitride species (Si-N3O, with 29Si δiso values of
−60 to −63 ppm [49]) may also held responsible for an asymmetry.

3.5. Amorphous Hydrogenated Silicon Nitride

Amorphous silicon nitride synthesized by chemical vapor deposition (CVD) or by sol-gel methods
typically contains significant amounts of hydrogen [3,4,51]. While hydrogen is incorporated mainly as
NHx species, it impacts the 29Si NMR chemical shifts of a hydrogenated silicon nitride, SiNx:H. To
analyze the effect, we study amorphous silicon diimide, Si(NH)2, as a model system.

Si(NH)2 is topologically equivalent to SiO2, which is why we can easily generate amorphous
Si(NH)2 models from models of amorphous silica. We start with SiO2 models free of 3-rings [40],
replace O by N to form the Si-N-Si link, and add the H atom with a N-H distance of 1.1 Å into
the Si-N-Si plane pointing outwards. We then optimize models using our standard procedure and
compute NMR signals. 29Si NMR chemical shifts range from −25 to −50 ppm, overlapping the range
for 29Si δiso that we computed for amorphous silicon nitride (−20 to −70 ppm, see above). In analogy
to work on vitreous silica and amorphous silicates [7–10,39,40], we can quickly establish a linear
correlation between the 29Si δiso and the average Si-N-Si angle Θ on N atoms surrounding the Si[4] site
(see Figure 11a).
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Figure 11. (a) Angular correlation between average Si-N-Si angle surrounding a Si[4] site in amorphous
Si(NH)2 and its 29Si chemical shift. (b) Residual (deviations of data points from linear fit) plotted
vs. the average Si-N bond length. (c) Residual of the two-variable fit (bond angle and bond length;
equation see text) along with the mean deviation from fit (µ) and standard deviation (σ).
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For the angular correlation we find δiso = (28.2–0.486 Θ) ppm. Hence, the slope of the angular
correlation for the nitride is just half of that for the oxide [40]. We observe a residual with a FWHM
of 6.4 ppm, which is significantly higher than FWHM for SiO2 (1.0) [40], but comparable to results
obtained for soda-silica and hafnia-soda-silica glasses [10]. Further analysis shows that the residual
correlates with the Si-N bond lengths at the Si[4] site, see Figure 11b. According to Figure 4, this impact
of Si-N bonds lengths on δiso is expected. The effect of both bond length and bond angle is summarized
in the double fit equation: δiso = (28.2 − 0.486 · Θ) + (141 · dSiN − 244.8), with the average bond angle
Θ given in degrees and the average bond length dSiN given in Å. Accordingly, the resulting FWHM of
the residual for the double fit is reduced to 5.7 ppm (see Figure 11c).

4. Summary and Conclusions

We study the 29Si NMR chemical shift, δiso, in crystalline and amorphous silicon nitrides using
density functional theory calculations and the GIPAW algorithm. The computational approach
reproduces available experimental data of Si[4] and Si[6] sites in crystalline α-, β-, and γ-Si3N4,
and predicts the δiso of a trigonal-bipyramidal Si[5] to −120 ppm. We show the significant effect
of Si-N bond lengths on 29Si δiso, about 1 ppm change for 1 pm of changed bond length. For silicon
dicarbodiimide, Si(NCN)2, a comparison between experimental and computed chemical shifts shows
that the Si-N-C angle at N is indeed bent, and not linear as the XRD patterns indicates. We propose that
the peak asymmetry of Si[4] observed in experimental spectra of amorphous silicon nitride is related
to the proximity of a fifth N neighbor in non-bonding distance between 2.5 and 2.8 Å. The chemical
shift of Si[4] in hydrogenated silicon nitride correlates with the Si-NH-Si angle, albeit the additional
dependence on Si-N bond distance increases the complexity of an analysis. Overall, we demonstrate
through several examples the power of quantum-chemical calculations for improved characterization
of crystalline and amorphous silicon nitride.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/9/1646/
s1, Table S1. Results of NMR calculations of hypothetical Si3N4 structures, as well as crystallographic information
files of the hypothetical structures.
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