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The Curie temperature of bulk and nanostructured FesSiz is investigated using experiments, density-
functional simulations, and many-body model calculations. The bulk intermetallic, which crystallizes
in the hexagonal D8g structure, exhibits several intriguing features: it does not exist as a room-
temperature equilibrium phase, is close to the onset of ferromagnetism, and exhibits two crystallograph-
ically very different Fe sites. The samples, produced by rapid quenching (bulk) and cluster deposition
(nanoparticulate thin films), have Curie temperatures of about 400 K. Interatomic exchange constants
are calculated using the Kohn-Korringa-Rostoker (KKR) method and used to solve the multisublattice
mean-field problem for the system. The Vienna ab initio simulation package (VASP) is employed to study
the dependence of the Fe moment on the thermally induced spin misalignment, and a model calculation
yields an estimate for quantum-spin-liquid corrections. The theory includes Heisenberg exchange but
overestimates the Curie temperature, and a discussion is given regarding additional approaches to handle
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weakly ferromagnetic multisublattice intermetallic compounds.
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1. Introduction

The Curie temperature is one of the most important quantities
in magnetism but surprisingly poorly understood, especially in
structures with many non-equivalent sites, for example inter-
metallic alloys with big unit cells and magnetic nanostructures.
Much of our understanding of finite-temperature magnetism is
based on the Heisenberg model, where atomic spins S; rotate due
to thermal excitations [1-3]. However, the Heisenberg model, as
well as other statistical models, such as the Ising model, imply
strong electron-electron interactions (correlations), whereas elec-
trons in itinerant 3d magnets are only weakly correlated. In the
opposite limit, wave functions of electrons in periodic crystal
potentials are of the Bloch type, characterized by well-defined
wave vectors k, and Bloch’s simplified free-electron approach is
the earliest model of itinerant magnetism [4]. It can be shown that
the use of Bloch wave functions greatly overestimates the Curie
temperature [5-10] and that the Heisenberg model is the qualita-
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tively better starting point even for weakly correlated itinerant
magnets.

Our focus is on bulk magnets and nanoparticle thin films of the
weakly correlated intermetallic FesSis. Iron-silicon alloys are
among the best investigated and most widely used materials in
modern technology. The production of soft-magnetic iron silicon
for energy production and distribution exceeds that of any other
magnetic material and accounts for about 40% of the combined
production of all hard and soft magnets, especially in soft magnets
for transformer cores [14]. Some other present or future applica-
tions include hydrogen production and spin electronics, the latter
facilitated by the fact that iron-series transition-metal—silicon
alloys tend to integrate well into electronic devices. Examples are
Co,Si gates in graphene electronics [15] and nanogranular FesSi3
in magnetoresistive devices [16]. Nanoparticles of FesSi3 have also
attracted interest for medical applications, such as hyperthermia
and drug administration [17].

FesSiz; has several intriguing physical properties. First, the
hexagonal D8g structure of FesSis (Fig. 1) supports uniaxial magne-
tocrystalline anisotropy. While not desired in soft magnets, and
uncommon in the iron-silicon system, this anisotropy is beneficial
for some applications. Second, a characteristic but undesired
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Fig. 1. Bulk crystal structure of FesSisz. The unit cell of the hexagonal bulk alloy
contains 16 atoms, and the Fe occupies two nonequivalent sites, 4d (bright blue)
and 6 g (dark blue). The 4d atoms form chains with small interatomic distances and
large interatomic hopping. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

feature is that the Si strongly suppresses magnetization and Curie
temperature, about 380 K in bulk FesSis [ 18], with a sharp drop near
the FesSiz; composition. Third, FesSiz; does not exist as a room-
temperature equilibrium phase [19] but must be produced by
nonequilibrium processing. Among the FesSi; nanostructures
fabricated so far are thin films [20], carbon-encapsulated
nanoparticles [21], and nanowires having diameters in the range
of 100-200 nm [22]. Fourth, D8g-ordered FesSiz; exhibits two
nonequivalent Fe sites (4d and 6g) with very different atomic
environments.

Drops in Curie temperature are not uncommon in alloys of iron-
series transition metals and metalloids. They reflect a dilution of
the magnetism (reduced number z of transition-metal nearest
neighbors) as well changes in the underlying quantum mechanics,
typically a transition from strong to weak ferromagnetism. Strong
ferromagnets, such as Co, are defined by completely filled minority
bands, whereas weak ferromagnets, such as Fe, have partially
empty minority bands (see e.g. the Appendices A and B). A good
example of such a transition is Co,Si [23], which is close to the
transition between very weak itinerant ferromagnetism (VWIF)
and exchange-enhanced Pauli paramagnetism in the bulk but
becomes a strong ferromagnet in nanoparticle form. VWIF behav-
ior is almost Stoner like [5-8,24,25] and far away from Heisenberg
behavior.

Two very different mechanisms evolve as the temperature
increases. First, on an independent-electron level, thermal spin dis-
order breaks the periodicity of the crystal. This effect, which is sim-
ilar to the Anderson localization of electrons in aperiodic crystals
[12], can be treated by density-functional theory (DFT) using the
local spin-density approximation (LSDA) [11]. Second, electron-
electron interactions (electron correlations) play a role at elevated
temperatures, even in magnets that are well-described on an
independent-electron level at zero temperature [10]. The localiza-
tion equivalent of electron-electron interaction is Mott localization
and the corresponding metal-insulator transition [13].

Correlations, as assumed in the Heisenberg model [3,26] and
dominant in strongly correlated solids, reflect the Coulomb integral
U, that is, the energy necessary to accommodate an extra electron
on an atom. The Coulomb integral competes against the one-
electron energies parameterized by the interatomic hopping 7.
Model calculations of interatomic exchange [3,26,27] yield a net
exchange 7 = U — 7 in the weakly correlated limit &/ < 7. In other
words, ferromagnetic (FM) spin alignment (17), which corresponds
to J > 0, is predicted for small band widths W ~ 7. Moment for-
mation in narrow bands is indeed observed experimentally, but

the corresponding Stoner-like criterion ¢/ > 7 violates the original
assumption of a small Z/. Moreover, comparison of the 17 and 1|
energies leads to the unphysical prediction of antiparallel (AFM)
net exchange over the entire range of U//7, even in the Heisenberg
limit of strong correlations, where J = —272/u. The resolution of
this paradox require a careful distinction between inter- and intra-
atomic exchange, but this distinction is not made by the Stoner
theory and related independent-electron approaches. Overall, the
treatment of correlations has remained a demanding challenge
for decades, sophisticated methods being developed [10,31-33].
The main problem is that the number of involved quantum-
mechanical configurations or Slater determinants increases expo-
nentially with system size. For example, the complete description
of a single CH, molecule (10 electrons and 2 x 8 basis functions)
amounts to the diagonalization of a matrix containing 43758 x

43758 Slater determinants [10].

In contrast to correlations, aperiodic crystals are well described
by independent-electron approaches. Kohn and Yaniv [34] have
shown that the physical properties of such systems are determined
on a local scale, even if the wave functions extend to infinity. They
defined and calculated a local partition function (LPF) that yields
the local density of states (LDOS). The LPF calculation can be per-
formed separately for each nonequivalent atom in a structure, so
that the total calculation time is linear in the number A of crystal-
lographically nonequivalent sites, or O(N), as opposed to the

O(N?) character of LSDA calculations. The range of the local envi-
ronment that needs to be considered increases with the desired
energy resolution. On a tight-binding level, the method reduces
to the moments theorem [9,35]. Similar approaches exist for other
properties. Wang, Wu, and Freeman [36] have shown that the mag-
netocrystalline anisotropy of transition-metal atoms can be
approximated by a cluster (diatomic pair) model [36], and as in
the Kohn approach, the accuracy of the method depends on the
size of the cluster considered [37]. Of particular importance for
the Curie temperature, and discussed in some detail in this paper,
is the use of independent-electron first-principle calculations to
determine interatomic Heisenberg exchange constants 7 for itin-
erant magnets [11]. The J; form an A x A matrix that must be
diagonalized to yield the Curie temperature as the largest eigen-
value of the matrix [27,38].

In this paper, we investigate FesSi; magnets experimentally and
theoretically, using independent-electron first-principle simula-
tions and many-electron model calculations. The aim of this paper
is not to improve or sophisticate existing DFT [39-41,82] and cor-
relation [42-45] treatments, but to analyze how different physical
mechanisms affect the Curie temperature. Furthermore, no
attempt is made to accurately reproduce the Curie temperature
through parameter and method refinement, which is de facto a
second-principle approach. We investigate the Curie temperature
as a function of Si content and real structure (Section 2), present
first-principle calculations of the interatomic exchange (Section 3),
and use model calculations to explore quantum-liquid corrections
to the Curie temperature (Section 4).

2. Experiment

The Fe-Si phase diagram contains several Fe-rich phases, but
some of them form at high temperatures only, above 825 °C in
the case of FesSi; [19]. To produce this phase, it is necessary to
use non-equilibrium synthesis methods. The samples, namely
single-phase FesSi; nanoparticles, have been produced by gas-
aggregation cluster deposition [47] and bulk FesSis prepared by
arc-melting and subsequent melt-spinning.

FesSi3 crystallizes in the hexagonal D8g structure (prototype
MnsSis), characterized by the point group Dgp, and the space group
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P63/mcm. Fig. 1 shows a unit cell of FesSis, which contains two for-
mula units (16 atoms). The Fe atoms occupy two different crystallo-
graphic sites, namely 4d sites (bright blue) with the coordinates
(1/3,2/3,0),(2/3,1/3,0),(1/3,2/3,1/2),and (1/3, 1/3,1/2),and 6 g
sites (dark blue) with the coordinates (x, 0, 1/4), (0, x, 1/4), (1-x,
1-x, 1/4), (1-x, 0, 3/4), (0, 1-x, 3/4), and (x, X, 3/4), where x = 0.24.
The Si atoms also occupy Wyckhoff 6g positions but have
x = 0.606. The lattice constants of bulk FesSi; are a=b=6.722 A
and c =4.680 A. The 4d atoms form chains with small interatomic
distances, which is important for the understanding of the material.

Fig. 2 shows the Curie temperature of bulk and nanoparticle
FesSis for different stoichiometries close to the ideal 5:3 composi-
tion (37.5 at.% Si), varied by adjusting the target composition. The
nanoparticle Curie temperature is somewhat higher than the bulk
T. and comparable to those obtained for other nanostructures
[17,22] of FesSis. In a strict sense, the Curie temperature of zero-
dimensional magnets (nanoparticles and clusters) is zero, because
the partition function Z =X, exp(-,/kgT) of any finite system is
free of singularities [25,46]. Nanoparticle experiments actually
probe intraparticle spin-spin correlations, whose decay is reminis-
cent of the bulk M(T) behavior with finite-size corrections, mean-
ing that T. somewhat decreases with particle size [25].
Furthermore, the present Curie temperatures were measured on
Si (00 1) substrates densely covered with nanoparticles, so that
the T. is actually that of a nanoparticulate magnet.

Bulk FesSis is a weak ferromagnet with a substantial number of
holes in the majority band, similar to bcc Fe, whereas the surface is
strongly ferromagnetic with virtually no holes in the majority band
(Appendix A). This situation is similar to that encountered in
MnsSis nanoparticles [47]. The bulk behavior is consistent with
earlier Mossbauer data [18], which indicate that the Fe on the 4d
sites is not fully spin-polarized.

3. Site-Specific Curie-Temperature analysis

The Heisenberg analysis of alloys such as FesSis requires the
consideration of two or more elements on several transition-
metal sublattices. The mean-field behavior of multisublattice mag-
nets is well-understood and was first investigated for ferrimag-
netic oxides, such as magnetite (Fe304) and yttrium garnet
YFes01, [38,48,49]. Each of the N nonequivalent sites experiences
an individual mean field, and the Curie temperature corresponds to
the largest eigenvalue of the corresponding A x A matrix Jj. In
this section, it is convenient to define the Heisenberg model using
normalized spin vectors,
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Fig. 2. Curie temperature of FesSis as a function of Si content.

Si-S;
H= =i Jij~go — 2 g o Zi Hi -, (1)
i9j

where 7j; is the exchange energy per bond and H; is the magnetic
field acting on the i-th atom. The factor 1/S;S; ensures a meaningful
normalization $?/S?>=S5(S+1)/S?=1 in the classical limit (S = o).
Applying the statistical mean-field approximation to Eq. (1) yields
Tc = % Jeff (2)

This expression is widely used for Fe and Co atoms, using the
approximations S=1 and Jei = Z;J¢;, where the summation con-
tains all neighbors of atom 0. Considering nearest neighbors only
(Jij = J) yields Jeir = 27, where z is the number of nearest neigh-
bors. When a solid is very inhomogeneous, then the Curie temper-
ature is largely determined by the sublattices with the strongest
exchange coupling [50]. In this case, averaging over all 7 does
not work and the 7;; must be calculated and evaluated explicitly.

We have also performed spin-polarized relativistic
Kohn-Korringa-Rostocker (SPR-KKR) Green-function calculations
[51-53] to determine the exchange interactions 7 in bulk and
thin-film FesSis. The calculation determines spin-spin interaction
energies Ej = —J; €0s 0 ~ —J;j + % Jj 07, where 0j; is the angle
between atomic spins i and j. The calculation is of the
independent-electron type and evaluates multiple electron scatter-
ing during which the spin misalignment 0; is treated as a small
perturbation.

Since atoms on the same sublattice have the same magnetiza-
tion, it is sufficient to consider 7.,, where a and b are sublattice
indices and each 7., is a sum over many neighbors in sublattice
b. The sum includes all b atoms in the unit cell where an a-atom
is located but also b atoms in neighboring unit cells, depending
on the desired accuracy. Since FesSis, contains two nonequivalent
sites (4d and 6h), J, is a 2 x 2 matrix. In more detail, the under-
lying linearized mean-field field equations for the two Fe sublat-
tices are

S+1

Te(mag) = —3;;(3 ((Mag)Zi T aai + (Meg) T a4) (3a)
S+1

Tc(Meg) = 35Ky ((Mag) Zi T g + (Meg) Zj T 6g,) (3b)

where S~ 1 is the Fe spin and the i and j summations refer to 4d
and 6h sites, respectively. Up to an interatomic distance of R = 4.1
A, there are 19 Fe-Fe bonds, all listed in Table 1.

Note that the procedure leading to Eq. (3) cannot be applied to
‘nonmagnetic’ elements, such as Si in FesSis. The nearest and next-
nearest neighbors of the Fe 6g atoms in bulk FesSis, are Si, and the
KKR Fe-Si calculations yield Jj values of 1.164 and 0.87 meV,
respectively. However, the small Si moments, which are of the
order of 0.1 pg, are induced by Fe neighbors, which have moments
mge of about 1.5 ug per atom. Since the individual Si moments are
determined by the surrounding Fe spins, they cannot be treated as
degrees of freedom and must be excluded from the summation in
the partition function. This explains the absence of Si terms in Eq.
(3), a point that will be further discussed below.

Performing the i and j summations in Eq. (3) yields

Telas) = S (271 +32) M) + 6 my)) (4a)
Ties) = S (47" (M) +2)(7"+ 7)) (4b)

The solution of this set of equation amounts to the diagonalization
of the matrix
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Table 1
Iron-iron exchange bonds in bulk FesSis.
Tij Sublattices R (A) V4 Jij (meV)
J1 4d-4d 2.34 2 42.34
7 6g-6g 2.80 2 18.09
T 6g-6g 2.84 2 14.08
J* 4d-6g 2.86 6 11.85
T 6g-4d 2.86 4 11.85
T2 4d-4d 3.88 3 6.94

27 +37, 67\ _ (1055 711\ _ :
( 47 2(J/+J”)>’<47.4 64.3) (3)

The Curie temperature is given the largest eigenvalue J* of this
interaction matrix, namely

T =T1+3T2/24+T +J"+ \/(m +375/2-T =T +2472
(6)

Explicitly, 7" = 146.5 meV. The Curie-temperature value corre-
sponding to 7, is 1133 K, higher than the experimental value. The
reasons for this disagreement will be discussed in Sections 4 and 5.

To study nanoscale surface effects [54], we have also considered
a(0 0 1) oriented thin film of FesSis. Fig. 3 shows the corresponding
supercell. The relationship between the supercell and the bulk unit
cell of Fig. 1 is visible most easily by looking at the 4d Fe atoms
(light blue), which form chains along the z-direction in both fig-
ures. There are 5 rather than 2 nonequivalent Fe sublattices, distin-
guishing Fe atoms with different vertical positions. The bulk Fe 6 g
sublattice (dark blue) splits into two sublattices, depending on
whether the atoms are near the surface or in the interior of the
film. The 4d sublattice (light blue) splits into 3 sublattices, depend-
ing on whether the atoms are located at the surface, below the sur-
face, or in the central plane of the film.

The mean-field description of the system of Fig. 3 requires the
first-principle calculation of hundreds of 7j but, similar to the
transition from Eqgs. (3) and (4), the individual atomic interactions

Vacuum

Vacuum

Fig. 3. FesSis supercell used in the thin-film calculations.

can be collected in form of inter- and intrasublattice exchange con-
stants. The corresponding 5 x 5 matrix is

-51 187 507 -17 =37
125 555 308 290 1.0
Ja =] 507 461 -133 188 324 | meV (7)
-11 29.0 126 528 122
-74 29 646 365 -128

The largest exchange, 55.5 meV, is the intrasublattice exchange
between the dark blue atoms near the surface. Surprisingly, how-
ever, the largest eigenvalue of Eq. (7), 7" = 114.4 meV, is smaller
than the bulk value 7' = 145.5 meV. The net reduction of the pre-
dicted T, contradicts the experimental result of Fig. 2 and means
that the increased exchange near the surface is not able to over-
compensate the reduced number z of Fe neighbors near the
surface.

4. Heisenberg interactions in itinerant magnets

The mean-field approximation behind Eqgs. (7) is well-known to
overestimate the Curie temperature, because it ignores critical
fluctuations [55,56]. Experiment, model calculations, and Monte-
Carlo simulations shows that critical fluctuations reduce T. by a
factor of order two [55-57]. To a large extent, this accounts for
the high absolute values of T, (more than 1000 K), but it does not
explain why the calculated thin-film Curie-temperature is smaller
than the bulk one. The effect of critical fluctuations increases with
decreasing dimensionality, so the inclusion of critical fluctuations
would further reduce the thin-film T, relative to the bulk T, in con-
tradiction to experiment.

Our explanation, to be elaborated below, is that bulk FesSis is
fairly close to the onset of ferromagnetism, or to a transition
between weak and strong ferromagnetism. Fig. 2 is an experimen-
tal manifestation of transition, namely a strong Curie-temperature
decrease in a very narrow concentration range. Heisenberg
exchange is proportional to §;-S;, so that the 7 in Eq. (1) scale as
$2 ~ mZ., and near a quantum phase transition, minor changes in
structure and computational methods may yield big changes in
mge. The present SPR-KKR calculations, which determine atomic
magnetic moments as a part of the calculation, yield a moment
of m=1.76 ug, compared to 1.35pg in our VASP calculations
(Appendix A) and 1.27 pg in Ref. [61]. Judging from the experimen-
tal hyperfine fields of 130 kOe (4d) and 220 kOe (6h) [18], the
experimental value is not much bigger than 1.2 pg. Such large vari-
ations do not occur in strong (Co) or nearly strong ferromagnets
(bcc Fe) but are expected in very weak (VWIF) regime.

Aside from numerical accuracy, which lies beyond the scope of
this paper, the Heisenberg description of FesSiz gives rises to more
fundamental questions of direct importance to the Curie-
temperature problem. By definition, Heisenberg moments S are
integer or halfinteger, and the ratio (S+1)/S in Eq. (4) is
quantum-mechanically ill-defined for intermediate values of S. In
fact, the itinerant character of the Fe 3d electrons means that m
= 2S ug can assume arbitrary values, including near-zero moments
in very weak itinerant ferromagnets. In Sections 4.1 and 4.2,
respectively, we will outline how this question is tackled on an
LSDA level and to what extent the LSDA can be improved. Sec-
tion 4.1 is devoted to the problem that Heisenberg model strongly
correlated model with spin-liquid-like features, as contrasted to
the limit of weak correlations in itinerant ferromagnets.
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4.1. The Heisenberg model and the independent-electron
approximation

Density-functional calculations using the local-spin-density
approximation (LSDA) are basically on an independent-electron
level, using a single Slater determinant. The theory has been very
successful in describing weakly correlated electrons in solids, and
there are no indications that correlations are strong in FesSis. To
determine the density functional, L(S)DA uses a Schrédinger-like
wave equation, namely the Kohn-Sham (KS) equation [58-60].
Fig. 4 shows the underlying physics, namely a single electron in a
selfconsistently determined distribution of electrons described by
spin-dependent densities n(r) (gray). Due to its similarity with
the statistical mean-field approximation, the approach is also
referred to as quantum-mechanical mean-field approximation.
This characterization includes the LSDA+U approximation
(Appendix B).

Of course, the apparently simple picture of Fig. 4 does not mean
that solving the LSDA problem is trivial. In a periodic solid, the
crystal potential V(r) yields a shell structure for each atom, includ-
ing partially filled 3d shells in iron-series transition metals, and a
generally very complicated band structure due to interatomic
hybridization.

The LSDA is very powerful in determining the energy as a func-
tion of a crystal potential V(r), and this includes spin-dependent
potentials. In the simplest case, 1 and | electrons experience differ-
ent potentials, corresponding to ferro-, ferri-, or antiferromag-
netism. The origin of the different 1 and | potentials is the
Coulomb repulsion ¢. The Pauli principle forbids pairs of 11 and
1| electrons in any given orbital and means that electrons of paral-
lel spins stay away from each other. By contrast, {| and |1 pairs are
allowed by the Pauli principle but cost Coulomb energy, and this
energy is responsible for the formation of the atomic moments.

The method can be used to describe arbitrary spin directions if
the spin-dependent part

vi=-t(y %) ®

of the potential is replaced by

wenf($ et Joell o) o

Here ¢ is the unit vector of the local spin direction and U, ~ U is a
Stoner-like Coulomb parameter. Physically, the spin is allowed to
rotate, as schematically shown in Fig. 4, and the spin angle may vary
throughout the crystal. This approach can be used to treat arbitrary
spin configurations ¢;= o(R;), including zero-temperature non-
collinearity, caused for example by competing exchange [27], and
thermal spin disorder [11,28-30]. In particular, the approach can
be used to determine the interaction energies 7;; [11]. For example,
to calculate the ferromagnetic energy, one takes o; = e,, an antifer-
romagnetic energy calculation requires o; = te,, depending on the

Fig. 4. Independent electron (center) in a selfconsistently treated sea of surround-
ing electrons (gray).

crystal site, and at the Curie temperature, all directions of ¢; must
be considered.

The method is, in principle, very accurate, but it is poorly
adapted to the Heisenberg model which is subsequently used to
determine the Curie temperature. By definition, the partition func-
tion Z, which determines T, is a sum over the eigenstates, and fix-
ing the configuration o; in a DFT calculation violates this criterion.
Consider, for example, neighboring electrons 1 and 2 having their
respective spins in the z-direction (0 = 0) and rotated by a nonzero
angle 0. Based on Eq. (9), the two spin wave functions are ys,(0) =
(1,0) and y»(0) = (cos¥20, sin¥20). Using these wave functions to
evaluate the Heisenberg Hamiltonian H = -7 ©;-06, for 6=m
yields the respective 7| and 11 energies = 7. By contrast, the
well-known exact eigenstates of the two-electron problem

100 O
012 0

=Tl 06 21 o 19
0 00 -1

are an FM triplet of energy —7 and an AFM singlet of energy +3.7.
In terms of Fig. 4, the AFM wave function

=5(b - $) (11

As mentioned in the introduction, 7 = —272 /i is negative in the
model, so that the AFM energy is reduced as compared to the FM
energy, doubling the level spacing from 2.7 to 47.

It is worthwhile emphasizing that the doubling of the level
spacing and of the corresponding Néel-like ordering temperature
is a quantum effect. For arbitrary spins, the splitting can be shown
to increase by a factor 1+ 2/S. This means that Fe and Co (S~ 1)
carry an error of the order of 50%, whereas in the classical limit,
S = o, the error is zero. In other words, Heisenberg exchange con-
stants J; obtained through DFT calculations are generally very
accurate but correspond to the classical Heisenberg model, charac-
terized by continuous magnetization angles, which leads to overes-
timation of AFM energies and of T..

4.2. Quantum spin-liquid (QSL) corrections

In Section 4.1, we have shown how wave functions are impor-
tant for the understanding of the Curie temperature. In weakly cor-
related systems, such as FesSiz, the problem is the Heisenberg
interpretation of the .7; rather than the J; values themselves.
Density-functional theory deemphasises wave functions and
ignores wave-function-specific features such as quantum entan-
glement between subsystems [83-87]. For example, the two-
electron state |a) [b) —|b) |a) is maximally entangled, as con-
trasted to the separable state |a) |b) =|ab). The entanglement
behavior is different for FM and AFM configurations, which has
far-reaching consequences for the ordering temperature.

A well-understood system is the AFM Heisenberg chain, whose
ground state is a quantum spin liquid without long-range order but
with slowly decaying spin correlations [3,88]. The ferromagnetic
ground state is a single spin configuration, symbolically |¥gy) =
[TTT111171). Other spin configurations (or Slater determinants) are
not allowed in the FM ground state, because the hopping of a |
electron onto a neighboring 1 site is forbidden by the Pauli princi-
ple. A naive expectation for the ground state is one of the Néel
states

[Warm(1)) = [TLTIT1T0) (12a)
and
[Parm(2)) = [TITLTITL) (12b)
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or a superposition of the two states. However, the Heisenberg
Hamiltonian contains the product s;-s;, which can be written as

si-sj=1/2 (si*sj’ + s;sj*) +s7s? (13)

where s* = s, *isy. In Eq. (13), the s, operators merely count the
spins and leave the wave function unchanged, aside from a trivial
factor +1, whereas the s* terms interchange spins i and j. The Néel
states cannot be eigenvectors of the Heisenberg Hamiltonian,
because the spin-flip terms in Eq. (13) create pairs of parallel spins
(spinons), for example s;si [T1T1111])=111171]1]). The ground
state of the AFM Heisenberg chain is therefore a liquid-like super-
position of many spin-flip configurations, which can be treated for
example with the help of the Bethe ansatz [89-91].

The Bethe ansatz and the corresponding quantum-spin-liquid
behavior are limited to one dimension, but related corrections
can be expected near quantum-phase transitions (QPT) [92],
including the transition from exchange-enhanced Pauli paramag-
netism to VWIF. Furthermore, reduced dimensionality (nanoparti-
cles and thin films) is likely to enhance quantum fluctuations. We
will not be able to quantitatively solve the problem in this section,
but present a many-electron model that outlines the basic nature
of the corrections.

Fig. 5 shows the corresponding cluster model. In contrast to
Fig. 4, the environment of the central spin is no longer modeled
as a quantum-mechanical mean field but individualized through
z nearest neighbors. The interaction between the central spin and
the surrounding spins is assumed to be of the S=1/2 Heisenberg
type, described by nearest-neighbor exchange 7.

To calculate the many-electron wave functions and energies, we
exploit that the S=1/2 Heisenberg model can be mapped onto a
hardcore-boson model [90,91,93], as schematically outlined in
Fig. 6. In the model, 1 and | correspond to filled and empty boxes,
respectively, and the exchange integrals .7;; are analogous to a hop-
ping integral 7. The analogy allows an intuitive evaluation of the
many-electron configuration-interaction (CI) matrix elements,
without nontrivial quantum mechanics. First, the matrix elements
are nonzero, essentially 7 or 7, only if one hard-core boson moves
to an empty neighboring site. Second, the number of bosonic par-
ticles is conserved, so that the determination of the state closest to
the FM state involves the switching of one spin only, or one unoc-
cupied site in the bosonic model. This reduces the number of con-
figurations to be considered from 2*!' to z+1. Both the
identification of the non-zero matrix elements and the particle
number conservation are a consequence of the commutation
behavior of Eq. (13). The ferromagnetic state of the model of
Fig. 5 has the energy —z7, each exchange bond contributing an
energy of —7. The energy of the state with one reversed spin is
obtained by diagonalizing the (z+ 1) x (z + 1) matrix

z=3

Fig. 5. Model describing quantum-spin-liquid corrections in solids. Assuming that
the atomic spins are of the S=1/2 Heisenberg type, there are 2**! spin configura-
tions (Slater determinants), that is, for example 64 configurations in the case
of z=5.

z=5

Pttt
¥
e o |[o]e®

Fig. 6. Interpretation of the Heisenberg model as a hardcore-boson model.

z-2 0 .. 0 0 2
0 z-2 ... 0 0 2
H==T1 0 ... z-2 0 2 (14)
0 0 ... 0 z-2 2
2 2 ... 2 2 z-2

This matrix means that the central spin can exchange-interact
with all other spins (last column and row), whereas the peripheral
spins interact with the central spin only. The diagonalization of Eq.
(14) yields eigenfunctions ¥(z) where half the weight is localized
at the central spin and the remainder equally distributed over
the z peripheral spins. For example, in the case of z=3,

6 " s 0
1 _ 1 + +
VZe P e VB late ote sty

(15)

Y=

This wave function illustrates the liquid-like character of configura-
tions with AFM bonds: the reversed spin (yellow) is not confined to
a single atom but ’leaks’ into the crystalline environment.

Using the eigenfunctions ¥/(z) yields the energy eigenvalues

Ey = -J(z—2-22) (16)

The square-root term in this equation describes quantum correc-
tions going beyond the switching of the central spin. In terms of
Eq. (15), they correspond to the three terms in the parentheses of
Eq. (15). Normalized by the mean-field energy difference 2z.7, the
energy and Curie-temperature corrections vary between 71% for
z=2 (e.g. the 4d atoms in FesSi3) and 29% for z=12 (e.g. fcc
crystals). While the model is rather crude, it outlines the role of
quantum fluctuations in magnetic ordering.

5. Discussion and conclusions

The analysis of the preceding sections indicates a dilemma. The
partition functions behind the Curie-temperature determination in
both model calculations and Monte-Carlo simulations are com-
monly based on the Heisenberg model, but the spin states consid-
ered in DFT calculations are weakly correlated and not eigenstates
of the Heisenberg Hamiltonian. For example, the Heisenberg model
assumes a rotation of spins of fixed magnitude S?=S5(S+ 1), but
itinerant ferromagnets exhibit noninteger atomic moments. In
the case of FesSis, the calculated local densities of states (Appendix
A) indicate that the ferromagnetism of the Fe atoms near the par-
ticle surface is strong, characterized by a fully occupied majority 3d
band, whereas that in the bulk is weak, with many holes in the
majority band. Structurally, this weak itinerant feature is associ-
ated with the very small distance between neighboring iron atoms
on the 4d sites of the hexagonal 5:3 structure. The quasi-classical
character of the Heisenberg interpretation of itinerant magnetism
yields a fairly substantial error.
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Fig. 7. Calculated magnetic moments of the Fe 4d atoms in bulk FesSis as a function of the angle between neighboring atomic spins. The spin misalignment is created by

thermal excitations.

An important non-Heisenberg effect in itinerant magnets is that
the magnitude |m| of the atomic moments may actually change
during spin rotation, moments decreasing with increasing
misalignment angle [10]. The weaker the ferromagnetism, the
more pronounced the moment reduction [8,24], an extreme case
being the completely collapse of the atomic moments if they are
forced to form AFM sublattices. Since the Curie temperature scales
as S(S+1) ~ m?, the moment reduction is accompanied by a pro-
nounced Curie-temperature reduction.

Fig. 7 shows the moment of the Fe 4d atoms (light blue in Fig. 1)
in bulk FesSiz as a function of the angle 6 between 4d nearest
neighbors, calculated using VASP. The calculation is numerically
unstable near and above 80°, but fitting m(0) to a parabolic curve
and integrating m? over random spin angles 0 yields Curie-
temperature reduction by 30.7%. This reduction adds to reductions
due to critical fluctuations and quantum fluctuations. Due to the
reduced number of neighbors, the effect is much less pronounced
at surfaces and nanoparticles whose magnetism is strong.

In conclusion, we have analyzed and semiquantitatively
explained the Curie temperature of bulk and nanostructured Fes-
Si3. The material is close to the onset of ferromagnetism, which
makes the Curie temperature sensitive to a variety of corrections.
Our KKR first-principle calculations overestimate the Curie tem-
perature by a factor of about three. The neglect of critical thermo-
dynamic fluctuations accounts yields an overestimation by a factor
of about two, which is a well-known phenomenon and treatable by
statistical methods such as Heisenberg Monte-Carlo simulations.
Our model calculations indicate that spin-liquid-like Heisenberg
quantum fluctuations yield difficult-to-quantify corrections of up
to several 10%, generally reducing the Curie temperature. Finally,
spin fluctuations in weak itinerant ferromagnets are poorly
described by the Heisenberg model, because these magnets are
weakly correlated, in contrast to the strongly correlated Heisen-
berg model. Our VASP calculations indicate that the corresponding
corrections yield a further Curie-temperature reduction of up to
30% in the bulk but not at surfaces and in small particles. Our anal-
ysis shows that quantitatively accurate Curie temperature calcula-
tions for weak ferromagnets with multiple sublattices remain a
practical challenge.
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Appendix A. VASP density-functional calculations

Density functional theory (DFT) calculations are performed
using projected augmented wave method (PAW) [94], as imple-
mented in the Vienna ab initio simulation package (VASP)
[95,96]. For the structural relaxation and the electronic-structure
calculations, we have used a generalized-gradient approximation
(GGA) with Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [39]. The electron wave functions are expanded in a
plane-wave basis set with an energy cutoff of 500 eV and the cal-
culations are performed using experimental lattice parameters.
For the bulk calculations, a 9 x 9 x 11 Monkhorst-Pack grid for k-
point sampling is used [97]. In the nanocluster calculations, the
T"-point is used for k-point sampling. The FesSis cluster consists
of 128 atoms, placed in a cubic supercell with edge length of 30
A to ensure that there is no interaction between neighboring clus-
ters. The atomic positions for the clusters are full relaxed until the
force acting on each atom is less than 0.1 eV/ A. The convergence
criterion of 107> eV has been used for electronic structure and den-
sity of states (DOS) calculations (see Fig. A1).

Appendix B. Extensions of the LSDA

It is sometimes claimed that density-functional theory (DFT)
contains correlations and that approaches like the LSDA+U
method account for correlations. This argumentation has three
caveats. First, density-functional theory (DFT) provides an exact
description of ground-state properties [33,64-66], but the density
functional is generally unknown. The LSDA [10,59,67,68] is moti-
vated by and adapted to itinerant electrons, while other density
functionals bear little or no resemblance to the LSDA. Examples
are the Runge-Zwicknagel functional for highly correlated elec-
trons [62] and the density functional describing the crystal-field
interaction of rare-earth 4f electrons [63].

Second, the determination of the Curie temperature involves
excited states, which go beyond the scope of density-functional
theory. Third, some correlation effects are only indirectly relevant
to the Curie-temperature problem, because they do not address
wave-function-specific features. In the LDA, the electron density
is n(r) = X¢i(r)¢i(r), where the ¢;(r) are the eigenfunctions of
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Fig. A1. FesSi; nanoparticle densities of states (DOS) from DFT calculations: (a)
structure, (b) bulk DOS, (c) nanoparticle DOS at the particle core and (d) DOS at the
particle surface.

the Kohn-Sham (KS) equation [59]. These eigenfunctions are not
physical wave functions but vehicles to construct the density n
(r). This point is made very clear in Kohn’s Nobel Lecture [64],
where he emphasized that in DFT “the electron density distribu-
tion n(r), rather than the many-electron wave function, plays a
central role”. Density-functional approaches that depend exclu-
sively on n(r) but not separately on the eigenfunctions ¢;(r) are
known as orbital-free density-functional theory (OF-DFT), but little
is known about the corresponding density functionals, and existing
functionals do not reproduce the kinetic energy very well [69-71].
The wave functions of many-electron systems, which are combina-
tions of Slater determinants constructed from one-electron wave
functions y/(r), Y'(r), Y"(r"), ..., Yy (rn), cannot be reduced to KS
eigenfunctions ¢;(r). Weakly correlated systems are an exception,
because a Slater determinant created from the ¢;(r) can be used
as zeroth-order eigenfunctions of many-electron perturbation
theory.

The main point of the previous subsection, namely the reduc-
tion of the AFM energy due to many-electron correlations, is very
general [3]. Uncorrelated pairs of 1 and | electrons can come very
close to each other, which carries a penalty due to Coulomb repul-
sion. Correlation means that the electrons stay away from each
other and thereby reduce their energy. Only 1| pairs are affected
by this reduction, because the Pauli principle forbids closely spaced
11 electron pairs. For this reason, quantum-mechanical mean-field
or selfconsistent-field (SCF) theories, such as LSDA, tend to overes-
timate the Curie temperature.

From a broader prospective, the main purpose of DFT is to
describe the behavior of electrons in an external crystal-field
potential V(r) created by individual atoms, generally including
thermal disorder. The total energy of the system is therefore a
functional of V(r) [72]. The relation between n(r) and V(r) is equiv-
alent to the relation between the entropy S and the temperature T
in statistical mechanics, and n(r) and V(r) are linked by a Legendre
transformation similar to that linking S and T [63,73-75]. In this
analogy, the density functional corresponds to the partition func-
tion Z, which can be considered as the generating functional for
thermodynamic properties. The knowledge of Z, or of the free

energy F = —kgT In Z, is necessary and sufficient to determine the
equilibrium state at any temperature, which makes the calculation
of Z the focus of statistical mechanics. Similarly, the density func-
tional determines the ground-state behavior for arbitrary crystal
potentials V(r), but the real challenge is to calculate the analogue
of the partition function, namely the density functional. This is
not done in the LSDA, whose density is an intelligent and experi-
mentally supported guess rather than the result of a calculation.
The situation is similar to high-temperature analysis in statistical
mechanics, where phenomenological guesses or series expansions
yield approximate partition functions Z(T) that are limited to high
temperatures, as LSDA is adapted to weakly correlated systems.

The LSDA +U method [76,77] modifies the KS one-electron
potential by a potential that depends on the electron’s orbital i,
essentially [77]

Vi(r) = Vispa(r) + U(1/2 — my) (17)

where U ~ /. This modification suppresses 1| occupancies in highly
correlated 3d and 4f orbitals and therefore partially accounts for
correlations, especially with respect to on-site interactions [78]. In
fact, it has been known for a long time that single Slater determi-
nants using specifically adapted wave functions (unrestricted
Hartree-Fock) include some, but not all, correlation contributions
[10,79].

Eq. (17) optimizes the KS eigenfunctions but does not shake off
the straightjacket of independent-electron theory. For example, it
is known that large values of U lead to Mott localization
[10,13,80,81], where the Coulomb repulsion completely suppresses
the interatomic hopping of the electrons (metal-insulator transi-
tion), but in periodic crystals, the eigenfunctions belonging to Eq.
(17) remain delocalized. As emphasized by Ashcroft and Mermin
[3], such periodic eigenfunctions do not describe Mott localization
but correspond to an extreme tight-binding approximation with
small but metallic conductivity. This situation is very different
from Anderson localization caused by aperiodic crystal potentials,
for example at defects and surfaces. Anderson localization is
well-described by independent-electron theory and means that
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Fig. A2. LSDA + U for bcc Fe: (a) magnetic moment, (b) weak ferromagnetism and
(c) strong ferromagnetism.
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electrons may be “localized” in parts of a unit cell, which then
repeats itself in the lattice, or truly localized due to broken period-
icity [12].

A practical aspect of the LSDA + U method is that U is a well-
defined first-principle quantity [77], not a fitting parameter in an
approach where “plus U” is anecdotally interpreted as “plus you”.
Since J ~ m?, the choice of U has an indirect but substantial effect
on T.. Fig. A2 illustrates this point for the magnetic moment of bcc
Fe, as calculated using the Vienna ab initio simulation package
(VASP) [95] with U varying from zero to 6eV and zero
direct-exchange parameter (Fig. A2). The moment m per Fe atom
(a) exhibits an increase from 2.21 pg to 3.07 pg, the experimental
value being about 2.22 pg. Near U=0.9eV (dashed line in
Fig. A2), the slope dm/dU changes from about 0.4 pg/eV to 0.1 g/
eV. This change is caused by an unphysical transition from weak
ferromagnetism (holes in the minority 3d band) to strong ferro-
magnetism (b-c). Such a transition actually occurs in FesSis, but
it is due to nanostructuring (Section 5).
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