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ABSTRACT

The growing adoption of small unmanned aircraft systems (sUAS)
for tasks such as eCommerce, aerial surveillance, and environmental
monitoring introduces the need for new safety mechanisms in
an increasingly cluttered airspace. Safety assurance cases (SAC)
provide a state-of-the-art solution for reasoning about system and
software safety in numerous safety-critical domains. We propose
a novel approach based on the idea of interlocking safety cases.
The sUAS infrastructure safety case (iSAC) specifies assumptions
and applies constraints upon the behavior of sUAS entering the
airspace. Each sUAS then demonstrates compliance to the iSAC by
presenting its own (partial) safety case (uSAC) which connects to
the iSAC through a set of interlock points. To enforce a “trust but
verify” policy, sUAS conformance is monitored at runtime while it
is in the airspace and its behavior is described using a reputation
model based on the iISAC’s expectations of its behavior.
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1 INTRODUCTION

The increasing adoption of small unmanned aircraft systems (SUAS)
for delivering goods, performing surveillance, conducting search
and rescue, and supporting hobbyist activities [1, 5, 7, 10] intro-
duces the need for safety mechanisms to be established at both the
infrastructure and the sUAS application level.

The use of sUAS in urban environments meets the definition of a
safety-critical system whose “failure could result in loss of life, sig-
nificant property damage, or damage to the environment” [6]. The
problem is a multi-faceted one, in which acceptable levels of safety
can only be achieved at the systems level by holistically considering
the hardware, software, and operator aspects of the infrastructure
and their interactions with potentially untrusted sUAS. We explore
safety hazards and mitigations for an urban infrastructure which
manages sUAS in the monitored airspace. This includes maintaining
awareness of their state, location, and characteristics, and verifying
that new sUAS entering the space are capable of meeting minimum
safety-related performance requirements.

Our approach uses safety assurance cases (SAC) to describe
and reason about system and software safety [9]. SACs provide
structured arguments composed of claims, strategies, and evidence
that a system is sufficiently safe for use. Evidence is diverse and may
include formal models and proofs, simulation results, test cases,
and informal artifacts such as compliance with best practices, or
training processes. Formal verification has been used successfully in
large UAS, for example in the military domain [3, 8]. However it is
infeasible to enforce a formal approach upon vendors and operators
of diverse sUAS, each of which exhibits different properties.

The initial challenge we seek to address is thus to provide sup-
port for software developers as they construct sUAS applications,
even though they may lack formal training in safety practices; and
furthermore, to assure that their deployed sUAS applications meet
satisfactory safety standards. Our approach was evaluated through
developing an iSAC and representative uSACs for two emergency re-
sponse projects, and by using our Dronology system [4] to conduct
high-fidelity simulations and outdoor experiments with physical
sUAS in order to assess the effectiveness of our monitoring and
reputation models.
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Figure 1: Elements and properties of the iSAC and uSAC.

2 INTERLOCKING ASSURANCE CASES

We propose a novel solution that splits a SAC into two different
parts that can be effectively interlocked: an Infrastructure-level
Safety Assurance Case (iSAC) and sUAS-level Safety Assurance Cases
(uSAC) for sUAS associated with it. Our approach provides an
environment in which the iSAC can be rigorously constructed using
proven safety analysis techniques and provides safety guidance to
developers constructing sUAS applications. We achieve this by
enriching the SAC with annotations defining interlock points where
potentially untrusted uSACs can interface with trusted and assured
iSACs to provide static or runtime checkable constraints. Runtime
monitoring is established dynamically as each sUAS approaches
the controlled airspace, and is maintained throughout the sUAS’
presence within it. If necessary, the infrastructure can respond with
runtime, procedural, or even regulatory actions. For example, if the
reputation of an sUAS drops below an acceptable level, perhaps
because the sUAS fails to consistently report its current position,
then the infrastructure could increase the minimum separation
distance from other sUAS in the area, and/or could instruct the
SUAS to leave the area or even deny it future entry.

The iSAC is created following common SAC construction pro-
cesses [2, 9]. However, the SAC is extended to facilitate interlock-
ing with the uSAC. To achieve this, interlock points are established
between sUAS specific assumptions in the iSAC and claims that
the uSAC makes as assertions that it can, and will, meet those
assumptions. Our approach includes diverse assumptions which
are associated with uSAC claims in three distinct ways: @entry,
@monitor, and @usac. The first two represent assumptions associ-
ated with monitorable sSUAS properties, while the third represents
assumptions that are too complex to be fully monitored and there-
fore require an extension of the SAC. @entry represents a property
that is monitored one time upon sUAS entry into the space and
is transformed into a constraint. Any sufficiently expressive con-
straint language (e.g., the OCL [11]) can be used to specify and
subsequently check conformance to these constraints at runtime.
@monitor represents a property that is monitored continuously, or
on demand, whilst the sUAS is in the controlled area. Finally, @usac
tags represent assumptions which cannot fully be represented by a
simple set of monitorable properties. This could, for example, be
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due to alternate technologies that might be adopted by different
sUAS to achieve the same goal, which could exhibit monitorable
properties that are unique to specific design solutions.

Each claim made by the iSAC that is associated with an @monitor,
@entry, or @usac assumption must be reflected in the uSAC. Re-
sponding to @monitor and @entry constraints in the uSAC is rather
straightforward and typically requires a claim that the sUAS has met
the iSAC generated constraint, supported by associated evidence.
Responding to @usac requests in the uSAC is more challenging. The
sUAS developer must provide a full argument demonstrating how
the iSAC assumption has been met. Our approach currently does
not dynamically analyze pluggable @usac arguments, and the uSAC
must be provided prior to entry into the controlled airspace. In case
of incident (i.e., accident, malfunction, or behavior that deviates
from expectations), the full uSAC is available for further evaluation
and could be used to hold the SUAS operator accountable.

3 CONCLUSION

We propose a new mechanism for assuring safe use of sUASs in ur-
ban environments. The approach uses interlocking safety assurance
cases (SACs) to target the intersection of an sUAS infrastructure
responsible for controlling an urban airspace and the diverse sUASs
that seek to fly in it. By extending safety assurance cases with
interlock points, we enable constraints imposed by the iSAC on
sUASs entering or operating in its urban airspace to be mapped to
evidence of compliance provided by an individual sUAS.
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