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ABSTRACT

Research in the area of Cyber-Physical Systems (CPS) is hampered

by the lack of available project environments in which to explore

open challenges and to propose and rigorously evaluate solutions.

In this łNew Ideas and Emerging Resultsž paper we introduce a

CPS research incubator ś based upon a system, and its associated

project environment, for managing and coordinating the flight of

small Unmanned Aerial Systems (sUAS). The research incubator

provides a new community resource, making available diverse,

high-quality project artifacts produced across multiple releases of a

safety-critical CPS. It enables researchers to experiment with their

own novel solutions within a fully-executable runtime environ-

ment that supports both high-fidelity sUAS simulations as well as

physical sUAS. Early collaborators from the software engineering

community have shown broad and enthusiastic support for the

project and its role as a research incubator, and have indicated their

intention to leverage the environment to address their own research

areas of goal modeling, runtime adaptation, safety-assurance, and

software evolution.
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1 INTRODUCTION

The emerging adoption of Cyber-Physical Systems (CPS) in areas

ranging across autonomous driving, smart cities, and unmanned

aerial systems makes it imperative to address software engineering

(SE) challenges for safety-critical systems [3, 20]. Challenges are
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diverse and include goal modeling [4], formal methods, require-

ments completeness [13], runtime adaptation, [2], design-time evo-

lution [12], product line development [16], and human-computer

interaction, to name a few. However, such research cannot be con-

ducted in a vacuum, andmust be motivated, explored, and evaluated

within the context of realistic and real-world systems.

The Dronology system, and its associated project environment

serves as a research incubator to facilitate and nurture early growth

of research ideas in the CPS domain. It enables researchers to ex-

periment with a theory or hypothesis, in a controlled environment,

and to progressively develop the idea until it is ready for testing

and deployment in a full industrial setting. Currently many soft-

ware engineering concepts do not progress past inception because

researchers lack the means to advance them through intermediate

stages of growth. Dronology provides a full project environment (i.e.,

a fully functional open-source system) for managing, monitoring,

and coordinating the flights of multiple small Unmanned Aerial

Systems (sUAS) and a dataset including diverse, high-quality project

artifacts produced across multiple releases. As such, it provides a

realistic incubator for investigating CPS topics, and for enabling re-

searchers to experiment with their own innovative solutions within

a robust project environment. Furthermore, as sUAS accidents, such

as in-air collisions, or crash landings into vehicles or pedestrians,

have the potential for causing significant harm to people and/or

property damage. Dronology is therefore considered safety critical.

To illustrate the need for a CPS research incubator, consider a

researcher working in the space of trace link evolution and reuse

in order to support safety analysis in a safety-critical product line.

His work is greatly impeded by the lack of publicly available, non-

trivially sized, multi-version, software systems containing the type

of diverse software artifacts and feature definitions that are ex-

pected in a safety-critical product line. Similarly, a researcher work-

ing in the space of CPS runtime adaptation has developed her

own experimental environment for proof-of-concept exploration;

however, she is interested in evaluating her work on runtime com-

position of features in a larger-scale, real-world environment. The

current lack of such a publicly available environment is a significant

impediment to research in the CPS space. We aim to address this

issue through our proposed CPS research incubator.

In the remainder of this paper, Section 2 discusses shortcomings

of existing community resources. Sections 3 and 4, describe the

Dronology project environment and provide examples of research

areas that the incubator is designed to support. Finally, in Section 5

we describe ongoing goals for our proposed research incubator.

2 EXISTING RESEARCH ENVIRONMENTS

One of themost closely related research contributions is the PROMISE

repository established by Menzies et al. [18]. PROMISE includes an
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process. The Dronology process includes a preliminary hazard anal-

ysis, a failure model effect criticality analysis (FMECA), mitigating

requirements that address functional concerns and architectural

solutions such as fault-tolerance, performance, and reliability, and

Safety Assurance Cases [15]. We plan a limited set of formal mod-

els (e.g., in the areas of collision avoidance and obstacle detection);

however researchers could build their own models based on Dronol-

ogy requirements, design definitions, and associated properties.

•RuntimeMonitoring and Adaption: CPSs often need to adapt

at runtime to changes in their environments. This introduces a

complex and multidisciplinary research agenda [10], that includes

modeling and monitoring [2] causes of adaptation, specifying and

constructing mechanisms of adaptation, and analyzing effects of

adaptation upon the system and its safety [5]. Dronology pro-

vides an extensible runtime monitoring infrastructure allowing

researchers to monitor diverse data collected from UAV sensors as

well as internally generated events such as flight mode transitions.

Adaptation strategies can be evaluated at variability points in the

product line or through modifying cloned source code.

• Human Studies: Last, but not least, is the opportunity for sup-

porting Human Studies within the context of safety-critical CPS.

Such studies are also limited by a lack of immersive environments.

Example research topics include studying visualization techniques

during change impact analysis [9], studying the role of humans

in trace link creation and maintenance [11], and studying ways in

which humans leverage tools to analyze system safety. The Dronol-

ogy project environment creates a viable context for such studies.

5 FUTURE VISION

We have introduced our vision for Dronology as a research incu-

bator for safety-critical CPS. Future activities include: (1) Ongoing

development of numerous features to be delivered across multiple

versions; (2) A product line with multiple variability points and

assets to be delivered at both the domain and application level; (3)

Research resources to facilitate research challenges identified by the

community, by organizing artifacts as customized downloadable

data bundles; (4) An atypical OSS for which contributors will pro-

vide not just source code, but other safety-related artifacts required

by the Dronology project; (5) real end users to bring realism to the

project; (6) Incremental releases starting in May, 2018.

Our research incubator goes far beyond amore traditional dataset

consisting of snapshots of data. It provides a rich project environ-

ment that includes diverse artifacts commensurate with a safety-

critical domain. Our incubator is designed to empower researchers

working in areas of CPS research which suffer from a dearth of

experimental project environments. Dronology is planned as a com-

munity endeavor and collaborators are welcomed to work with us

to make this a long-term, effective community resource. Project arti-

facts may be downloaded directly from http://www.dronology.info

while source code is available upon request by research groups.
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