Discovering, Analyzing, and Managing
Safety Stories in Agile Projects

Jane Cleland-Huang and Michael Vierhauser
Department of Computer Science and Engineering
University of Notre Dame
Indiana, USA
JaneClelandHuang @nd.edu, mvierhau@nd.edu

Abstract—Traditionally, safety-critical projects have been de-
veloped using the waterfall process. However, this makes it
costly and challenging to incrementally introduce new features
and to certify the modified product for use. As a result, there
has been increasing interest in adopting agile development
paradigms within the safety-critical domain. This in turn intro-
duces numerous challenges. In this paper we address the specific
problems of discovering, analyzing, specifying, and managing
safety requirements within the agile Scrum process. We propose
SafetyScrum, a methodology that augments the Scrum lifecycle
with incrementally applied safety-related activities and introduces
the notion of “safety debt” for incrementally tracking the current
safety status of a project. We demonstrate the viability of
SafetyScrum for managing safety stories in an agile development
environment by applying it to a project in which our existing
Unmanned Aerial Vehicle system is enhanced to support a River-
Rescue scenario.

1. INTRODUCTION

Systems operating in safety-critical domains, where failures
can cause harm or injury, must not only deliver prescribed
functionality, but must do so in a way that ensures that the
system is safe and secure for its intended use [28]. To this
end, safety-critical systems must meet stringent guidelines
in order to receive approval or certification [53, 19, 7, 14].
The strict requirements of the certification process as well
as constraints introduced by the rigid timelines imposed by
hardware components have led many organizations to follow
a traditional waterfall approach — often resulting in the phe-
nomenon referred to as the big freeze [42]. The significant cost
and effort of changing and then recertifying a product makes
it difficult to introduce change, thus hampering the ability to
provide new features or to respond to customer needs.

Agile techniques have traditionally been deemed unsuited
to safety-critical development [9]; however, recently the idea
of leveraging agility has gained considerable traction. For
example, the European Open-DO initiative [42] is exploring
techniques for integrating agility into the safety-critical devel-
opment process, and there are numerous accounts reporting
its experimental and effective deployment [34, 31]. Doss and
Kelly [18] reported results from a recent practitioner survey
with a total of 31 participants, 87% of whom had experience
in safety-critical systems development, and 77% with practical
experience using a broad range of agile methods. Their survey
produced several insights of particular interest to the require-
ments process. Respondents strongly supported the notion

that eliciting safety requirements, performing hazard analysis,
and developing safety assurance cases must be performed
iteratively, with 50% reporting that safety problems were not
always identified early in the lifecycle during the upfront
hazard analysis. In other words, they acknowledged the need
for a more incremental development process.

On the other hand, applying agile processes in safety-critical
projects introduces multiple challenges — each of which must
be carefully explored in order to develop appropriate solutions
and practices. In this paper we provide concrete examples
derived from our experiences in using an agile process to
develop the Dronology system for controlling Unmanned
Aerial Vehicles (UAVs) and we describe the agile safety
process we adopted as a result of those experiences. The
characteristics of our project, including its initially unknown
requirements, a steep technical learning curve associated with
entering a new domain, and team members’ prior experience
with agile methods, indicated a good fit for applying an agile,
Scrum-based approach [60]. However, in early phases of our
project, we realized that the project’s safety concerns were
non-trivial and could not be adequately addressed without
carefully augmenting the Scrum process.

Initially, in early phases of our project, we addressed safety
issues through conducting a series of brainstorming sessions
in which we identified hazards and their contributing faults,
and then proposed safety requirements and design constraints
that would prevent or mitigate the occurrence of the hazard.
However, we found that identifying all hazards and their
contributing failures at the start of the project was particularly
challenging given the emergent nature of the UAV domain,
including its novel end-user applications and rapidly changing
technologies. Many new hazards and faults were discovered
incrementally as we conducted field tests with the UAV
hardware, met with stakeholders to explore their emerging
requirements, and brainstormed design solutions. Our early
observations aligned closely with those made by participants
in Doss’ survey [18] and highlighted the potentially competing
goals of agile processes versus safety-critical development.

Agile development practices are founded upon four core
principles laid out in the agile manifesto [6]. Two of these
principles of “responding to change over following a plan” and
delivering “working software over comprehensive documenta-
tion” are particularly challenging to achieve in safety-critical

projects in which the delivered software must be demonstrably
and arguably safe for use [42, 54, 21]. To address these
challenges we identified three philosophical values that were
fundamental to the process decisions we made. These can
be summarized as (1) imbuing safety thinking into the entire
development process, (2) embracing the incremental discovery
and analysis of safety hazards, (3) maintaining continual
awareness of the safety status,so that the enhancements and
modifications needed to attain eventual safety, are well under-
stood and fully achievable.

In the remainder of the paper we describe the process we
developed for discovering, analyzing, and specifying safety
requirements within a Scrum project environment. We start
by discussing related work in Section II. Sections III and IV
then introduce the Dronology project and provide a detailed
description of the process with motivating examples. In Sec-
tion V we describe the application of the approach across three
sprints in which Dronology was extended to support a physical
river rescue application. Finally in Sections VI and VII we
discuss threats to validity and draw conclusions.

II. RELATED WORK

Several authors have discussed ways in which to integrate
agile methods with safety-critical practices [46, 40, 55, 40,
63, 65], however, most prior work represents broad surveys
of practitioners, or is theoretical in nature without providing
concrete end-to-end process descriptions. One exception, is
the work by Fitzgerald et al. [21] who conducted a study in a
large automotive company to investigate the use of agile devel-
opment processes in regulated environments. They proposed
R-Scrum, which emphasizes traceability of artifacts and con-
tinuous compliance throughout the development process. They
augmented Scrum with activities such as “sprint hardening” to
address safety-critical concerns, “continuous compliance” (i.e.,
audits and checkpoints at the end of each sprint), and “living
traceability” (i.e., automated, and tool supported traceability
between artifacts). We implemented aspects of these elements
in our approach, but focused attention on tasks related to
discovering, analyzing, and managing safety stories.

Stalhane er al. [55] presented “SafeScrum” complementing
the traditional Scrum process. While our approach and Safe-
Scrum both explicitly differentiate between critical require-
ments (Safety Stories) and other requirements (System Sto-
ries), SafeScrum separates concerns, by isolating everything
from the actual Scrum process that is not part of the software
development process itself. In contrast, SafetyScrum argues for
a tighter integration of traditional and safety-related activities.

Wang et al. [65] proposed the S-Scrum development process
and evaluated it on student projects. S-Scrum includes safety
analysis techniques, more precisely “System Theoretic Process
Analysis” (STPA), to support and guide the design of a safety-
critical system. In contrast, to S-Scrum in which STPA is
integrated in the Scrum process and used as part of a sprint,
our approach focuses on the Scrum process itself by tailoring
and adapting it to support safety analysis.

In the domain of aerospace systems, VanderLeest and
Buter [63] analyzed compatibility of agile practices to the DO-
178B standard. While this study provides interesting insights
into the different practices and their suitability in a safety-
critical domain, they did not provide a process incorporating
the different practices. Stephenson et al. [56] proposed an
“agile health model”, for use in developing a safety-critical
system. The model contains safety-related information and
assumptions, provides documentation, and guides incremental
development. Similar approaches exist for the domain of
medical devices [52, 46, 36] and high-integrity software [43].
In contrast to these domain-specific approaches, we aimed to
create a more generic approach that augments the traditional
Scrum process with safety-related activities.

Other authors have conducted literature surveys on agile
methods for safety-critical systems [41], or augmented spe-
cific practices. For example, Stalhane and Myklebust [54]
presented a process for performing hazard analysis based on
user stories, while Gorski and Lukasiewicz [25] proposed the
use of assurance argument patterns that combined agile and
established practices to reduce risks in safety-critical projects.

III. Tue DroNOLOGY PrROJECT

We developed our process as a result of lessons we learned
whilst applying an agile approach to the development of
the Dronology project for using small UAVs in emergency
response applications. Dronology includes a flight manager
responsible for scheduling flight routes for multiple UAVs,
basic collision avoidance, an internal simulator, a flight activity
logger, several Uls for planning routes, monitoring UAVs in
real time, and registering UAVs, and finally a Ground Control
Station (GCS) middleware as well as a concrete implementa-
tion for communicating and controlling real, physical UAVs.
The Dronology GCS, interfaces with ArduPilot-based UAVs
[2] and has been flight-tested with five different physical UAV
models. It also interfaces with the ArduPilot Software-in-the-
loop (SITL) simulator to enable high-fidelity simulations.

The project is considered medium-sized [1] based on a
current budget of (>$200K), team size (5-12 people), duration
(4 year plan), and impact (moderate). The development team
has so far included five software engineers including the
two authors — both of whom have industrial development
experience (5 years and 4 years respectively), one professional
developer with expertise in UAV flight control, and one expert
in Human-Computer Interaction. In addition, an Electrical
Engineer has been responsible for mechanical and electrical
components and communication networks, and a total of
12 graduate and undergraduates were employed as summer
interns in 2017 and 2018. Three team members are certified
remote pilots. External stakeholders, including members of
the local city administration and its firefighters participated
in the requirements discovery process and actively engaged in
the public river-rescue demo, conducted in April 2018, that
involved UAVs operated using Dronology, firefighters, and a
rescue boat.

@ Discover and
Specify System Stories

@ Preliminary Hazard
P Analysis
sa

v © Establish Hazard-
v related Trace Links
T Product g @ Design Safety T
_______ Ny backlog 7 Solutions
L (EARS) |

() Specify Safet P
i Stakeholders and rrmTmmmm—— goges 4 R FMECA
i Subject Matter Experts :

All hazards addressed
for existing features.

Sprint | | Potential Deliverable

Sprint backlog |
(EARS)

@ SprintPlanning

nd of Sprin Release Code
@ End of Sprint
Safety Review
4 Executable
‘ : o : software ves
--------- @ Sprint-level Hazard ()
Analysis Safety Master >
A §
_______________ © Incremental || /——— No
© Sprint Safety Case Safety
Execution Assurance Make
prioritization
Case decisions for

release plan.

Fig. 1: SafetyScrum augments the traditional SCRUM process by emphasizing hazard analysis and safety assurance. Safety-

related activities and artifacts are marked in red.

IV. Process

Our methodology, which we refer to as SafetyScrum, is
summarized in Fig. 1 and includes ten specific activities. We
briefly describe each of these activities, provide illustrative
examples from the Dronology project, and discuss implications
upon the agile process. In many cases, the activity represents
an extension to the typical Scrum process and therefore adds
overhead to the project. However, each additional task con-
tributes to the achievement of a safe product and is designed
to fit seamlessly into the agile development process.

Following a traditional Scrum approach, three different roles
are involved in the development process: the Scrum Master
guides and supports the team during the sprints, the Product
Owner represents a key stakeholder, and the developers form
the remainder of the Scrum team. In the context of a safety-
critical system, where thoroughly analyzing, planning, and
testing safety-related requirements is of the utmost importance,
we introduce the additional role of Safety Master. The Safety
Master bears responsibility for all safety-related tasks and
activities, and ultimately determines whether hazards have
been sufficiently mitigated in order to deem the current product
safe for release. We create this special role to ensure that
safety concerns are continually evaluated and addressed and
are not overshadowed by the inevitable pressures of delivery
deadlines. We discuss the role and responsibilities of the
safety master throughout the remainder of this section when
describing the activities of our process. Each activity is then
summarized and highlighted (in a gray box.)

ACTIVITY 1: Discover and Specify System Stories

The first step of the process involves specifying functional
and non-functional requirements to create the context in which
safety analysis will occur. In agile projects “requirements” are
typically specified as user stories [5]; however, we adopted
the Easy Requirements Syntax (EARS) approach [39, 11],
which is more expressive than user stories for specifying CPS
requirements. It provides a simple and structured template
for specifying requirements for ubiquitous, event driven, state
driven, optional, and unwanted behavior. An example for each
type of requirement drawn from Dronology, is shown below:

Ubiquitous: The <component name> shall <response>.
System Story (SYS-1): A UAV shall maintain a minimum
separation distance from other UAVs at all times.

Event Driven: When <trigger> the <system name>

shall <system response>.

System Story (SYS-2): When a flightplan is initiated a log event
shall be created that includes the name of the route, the UAV it
is assigned to, and the initiation time stamp.

State Driven: While <in a specific state>

the <system name> shall <system response>.

System Story (SYS-3): While in landing mode, the UAV shall
descend vertically until it reaches the ground.

State Option: Where <feature is included> the <system name>
shall <system response>.

System Story (SYS-4): Where onboard obstacle detection is
available,the UAV shall fly around obstacles and then resume its
directed route.

Unwanted Behavior: If <optional preconditions> <trigger>,
then the <system name> shall <system response>.

System Story (SYS-5): If wind gusts exceed maximum wind
flying conditions, then the UAV shall not be granted permission
to take-off.

While, our proposed safety process is agnostic to the
way requirements are structured, all examples throughout the
remainder of this paper are illustrated using the EARS format.
Further, we refer to them as system stories, as opposed to user
stories; however, in every respect, apart from their formatting,
these system stories are treated in the same way as more
traditional user stories. They are discovered following standard
elicitation practices [50, 15], specified, analyzed for trade-
offs, and ultimately placed into the product backlog. While
the process of system story elicitation is shown at the start of
our process in Fig. 1, in practice it continues throughout the
lifetime of the software system driven by stakeholder needs as
well as through emerging safety and performance concerns.

Specification of system stories lays the foundation for our
overall process and is therefore depicted as activity (Al).

A1: Elicit and Specify System Stories

Engage with project stakeholders to elicit and specify an
initial set of system stories, representing their functional
and non-functional requirements.

ACTIVITY 2: Preliminary Hazard Analysis

Once an initial set of system stories has been identified, the
project team conducts an upfront hazard analysis [35], using
techniques such as Software Fault Tree (FT) Analysis [57, 59]
or Failure mode, effects and criticality analysis (FMECA) [48,
37] to identify an initial set of hazards, failure modes, and their
associated criticality levels.

Some researchers have observed that upfront safety analysis
is contradictory to the agile philosophy which favors a just-
in-time approach to all analysis and design activities [64].
However, performing an initial hazard analysis provides the
foundation for the remainder of the project, leads to the discov-
ery of new safety-related stories, influences the architectural
design, and imbues safety-thinking into the Scrum process
from the inception of the project [8].

We provide examples of two hazards that emerged from
a series of meetings with the core project team and our
stakeholders.

Data Hazard (H-1): Inaccurate GPS (Global Positioning System)
coordinates for UAV. Failure Mode: GPS provides inaccurate
readings. Effect: Violation of minimum separation distance
between two UAVs goes undetected, and UAVs collide in midair
and then crash onto bystanders. Level: Critical

Algorithmic Hazard (H-2): Flight path routing algorithm
generates incorrect waypoints. Failure Mode: Routing algorithm
fails to take into account relative altitude of surrounding terrain.
Effect: UAS flies into the flight path of a commercial airplane.
Level: Catastrophic

It is worth noting that Hazard H-1 was impacted by a
design decision to initially implement collision avoidance in
a centralized manner, while the goal of incorporating onboard
obstacle detection and avoidance was deferred to later itera-
tions. This is typical in agile projects, and embraces the reality
that hazards and their mitigations may evolve as new features
are introduced.

The time and effort invested in the preliminary hazard
analysis needs to be determined on a project-by-project ba-
sis according to project characteristics such as requirements
volatility, criticality, difficulty of introducing changes later,
and the upfront domain knowledge of the development team.
In our project we invested approximately 80 person hours in
conducting a preliminary hazard analysis that included 6 of
the previously mentioned team members.

The preliminary hazard analysis activity represents the
second activity (A2) of our SafetyScrum process.

A2: Perform Preliminary Hazard Analysis

Conduct a hazard analysis in early phases of the project
to identify potential hazards and failure modes in order
to drive activities such as architecture design, story spec-
ification, safety analysis, and rigorous testing throughout
the remainder of the project.

ACTIVITY 3: Specify Safety Stories

Each identified safety hazard, that is deemed non-trivial is
transformed into a safety story and placed into the product
backlog. The safety story is equivalent to a safety requirement,
described by Firesmith [20] as a “requirement that specifies
a minimum, mandatory amount of safety ... in terms of
a system-specific quality criterion and a minimum level of
an associated metric.” Identifying safety stories capable of
mitigating or significantly reducing the risk of a hazard is aided
by industry-specific standards and policies, reuse from existing
systems, subject-matter expertise, and brainstorming activities.
Typically, a single hazard will be addressed by multiple safety
stories describing asset protection, incident detection, incident
reaction, and potential system adaptation. These requirements
may be both positive (i.e., what the system must do) or
negative (i.e., what the system must not do) [66]. An example
of a ubiquitous safety story associated with Hazard H-1 is
shown below.

Safety Story (SAF-1): The GPS coordinates of each UAV must
be accurate within one meter at all times.

The activity of discovering and specifying safety stories to
address identified hazards is summarized in activity A3.

A3: Specify Safety Stories

Identify, analyze, and specify safety stories that, if sat-
isfied, will prevent the hazard from occurring or reduce
the impact of its occurrence. Place safety stories into the
product backlog.

ACTIVITY 4: Design Safety Solutions

In his seminal book on eXtreme Programming [5], Kent
Beck referred to a story as a “placeholder for a future
conversation” and deliberately avoided specifying design-level
“requirements” until the start of each sprint when the selected
stories are broken down into implementable tasks. However,
in a safety-critical project it is necessary to be more deliberate
about how a safety story is implemented and to clearly specify
mitigating design solutions. These design definitions allow
developers, project stakeholders, and external regulators to
reason about how hazards have been mitigated and to evaluate
whether system safety has been achieved.

In safety-critical domains, parts of the system which impact
safety must be designed explicitly and documented as design
definitions. The design activity can be conducted incremen-
tally, following the agile mantra of no “big design upfront”
(BDUF) or explored early in the project [61, 16] so that de-
velopers and other project stakeholders can weigh the benefits
of designing a solution that focuses on meeting current needs
or on looking-ahead to accommodate future planned features
[58, 67, 23]. Either way, designing a suitable solution requires
a decision-making process in which candidate designs are
proposed and evaluated, leading to the selection of a solution
that best satisfies the safety stories within the context of other
competing concerns such as functionality, cost, usability, and

performance [66]. The solution is likely to include a diverse
combination of software constraints, hardware elements, and
even operating procedures.

Here we provide examples of three design definitions that
represent selected solutions for addressing the previously
presented safety story (SAF-1) regarding GPS accuracy.

Design Definition (DD-1): When the Dronology system is
deployed in an urban environment at least two independent
means of UAV localization must be used.

Design Definition (DD-2): If UAV localization mechanisms
provide conflicting information, the lowest reported distance
between two UAVs shall serve as their current separation
distance.

Design Definition (DD-3): Real-Time Kinematic (RTK) shall be
deployed. (Note: This increases the guaranteed accuracy of GPS
to 2 centimeters.)

The design activity is captured as our fourth activity (A4):

A4: Design for Safety

Design a solution to address each of the safety stories.
Specify the solution as a set of design definitions prior
to scheduling its associated safety-stories into a sprint.

ACTIVITY 5: Establish Hazard-related Trace Links

Traceability is particularly important in an agile project in
which change is embraced [10, 29, 44]. Traceability provides
support for following a safety-related requirement back to
its initiating hazard(s) and forward to the design decisions,
code, and test-cases through which the hazard is potentially
realized and mitigated [26]. This level of traceability is not
only essential for assessing safety, but is also prescribed by
many certification standards [22, 53]. Enabling dynamic, main-
tainable, and cost-effective traceability allows us to analyze
safety even as new features are incrementally introduced to
the project [10, 13, 49].

While traceability has traditionally been perceived as a
burdensome overhead that is anathemic to an agile project,
current practices and technologies make it a viable agile
practice [24, 10]. At the requirements level, agile tools such
as Jira, enable trace links to be created in lockstep with the
specification of stories and design definitions. The process
can be supported by a simple recommender system which
uses trace link creation and evolution algorithms to proac-
tively suggests missing trace links [45]. At the code level, a
typical version control system such as GitHub, can be used
to establish links between source code and design definitions
and/or requirements, simply be tagging each commit with the
ID of the design definition or requirement. It is out of scope of
this paper to discuss traceability algorithms and tools that aid
developers in creating and maintaining trace links; however,
recent research advances create viable options for automated
tracing support within an agile project environment [12].

Fig. 2 provides a simple example of traceability from design
definitions to a safety hazard. The left hand side depicts links

Data Hazard (H-1)
Inaccurate GPS coordinates
for kJAV

E helps mitigate

i
Safety Story (SAF-1)
GPS coordinates for each
UAV must be accurate
within 1 meter.

System Story (SYS-2)
A mission plan shall
enable multiple UAVs to
fly flight plans together.

depends on

helps satisfy helps satisfy

Design Def. (DD-3)
Multiple flight

Design Def. (DD-4)
Multiple UAVs

Design Def. (DD-1)
...two independent

Design Def. (DD-2)
If UAV localization

means of UAV mechanisms routes can be assigned to the
localization must be provide conflicting assigned to a single mission can
used information... UAV to be execute flight
executed in a plans
defined sequence. concurrently.
I implements I 1 f

Source Code Classes

Fig. 2: A simple trace slice showing links from design defini-
tions to safety requirements, and from safety requirements to
the hazards they are designed to mitigate.

for the previously presented artifacts (H-1, SAF-1, DD-1, DD-
2), while the right hand side shows a system story (SYS-2),
two of its associated design definitions (DD-3, DD-4), and a
dependency link from SYS-2 to SAF-1. Additional trace links
are captured from source code (via tags in commit messages)
[47], and (not shown in the figure) from test cases, and test
case results etc; however, here we focus on the requirements-
level trace links.

There are several benefits to establishing this level of
traceability. First, compliance is achieved to many certifica-
tion guidelines and standards; second, support is provided
for evaluating the extent to which each hazard has been
addressed in the design; and finally, parts of the system that are
susceptible to the hazard can be identified — in this example,
code implementing design definitions DD-3 and DD-4. The
traceability activity is summarized as SafetyScrum activity five.

AS5: Establish trace links

Leverage capabilities of tools commonly adopted in agile
projects (e.g., Jira and Github) to incrementally construct
trace links from safety stories to hazards, design defini-
tions to safety stories, dependent system stories to safety
stories, source code to design, and from acceptance tests
to safety stories.

ACTIVITY 6: Sprint Planning

Sprint planning typically involves two phases — an initial
phase in which the backlog is groomed to ensure that stories
are prioritized, well-written, and estimated in terms of their
effort, and a selection phase at the start of each sprint in which
specific stories are selected for implementation according to
the customer’s priorities. These activities are described in
numerous books on agile development [5, 38, 17]; therefore we
focus this discussion on ways in which SafetyScrum modifies
the planning process to accommodate safety concerns.

The dependencies that safety stories exhibit upon their
associated design definitions should be taken into consider-
ation during sprint planning. First, as part of the backlog
grooming activity, we track the status of each safety story,
to document whether its design is sufficiently complete i.e.,
whether sufficient and appropriate design definitions have been
specified that, if implemented correctly, would satisfactorily
address the safety story. Second, we schedule design defi-
nitions for implementation across specific sprints. In some
cases, design definitions may need to be decomposed into
sprint-sized definitions. Scheduling of a design definition could
happen after the safety story is designated as “fully designed”
or in a more incremental way once its core design decisions
have been made. When a safety story is designated as fully
designed and all of its associated design definitions have been
implemented and tested across one or more sprints; then the
safety story can be scheduled into the sprint for rigorous
acceptance testing. This could happen in the same sprint that
its final design definition is implemented, or could be in a
subsequent sprint.

Bearing in mind the dependencies that exist between system
stories, safety stories, and their associated design definitions,
it makes sense to prioritize safety stories associated with
currently implemented or scheduled system stories.

This is illustrated with the example in Fig. 2. Consider
the case in which system story SYS-2 and its associated
design definitions (DD-3, DD-4) are implemented without
safety story (SAF-1), then the system, as delivered at the
close of the sprint, cannot be considered safe for use as UAVs
with overlapping paths could collide in midair. The system
could still be released for testing the simultaneous flight of
multiple UAVs, but only under additional constraints such as
planning non-overlapping flight paths. This observation leads
to SafetyScrum activity six.

A6: Safety-aware Sprint Scheduling

During the sprint planning process, track the design status
of each safety requirement and mark its design status
as “open” or “completed”. Be aware of dependencies
between system stories and safety stories and favor
schedules in which safety stories and their associated
design decisions are implemented as close as possible
in the timeline to their dependent system stories.

ACTIVITY 7: Sprint-level Hazard Analysis

At the start of each sprint, the project team analyzes
hazards associated with the scheduled stories. This is necessary
for three key reasons; first, the preliminary hazard analysis
may have been incomplete; second, new system stories may
have been introduced after the initial preliminary hazard was
performed; and finally, the scheduled stories may interact with
existing features in ways that were not previously considered.
An interesting example arose in our river search and rescue
project when stakeholders expressed a desire to launch UAVs
from a small boat used as a command center during an

emergency response. As a result, we specified the following
system story:

System story (SYS-5): UAVs shall be launched from a boat
during river rescue.

However, on closer inspection, we realized that this intro-
duced new hazards associated with the following pre-existing
system story:

System story (SYS-6): When the return to launch (RTL)
command is issued, the UAV shall return to its original launch
coordinates.

First, the likelihood that the boat would change position
since the UAV launch, meant that a UAV executing an RTL
command would likely land in the water. Second, even if the
boat were to remain at exactly the same location, the current
inaccuracies in GPS localization could also cause the UAV
to miss the boat or land on a person in the boat — causing
potential bodily harm. Without the sprint-level hazard analysis,
these new hazards may have been missed.

We further observed that launching a UAV from a boat is
relatively straightforward while returning the UAV to the boat
after its flight is far more complex. Additional safety stories
and associated design solutions need to be devised before the
the story can be realized. In this case, several combinations
of options could be considered including (1) reducing the
scope of the requirement to only allow launches from the
boat but not landings, (2) using technology such as Real-Time
Kinematic (RTK) satellite navigation to increase accuracy to
1 cm horizontally and 2 cm vertically, or (3) using additional
commands e.g., voice, visual, or mobile app to provide homing
mechanisms during the landing phase. We decided to support
UAV launches from the boat, but to provide a safe “home”
location on the river bank as the target of the RTL command.
This decision defers the more difficult task of boat landings
until later in the project. As a result, system story SYS-6 was
modified as follows:

System Story (SYS-6’): When the return to launch (RTL)
command is issued, the UAV shall return to its home coordinates.

Additional requirements were written to clearly specify how
home coordinates were derived under various operating con-
texts. The activity of performing incremental hazard analysis
prior to each sprint is defined as SafetyScrum activity seven.

A7: Sprint-level Hazard Analysis

Perform an indepth hazard analysis at the start of each
sprint to identify new hazards, failure cases, and mitiga-
tions associated with new features and their interactions
with other features.

ACTIVITY 8: Sprint Execution

During each sprint, design definitions are broken down
into tasks, implemented, and tested [5]. Testing needs to be
rigorous and cover multiple levels including unit tests, soft-
ware integration, and systems integration [64] tests. Dedicated

“hardening” sprints, as proposed by Fitzgerald er al. [21]
should also be scheduled.

Regardless of the rigor of upfront and pre-sprint hazard
analysis, it is highly likely that additional hazards will be
discovered during the testing phase. For example, in our
project, we had specified the following safety story:

Safety Story (SAF-2): A human operator shall use the hand-held
ground control station associated with a unique UAV to gain
control from Dronology upon request.

To satisfy this requirement, we designed a solution in which
Dronology cedes control if the human operator switches mode
from “GUIDED” to “STABILIZE”. The feature had been
implemented, tested, and used for numerous flights; however,
when a new operator assumed the role of human operator
during a test, she positioned the throttle in the fully downward
direction (which the UAV manufacturer states should be done
only when the UAV is inches from the ground during landing).
As a result, as soon as control was ceded, the UAV received
the command to descend rapidly, resulting in it plummeting
30 meters to the ground and breaking upon impact as shown
in Fig. 3. The incident was documented as a fault, and
a subsequent investigation attributed the cause to incorrect
throttle position due to operator error caused by insufficient
training. A new hazard was documented with an associated
safety story as shown below:

Data Hazard (H-3): Incorrect throttle position on hand-held GCS
Failure Mode: Throttle switch is placed in the downward position
when Dronology concedes control to the hand-held GCS. Effect:
UAV plummets to the ground during hand-over. Level: Critical.

Safety Story (SAF-3): When Dronology cedes control to the
handheld GCS, the UAV shall assume a stable "hover-in-place’
state.

Determining how to achieve this safety story was, and still
is, a non-trivial challenge, constrained by an existing safety
story that a human UAV operator must have immediate ability
to control the UAV. Potential solutions include enhanced
operator training, use of preflight checklists to ensure that
the switches are positioned correctly prior to takeoff, ongoing
checks during flight with audible warnings if switches are
positioned incorrectly, and virtual interlocks to prevent erratic
flight behavior immediately following handover. None of these
are perfect solutions and design analysis is therefore ongoing.
The need to handle emergent hazards and failures leads to
SafetyScrum activity AS:

A8: Handle emergent Faults

When new hazards, failure modes, and safety stories
emerge as a result of observed faults during testing, the
faults are documented, new safety stories specified and
design solutions explored. The new stories and design
definitions are added to the product backlog, and depen-
dencies are documented as trace links.

¥ Switch in
wrong
position

Fig. 3: A previously unknown hazard associated with the
positing of a switch on the hand-held device, cause the UAV
to crash during a manual take-over test.

ACTIVITY 9: Incremental Safety Case

Throughout the sprint, the team must incrementally refine
the safety case (SC) — defined by Kelley [33] as a “clear, com-
prehensive and defensible argument that a system is acceptably
safe to operate in a particular context”. A SC is composed
from safety claims, evidence, and arguments [3, 27, 32, 62].
As reported by participants in Doss’ survey [18], hazards,
safety stories, and their associated mitigations tend to emerge
incrementally, thereby introducing the need to inspect, and
potentially update the safety case, during each sprint.

Fig. 4 depicts a small section of a SC for the Dronology-
to-human handover modeled using Goal Structured Notation.
The white nodes provide a hierarchical argument that a human
operator can take over control from Dronology. Drawing on
the previous example in which an incorrectly positioned switch
caused the UAV to plummet to the ground, we update the SC
with Goal G1.3 (shown in yellow), to reflect the decision to
create a short-term mitigation based on “operator training”
until a more robust solution is provided in future sprints.

The task of incrementally refining the SC involves identify-
ing the impact of new features on the existing SC, evaluating
whether any claims, arguments, or evidence are invalidated or
missing, and updating the SC accordingly.

A9: Incrementally build Safety Case

Evaluate the impact of new features, emergent

hazards, and new safety evidence. Update the safety case
accordingly by adding appropriate safety goals,
strategies, claims, and evidence.

ACTIVITY 10: End of Sprint Safety Gateway

At the end of each sprint, the entire team, led by the Safety
Master must evaluate the safety of the system [64]. A release
in which all of the safety stories associated with currently
implemented system stories have been fully implemented and
rigorously evaluated, is potentially safe for use. On the other
hand, a release in which a system story has been implemented
without all of its associated safety stories cannot be safe.
Similarly, a system for which all safety stories have been

G1: A human operator shall have to ability to
safely assume control of a UAV in flight.

GSN Notation

[Goal

[strategy
Evidence

() Context

Each drone has
a human operator
assigned to its hand-
held GCS, responsible
for taking control when
directed by the safety
officer.

control hand-over procedures.

/ S1: Strategize over the capabilities of the

' G1.3: The UAV
| shall hover-in-
| place upon hand-
: over until the user
- issues a command

G1.1: Upon receiving a
takeover command, the
central control unit
stops issumg directives.

G1.2: The GCS monitors for mode
changes from GUIDED to STABILIZE
and issues the takeover command
to the central control unit.

for stopping i |ssu|ng directives, onitoring change in mode.

/ S2: Strateglze over the steps// S2: Strategize overthe steps for
m

'stepsto manage
'swntch positioning.

G1.2.1: All mode changes issued on
the hand-held GCS are monitored

G1.1.1: The system only
issues directives in GUIDED

mode. by the core control unit. 1G1.3.1: Operators |
v \ ‘trained to check 1
: E2: E3: \switch positions |
Cog:le Tests in Inspection\ ~ TTT77 i
Review and tests LEA
SUB-STRATEGIES NOT SHOWN DUE TO Tralnlng '
\ Manual

SPACE CONSTRAINTS.

Fig. 4: The Safety Case is incrementally modified to reflect an
emergent hazard and a temporary mitigation. In future sprints,
as mitigating strategies are devised

implemented but not yet sufficiently inspected and evaluated
is also not considered safe for use. Consider the following
system story (SYS-5) and its dependency upon safety story
(SAF-4).

System Story (SYS-5): Dronology shall directly control the
flights of up to 50 concurrent UAVs.

Safety Story (SAF-4): UAVs must always maintain a MINIMUM
_ SEPARATION _DISTANCE of 3 meters.

Early sprints of Dronology delivered features to support
multiple simultaneous flights; however, achieving trusted colli-
sion avoidance was more challenging and is requiring several
ongoing rounds of prototyping and architectural refactoring.
To pass the safety gateway that would allow field tests to
continue, we introduced the following temporary constraint:

Safety Story (SAF-5): UAV flight routes shall not overlap.

This introduces the notion of safety debt as a form of techni-
cal debt [4, 30]. We define it as “unfulfilled safety obligations
caused by prioritization decisions that expeditiously enable a
working release without satisfying its safety requirements”.
Safety debt must be tracked and managed across the project so
that unfulfilled safety stories and their associated design defini-
tions can be clearly identified following each sprint. As in our
previous example, temporary mitigations may be introduced
for testing purposes; however, full safety can only be achieved
when all specified safety stories have been implemented. The
safety gateway is captured through SaferyScrum activity A10.

The nature and extent of activities associated with the end
of sprint safety gateway are impacted by the domain of the
system and whether the end-of-sprint aligns with a planned
public or private release. In a certified domain, several sprints
may need to be fully dedicated to hardening the system or
preparing evidence needed for certification.

A10: End of Sprint Safety Gateway

Analyze the safety of the system at the end of each sprint.
If necessary conduct “hardening” sprints to address safety
concerns and/or to prepare systems in regulated domains
for certification.

Earlier in this paper we introduced the role of the safety
master for maintaining a safety focus across many of the iden-
tified activities. In particular, the safety master is responsible
for leading and/or coordinating hazard analysis activities and
ensuring that appropriate safety stories are specified (Activities
2, 3 and 7), holding the developers and/or architects of the
system responsible for designing an arguably safe solution that
satisfies those stories (Activity 4), influencing prioritization
decisions to ensure that safety stories are scheduled in a timely
way (Activity 6), ensuring that trace links are created for all
hazards (Activity 5) in order to provide sufficient evidence to
support Safety Assurance (Activity 9) and holding ultimate
responsibility for safety-related release decisions at the end of
each sprint (Activity 10).

V. AN EXPERIENCE REPORT OF APPLYING SAFETY-SCRUM

In this paper we have proposed a new process for eliciting,
analyzing, specifying, and managing safety stories within the
Scrum process. A full evaluation would require application
of our approach in an entirely different project environment
which is out of scope for this paper. However, we report
our experiences in applying SafetyScrum across three new
sprints dedicated to preparing Dronology for use in a public
demo of river search and rescue. We qualitatively address
the question of how effectively does SafetyScrum guide the
safety analysis, sprint planning and execution in new sprints,
while maintaining flexibility associated with agile development
processes? The question of generalizability to other safety-
critical projects is discussed in Section V-C.

A. Applying the Process

The search and rescue application of Dronology has been
under discussion between our Dronology team and city emer-
gency responders for several months. However, the project
was officially launched in early 2018 through a planning
and requirements elicitation meeting conducted with 15 key
stakeholders including city administrators, search and rescue
team members, and the fire chief. The meeting produced a
set of use-case scenarios describing UAV support for search
and rescue activities and a plan that the public demo would
include multiple UAVs taking off from the river bank, flying
a series of search patterns, transmitting thermal and visual
images, inspecting key search areas in which victims were
more likely to be found, and eventually returning the UAVs
to their launch positions. The subsequent sprints focused on
delivering crucial functionality and safety features needed to
sufficiently increase the likelihood that the river rescue demo
would be completed without UAV failures, mid-air collisions,
hard landings, or close encounters with human bystanders. We
describe the outcome of each SafetyScrum activity (A1-10)

ID Safety Story

SAF-10 When in MISSION_PLANNING mode, the takeoff and
positioning of all UAVs at the start of their first assigned
routes shall be choreographed to avoid collisions.
UAVs returning to home shall follow choreographed
flight paths to avoid collisions.

When in MISSION_PLANNING mode the system shall
warn the user when routes overlap.

If the signal is lost between a UAV and both Dronology
and the handheld, then the UAV shall return to its launch
position safely.

Dronology shall prevent UAVs from flying outside the
predefined area.

An internal Dronology GEOFENCE shall constrain the
region in which UAVs shall fly

When the mission planner is initialized by the user, all
current UAV flights shall be managed by the planner.

SAF-11

SAF-12

SAF-13

SAF-14

SAF-15

SAF-16

ID Selected Design Definitions for SAF-10

DD-01 When in COORDINATED_TAKEOFF mode and com-
manded to takeoft, each UAV in the group will ascend to
a unique takeoff altitude separated by at least 4 meters
from other UAV altitudes.

When in COORDINATED_TAKEOFF mode and a UAV
reaches its target altitude it shall hover in place until it
receives a command to proceed to the first waypoint of
its prescribed flight route.

When in COORDINATED_TAKEOFF mode and all
UAVs have reached their target altitudes, each UAV shall
fly in a direct path to the longitude and latitude of its
first waypoint while maintaining its current altitude.

DD-02

DD-03

TABLE I: Safety Stories and sample Design Definitions for
river search and rescue

and discuss the end-to-end application of the process across
the first sprint, and the planning of the two subsequent sprints.

Discover System Stories & Init. Hazard Analysis: New
system stories focused around the integration of a thermal
camera and its imagery, the need to focus the search on
predefined parts of the river (e.g., tree-lined outer bends, and
“strainers” where victims might get trapped), and the need for
UAVs to takeoff and land from a compact area. This resulted
in the identification of three new system stories which served
as the input for the preliminary hazard analysis (A1). Our team
of 6 researchers and developers, including both hardware and
software experts, spent approximately 2.5 hours brainstorming
potential hazards, and identifying 66 potential hazards catego-
rized as failures associated with preflight setup (21), handheld
GCS (6), takeoff (11), landing (5), flight guidance (7), flight
navigation (4), flight control (6), and miscellaneous incidents
(6) (A2). The majority of miscellaneous hazards (e.g., rogue
drones, or goose hits), and most hardware associated hazards
(e.g., broken propeller, damaged batteries) were delegated to
preflight inspections, checklists, and/or external entities such
as the police. Of the remaining hazards, we identified 12 to
be addressed during the three sprints.

Specify Safety Stories & Design Safety Solutions: Based
on these hazards we specified seven safety stories (A3). For
each of these we designed mitigations leading to 34 design
definitions (A4) and then estimated the effort to implement
them in terms of “story points” [5]. Safety stories and a
selection of design definitions associated with the safety story
for collision free takeoff are depicted in Table I. In addition
to stories and design definitions we created the respective
trace links (AS5). This included trace links between hazards,
safety stories, and design definitions (captured using Jira), and
links to the concrete implementation (automatically provided
through tagging github commit messages).

Sprint Planning: The overall goal for the three sprints was
to implement the stories and their associated design definitions,
and to rigorously test all functionality prior to the live river-
rescue demo. Given a total of 42 estimated story points, and a
viable project velocity of 30 story points per sprint, we created
a sprint plan (A6) that included: Sprint 1: (18 story points, 12
“test” points), Sprint 2: (10 story points, 30 test points), and
Sprint 3: (14 story points, 16 test points). These decisions were
based on the need to deliver the most essential functionality in
Sprints 1 and 2 with additional time dedicated to hardening the
system and to rigorous testing. We assigned “optional” stories
to Sprint 3 in case more important emergent hazards needed
to be addressed. The sprint plan is summarized in Table II.

Sprint level hazard analysis & Sprint Execution: At
the start of the first sprint we inspected the scheduled stories
and design definitions for any new hazards (A7). No addi-
tional hazards were identified, most likely because we had
recently completed the preliminary hazard analysis. However,
during the sprint we visited the demo site at the river and
observed that the designated takeoff space was quite narrow.
As a result, we identified the new hazard that even small
inaccuracies in GPS localization could cause a UAV to land
close to the edge and topple into the river (A8). This hazard
resulted in modifications to the UAV landing protocols that
included visually checking UAV alignment over the ledge
before issuing the final landing command. The flexibility of the
sprint planning allowed us to prioritize implementation of the
modified mitigation early in Sprint 2. No additional hazards or
faults emerged during the development and testing of stories
assigned to this sprint.

Safety Case & End of Sprint Safety Gateway: As new
features were added and each sprint was completed, the SC
was updated (A9) incrementally and the overall safety of the
product assessed (A10). The safety gateways at the end of each
sprint enabled us to systematically evaluate safety debt and
provided a systematic approach, commensurate with practices
for developing safety-critical software, for tracking progress
towards our end goal and for making a go/no-go decision.

B. Qualitative Discussion

By applying our SafetyScrum approach to the river rescue
scenario we are able to address both aspects of the posed
research question. While we developed an initial plan for all
three sprints, the flexibility of the agile process allowed us

Activity Artifact Type Total , S1 S2 S3
Al System Stories 3 1 0o 2
A2+A8 Hazards 12 3 2
A3 Safety Stories 7 2
A4 Design Definitions 34 16 10 8

Activity Type Total , S1 S2 S3

Development 42 18 10 14
Testing 48 12 20 16

TABLE II: Summary of activities and stories assigned to each
of the three sprints

to replace some of the stories that were initially assigned to
Sprint 3 with new stories that addressed the emergent hazard
related to restricted launch space at the river. At the same
time, the safety-aspects of SafetyScrum provided the structure
and rigor needed to guide us through the systematic hazard
analysis and assurance process. In particular, the discipline
of performing incremental hazard analysis, creating a safety
case, and explicitly reviewing the product’s safety in each
Sprint Safety Gateway, raised awareness of safety issues,
injected safety thinking into our agile development process,
and resulted in a product with more clearly demonstrable
safety. SafetyScrum therefore enabled us to achieve agility
whilst simultaneously maintaining a focus on achieving critical
safety goals.

C. Generalizability to Other Projects

This paper describes a safety process for use within the
Scrum management environment. The process was devel-
oped as a result of our own experiences within only one
project. While we cannot claim generalizability to other project
environments, we contribute to the body of knowledge by
documenting and publishing the process we utilized in our
project. There is significant evidence (discussed in the related
work in Section II) that practitioners are applying agile tech-
niques to diverse regulated and non-regulated safety-critical
domains ranging across autonomous cars, medical devices,
and transportation systems — often without adequate process
guidance. The question is therefore not “can it be done?” but
rather “how can it be done?”

With respect to generalizability, we also note that the
Dronology system meets the traditional definition of a safety
critical system (i.e., a system whose failure or malfunction
may result in death, serious injury to people, extensive loss
of equipment, or property damage) [35], as UAVs can po-
tentially fly into the paths of commercial airlines, crash into
busy highways causing accidents, or collide with bystanders.
However, the likelihood of high severity events may be less
than those of other domains, such as avionics, autonomous
cars, or medical devices, and this clearly influenced the process
we developed. On the other hand, as a result of discussions
with members of the University of Waterloo’s Self-Driving

Car project [51] it emerged that their safety-critical project
had followed a similar, albeit undocumented, agile approach.
While this suggests that SafetyScrum is generalizable to more
diverse projects, we leave the customization of agile processes
across diverse safety-critical domains as an open research
question to be addressed in future work.

VI. THREATS TO VALIDITY

Our study carries several threats to validity [68] which
influence how our results should be interpreted. In terms
of internal validity our method was developed as a result
of lessons we learned in our own project environment. The
project had external stakeholders, an experienced project team
that included professional developers and UAV pilots, and
was conducted over approximately 16 months. However, our
approach has not been tested on external projects, and this
paper should therefore be perceived as a case study that
documents our experiences in a shareable form. In terms of
external validity, different projects have unique characteristics
which clearly impact the way in which an agile approach
might be applied. Potential differentiators include the criti-
cality level of the system, the role played by the software —
for example, whether the software is embedded in a single
system or whether it controls multiple external devices, the
potential for breaking the system into constituent parts to be
developed incrementally, and the extent to which the system
readily supports isolation of safety- and non-safety critical
components. Our UAV system can be described as medium
criticality, non-embedded, with high potential for incremental
delivery of diverse features. Furthermore, features such as
the Ul are easily separated from the core controllers. Our
approach is likely to generalize across other systems exhibiting
similar characteristics; however, we leave the broader question
of applicability to other types of systems as an open question.

VII. ConcLusioN

Industries operating in safety-critical domains are express-
ing significant interest in adopting more agile approaches
in order to be more responsive to market needs. However,
traditional agile development processes are not designed to
rigorously address hazards, faults, mitigation strategies, and
compliance in a safety-critical, potentially regulated, project
environment. To address this lack of guidance, we documented
ten SafetyScrum activities which enable the flexibility of
an agile process while promoting systematic safety analysis
practices that are standard in safety-critical domains.

Hazard definitions, system and safety requirements, design
definitions, features, and code for the first release of Dronology
are publicly available at http://dronology.info.

ACKNOWLEDGMENT

Funding for this work has been provided by the US National
Science Foundation grant US National Science Foundation
Grants CCF:17417881 and CCF:1647342 and by the Austrian
Science Fund (FWF): J3998-N31.

REFERENCES

[1] DolIT Project Management Advisor. https://pma.doit.
wisc.edu/size_factors.html, [Last accessed: 1/1/2018].

[2] Ardupilot: Open source autopilot software, http://
ardupilot.org, [Last accessed: 2/28/2018].

[3] Adelard. Claims, Arguments and Evidence (CAE).
https://www.adelard.com/asce/choosing-asce/cae.html,
[Last accessed: 28/2/2018].

[4] E. Allman. Managing technical debt. Commun. ACM,
55(5):50-55, 2012.

[5] K. Beck. Extreme programming explained - embrace
change. Addison-Wesley, 1990.

[6] K. Beck and et al. The Agile Manifesto, http://
agilemanifesto.org, [Last accessed: 2/28/2018].

[7] BEL-V, BfS, CSN, ISTec, ONR, SSM, STUK. IEC

60880:2013: Licensing of safety critical software for

nuclear reactors (common position of seven european

nuclear regulators and authorised technical support or-

ganisations), 2013.

S. Bellomo, I. Gorton, and R. Kazman. Toward agile

architecture: Insights from 15 years of ATAM data. I[EEE

Software, 32(5):38-45, 2015.

B. W. Boehm and R. Turner. Balancing agility and

discipline: Evaluating and integrating agile and plan-

driven methods. In Proc. of the 26th Int’l Conf. on

Software Engineering, pages 718-719, 2004.

[10] J. Cleland-Huang. Traceability in agile projects. In Soft-
ware and Systems Traceability, pages 265-275. Springer,
2012.

[11] J. Cleland-Huang. Safety stories in agile development.
IEEE Software, 34(4):16-19, 2017.

[12] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mider, and

A. Zisman. Software traceability: trends and future direc-

tions. In Proc. of the on Future of Software Engineering,

pages 55-69, 2014.

J. Cleland-Huang, S. Rayadurgam, P. Mider, and

W. Schifer. Software and systems traceability for safety-

critical projects (dagstuhl seminar 15162). Dagstuhl

Reports, 5(4):76-97, 2015.

C. Comar, F. Gasperoni, and J. Ruiz. Open-do: An open-

source initiative for the development of safety-critical

software. In Proc. of the 4th IET Int’l Conf. on Systems

Safety, pages 1-5. IET, 2009.

A. M. Davis, O. D. Tubio, A. M. Hickey, N. J. Juz-

gado, and A. M. Moreno. Effectiveness of requirements

elicitation techniques: Empirical results derived from a

systematic review. In Proc. of the 14th IEEE Int’l Conf.

on Requirements Engineering, pages 176—185, 2006.

M. Denne and J. Cleland-Huang. Software by Numbers

- Low-Risk, High-Return Development. Prentice Hall,

2004.

T. Dingsgyr, S. Nerur, V. Balijepally, and N. B. Moe. A

decade of agile methodologies: Towards explaining agile

software development, 2012.

[18] O. Doss and T. P. Kelly. Challenges and opportunities in

(8]

(9]

[13]

[14]

[15]

[16]

[17]

[24]

[31]

agile development in safety critical systems: A survey.
SIGSOFT Softw. Eng. Notes, 41(2):30-31, May 2016.
ECSS. ECSS-E-40C: principles and requirements appli-
cable to space software engineering, 2009.

D. Firesmith. Engineering safety requirements, safety
constraints, and safety-critical requirements. Journal of
Object Technology, 3(3):27—42, 2004.

B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien.
Scaling agile methods to regulated environments: An
industry case study. In Proc. of the 35th Int’l Conf. on
Software Engineering, pages 863—-872. IEEE, 2013.
Food and Drug Administration. Guidance for the Content
of Premarket Submissions for Software Contained in
Medical Devices, 2005.

M. Galster and S. Angelov. Understanding the use
of reference architectures in agile software development
projects. In Proc. of the 9th European Conf. on Software
Architecture, pages 268-276, 2015.

A. Ghazarian. Traceability patterns: an approach to
requirement-component traceability in agile software de-
velopment. In Proc. of the 8th Conf. on Applied Com-
puter Science, pages 236-241. WSEAS, 2008.

J. Gorski and K. Lukasiewicz. Assessment of risks
introduced to safety critical software by agile practices
— a software engineer’s perspective. Computer Science,
13(4):165, 2012.

0. Gotel and A. Finkelstein. Extended requirements
traceability: results of an industrial case study. In Proc. of
the 3rd Int’l Symp. on Requirements Engineering, 1997.
P. J. Graydon and C. M. Holloway. An investigation
of proposed techniques for quantifying confidence in
assurance arguments. Saf. Sci., 92:53-65, feb 2017.

W. S. Greenwell, E. A. Strunk, and J. C. Knight. Failure
analysis and the safety-case lifecycle. In Human Error,
Safety and Systems Development, pages 163—176, 2004.
J. Hill and S. Tilley. Creating safety requirements trace-
ability for assuring and recertifying legacy safety-critical
systems. In Proc. of the 18th IEEE Int’l Requirements
Engineering Conf., pages 297-302, 2010.

C. Izurieta, I. Ozkaya, C. B. Seaman, and W. Snipes.
Technical debt: A research roadmap report on the 8th ws
on managing technical debt). ACM SIGSOFT Software
Engineering Notes, 42(1):28-31, 2017.

H. Jonsson, S. Larsson, and S. Punnekkat. Agile practices
in regulated railway software development. In Proc.
of the IEEE 23rd Int’l Symp. on Software Reliability
Engineering Workshops, pages 355-360. IEEE, 2012.
T. P. Kelly and J. A. McDermid. Safety Case Construc-
tion and Reuse Using Patterns. In Safe Comp 97, pages
55-69. Springer London, 1997.

T. P. Kelly and J. A. McDermid. A systematic approach
to safety case maintenance. Reliability Engineering &
System Safety, 71(3):271-284, 2001.

X. Larrucea, A. Combelles, and J. Favaro. Safety-critical
software [guest editors’ introduction]. IEEE Software,
30(3):25-27, 2013.

[35] N. G. Leveson. Safeware: System Safety and Computers.
ACM, New York, NY, USA, 1995.

[36] W. Lin and X. Fan. Software development practice for
fda-compliant medical devices. In Proc. of the 2009
Int’l Conf. on Computational Sciences and Optimization,
volume 2, pages 388-390. IEEE, 2009.

[37] R. R. Lutz and R. M. Woodhouse. Requirements analysis
using forward and backward search. Ann. Software Eng.,
3:459-475, 1997.

[38] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall, 2002.

[39] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak.
Easy approach to requirements syntax (EARS). In Proc.
of the 17th IEEE Int’l Requirements Engineering Conf.,
pages 317-322, 2009.

[40] F. McCaffery, M. Pikkarainen, and I. Richardson. Ahaa—
agile, hybrid assessment method for automotive, safety
critical smes. In Proc. of the 30th Int’l Conf. on Software
Engineering, pages 551-560. ACM, 2008.

[41] M. W. Mwadulo. Suitability of agile methods for safety-
critical systems development: A survey of literature.

[42] The Open-DO Initiative, www.open-do.org, 2013.

[43] R. F. Paige, R. Charalambous, X. Ge, and P. J. Brooke.

Towards agile engineering of high-integrity systems. In

Proc. of the Int’l Conf. on Computer Safety, Reliability,

and Security, pages 30—43. Springer, 2008.

M.-A. Peraldi-Frati and A. Albinet. Requirement trace-

ability in safety critical systems. In EDCC-CARS, pages

11-14, 2010.

M. Rahimi, W. Goss, and J. Cleland-Huang. Evolving

requirements-to-code trace links across versions of a

software system. In Int’l Conf. on Software Maintenance

and Evolution, pages 99-109, 2016.

R. Rasmussen, T. Hughes, J. Jenks, and J. Skach. Adopt-

ing agile in an fda regulated environment. In Proc. of

the 2009 Agile Conf., pages 151-155. IEEE, 2009.

M. Rath, J. Rendal, J. L.C.Guo, J. Cleland-Huang, and

P. Mider. Traceability in the wild: Automatically aug-

menting incomplete trace links. In Proc. of the 40th Int’l

Conf. on Software Engineering, 2018.

[48] D. J. Reifer. Software failure modes and effects analysis.
IEEE Trans. Reliability, R-28,3:247-249, 1979.

[49] P. Rempel, P. Mider, T. Kuschke, and J. Cleland-Huang.

Mind the gap: assessing the conformance of software

traceability to relevant guidelines. In Int’l Conf. on

Software Engineering, pages 943-954, 2014.

S. Robertson. Requirements trawling: techniques for

discovering requirements. Int. J. Hum.-Comput. Stud.,

55(4):405-421, 2001.

J. A. Ross, A. Murashkin, J. H. Liang, M. Antkiewicz,

and K. Czarnecki. Synthesis and exploration of multi-

level, multi-perspective architectures of automotive em-
bedded systems (sosym abstract). In Proc. of the 20th

ACM/IEEE Int’l Conf. on Model Driven Engineering

Languages and Systems, page 178, 2017.

[52] P. A. Rottier and V. Rodrigues. Agile development in

[44]

[45]

[46]

[47]

[50]

[51]

[68]

a medical device company. In Proc. of the Agile 2008
Conf., pages 218-223. IEEE, 2008.

RTCA/EUROCAE. DO-178C/ED-12C: Software consid-
erations in airborne systems and equipment certification,
2011.

T. Stalhane and T. Myklebust. Agile safety analysis.
ACM SIGSOFT Software Eng. Notes, 41(2):27-29, 2016.
T. Stilhane, T. Myklebust, and G. Hanssen. The appli-
cation of safe scrum to iec 61508 certifiable software.
In Proc. of the 11th Int’l Probabilistic Safety Assessment
and Management Conf. and the Annual European Safety
and Reliability Conf., pages 6052-6061, 2012.

Z. Stephenson, J. McDermid, and A. Ward. Health mod-
elling for agility in safety-critical systems development.
2006.

N. R. Storey. Safety Critical Computer Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996.

D. J. Sturtevant. Modular architectures make you agile
in the long run. IEEE Software, 35(1):104-108, 2018.
K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galileo
fault tree analysis tool. In Digest of Papers: FTCS-29,
The 29th Int’l Symp. on Fault-Tolerant Computing, pages
232-235. IEEE Computer Society, 1999.

J. Sutherland. Future of scrum: Parallel pipelining of
sprints in complex projects. In Proc. of the AGILE 2005
Conf., pages 90-102, 2005.

A. Uhl and S. W. Ambler. Point/counterpoint: Model
driven architecture is ready for prime time / agile model
driven development is good enough. [EEE Software,
20(5):70-73, 2003.

U.K. Ministry of Defence. Defence Standard 00-56,
Issue 7: Safety Management Requirements for Defence
Systems. Part 1: Requirements, 2017.

S. H. VanderLeest and A. Buter. Escape the waterfall:
Agile for aerospace. In Proc. of the 28th IEEE/AIAA
Digital Avionics Systems Conf., pages 6-D. IEEE, 2009.
M. Vuori. Agile development of safety-critical software.
Tampere University of Technology. Department of Soft-
ware Systems; 14, 2011.

Y. Wang, J. Ramadani, and S. Wagner. An exploratory
study on applying a scrum development process for
safety-critical systems. In Proc. of the 18th Int’l Conf. on
Product-Focused Software Process Improvement, pages
324-340, 2017.

W. Wu and T. Kelly. Managing architectural design
decisions for safety-critical software systems. In Proc. of
the 2nd Int’l Conf. on Quality of Software Architectures,
pages 59-77, 2006.

C. Yang, P. Liang, and P. Avgeriou. A systematic map-
ping study on the combination of software architecture
and agile development. Journal of Systems and Software,
111:157-184, 2016.

R. K. Yin. Case study research and applications: Design
and methods. Sage publications, 2017.

