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Abstract— This paper considers a generalized version of the
coin weighing problem with a spring scale that lies at the
intersection of group testing and compressed sensing problems.
Given a collection of n ≥ 2 coins of total weight d (for a known
integer d), where the weight of each coin is an unknown integer
in the range of {0, 1, . . . , k} (for a known integer k ≥ 1), the
goal is to determine the weight of each coin by weighing subsets
of coins in a spring scale. The problem is to devise a weighing
strategy that minimizes the average number of weighings over
all possible weight configurations. For d = k = 1, an adaptive
bisecting weighing strategy is known to be optimal. However,
even the simplest non-trivial case of the problem, i.e., d = k = 2,
is still open. For this case, we propose and analyze a simple and
effective adaptive weighing strategy. Our analysis shows that the
proposed strategy requires about 1.365 log

2
n− 0.5 weighings

on average. As n grows unbounded, the proposed strategy, when
compared to an optimal strategy within the commonly-used
class of nested strategies, requires about 31.75% less number of
weighings on average; and in comparison with the information-
theoretic lower bound, it requires at most about 8.16% extra
number of weighings on average.

I. INTRODUCTION

In this work, we consider a generalized version of the coin

weighing (CW) problem with a spring scale [1]. Suppose

that there is a collection of n ≥ 2 coins of total weight

d, where each coin has an unknown integer weight in the

set {0, 1 . . . , k}, for some known integers d ≥ 1 and k ≥ 1.

The goal is to determine the weight of each coin by weighing

subsets of coins in a spring scale. The problem is to devise an

adaptive weighing strategy, where each weighing can depend

on the results of the previous weighings, that minimizes

(i) the maximum number of required weighings over all

possible weight configurations (worst-case setting), or (ii)

the average number of required weighings over all possible

weight configurations (average-case setting).

The CW problem lies at the intersection of group testing

and compressed sensing problems. In particular, for k = 1
and d ≤ n, the CW problem is equivalent to the combinato-

rial quantitative group testing problem, see, e.g., [2]. Also,

for d ≪ n and k ≥ 1, the CW problem is equivalent to the

integral compressed sensing problem where both the signal

and the sensing matrix are integer valued, see, e.g., [3].

For d = k = 1, a simple adaptive bisecting weighing

strategy is optimal in both worst-case and average-case

settings [4]. However, the simplest non-trivial case of the
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problem, i.e., d = k = 2, is still open, and hence the focus of

this work. For the worst-case setting, a simple information-

theoretic argument yields a lower bound on the minimum

required number of weighings by max{log2 n, log3
(

n
2

)

} (see

Theorem 1); and for the average-case setting, a similar

argument gives a lower bound of 2
n+1 log2 n+ n−1

n+1 log3
(

n
2

)

on the minimum expected required number of weighings

(see Theorem 1). Notwithstanding, the question whether

these lower bounds are achievable remains open. For the

worst-case setting, 2 log2 n− 1 weighings are known to be

sufficient, and this bound is achievable by a simple nested

strategy (see [4, Lemma 1]). This quantity also serves as

an upper bound for the average-case setting, and no tighter

achievable upper bound was previously reported.

A. Related Work and Applications

The worst-case setting of the CW problem was originally

proposed in [5] for k = 1 and unknown d, and was

later studied for k = 1 and known d, e.g., in [6]–[8].

Various order-optimal strategies were previously proposed

for unknown d, see, e.g., [6], [9], and for known d, see,

e.g., [1], [10]–[13]. Recently, in [1], Bshouty proposed the

first and only known order-optimal strategy for any k > 1
and unknown d, and no such result exists for any k > 1
and known d. Despite the rich literature on the worst-case

setting, there was no result for the average-case setting of the

CW problem prior to the present work, excluding the results

that trivially carry over from worst case into average case.

The worst-case setting of the CW problem has also been

extensively studied for a wide range of applications, e.g.,

multi-access communication, spectrum sensing, traffic mon-

itoring, anomaly detection, and network tomography, to name

a few (see, e.g., [4], and references therein). Moreover, most

of these applications are being run repeatedly over time, and

for such applications, the average-case performance is ex-

pected to be more relevant than the worst-case performance.

This observation is the primary motivation for studying the

average-case setting of the CW problem in this work.

B. Main Contributions

In this work, we propose and analyze a simple and

effective adaptive weighing strategy for d = k = 2. The

results of our theoretical analysis show that the proposed

strategy requires 2 log2 n− 1 number of weighings in worst

case, and it requires about 1.365 logn− 0.5 number of

weighings on average. (The average-case result is obtained

by a numerical evaluation of the exact recursive formulas,
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derived for the analysis of performance of the proposed

strategy.) This is the first non-trivial achievable upper bound

on the minimum expected required number of weighings for

d = k = 2. Additionally, for the average-case setting, we

design and analyze an optimal strategy within the class of

nested strategies, which are mostly being used in today’s

applications, that requires 2n+1
n+1 logn− 2(n−1)

n+1 weighings on

average. A simple analysis shows that as n grows unbounded,

the proposed strategy, when compared to the optimal nested

strategy, requires about 31.75% less number of weighings

on average; and when compared to the information-theoretic

lower bound, the proposed strategy requires at most about

8.16% extra number of weighings on average.

II. SETUP AND NOTATIONS

Fix an integer l ≥ 1, and let n = 2l. Let N = {1, . . . , n}.

Consider a collection N of n coins, each coin i ∈ N of

an unknown integer weight wi ∈ {0, 1, 2}. We refer to the

set {w1, . . . , wn}, simply denoted by {wi}, as the weight

configuration, or the configuration, for short. For any S ⊆ N ,

denote by w(S) the total weight of the subset S of coins,

i.e., w(S) =
∑

i∈S wi. We assume that the total weight of

N , i.e., w(N), is equal to 2.

The problem is to determine the weight of all coins in N
by weighing subsets of N in a spring scale. In the worst-

case setting of the problem, the goal is to minimize the

maximum number of required weighings over all possible

configurations; and in the average-case setting of the prob-

lem, the goal is to minimize the expected number of required

weighings over all possible configurations, where all possible

configurations are assumed to be equiprobable.

Since w(N) = 2 and wi ∈ {0, 1, 2} for all i ∈ N ,

there are n distinct configurations such that wi = 2 for

some i ∈ N , and wj = 0 for all j ∈ N \ {i}, and there

are
(

n
2

)

distinct configurations such that wi = wj = 1 for

some i, j ∈ N and wk = 0 for all k ∈ N \ {i, j}. We

refer to the first group of configurations as Type-I, and refer

to the second group as Type-II. For example, for n = 2,

the possible configurations {w1, w2} are {2, 0}, {0, 2}, and

{1, 1}, where the first two configurations are Type-I and the

third one is Type-II. For the ease of exposition, we define a

representative function ∆({wi}i∈S) for any S ⊆ N , w(S) =
2, as follows. For any Type-I (sub-) configuration {wi}i∈S ,

∆({wi}i∈S) = 0, and for any Type-II (sub-) configuration

{wi}i∈S , ∆({wi}i∈S) = |i− j|, where wi = wj = 1.

Any adaptive weighing strategy Ψ can be defined as a

sequence {S1, S2, . . . } of subsets of coins that are to be

weighed following the prescribed order, where the choice of

each subset Si can depend on {Sj}
i−1
j=1 and {w(Sj)}

i−1
j=1.

Consider an arbitrary strategy Ψ. Denote by TΨ
ave(n) the

expected number of weighings required by the strategy Ψ
to determine the weight of all coins in N , over all possible

weight configurations. For any subset S of coins, all with

unknown weights, we denote by TΨ
w (s) the expected number

of weighings that the strategy Ψ performs to determine the

weight of all coins in S, where s = |S| and w = w(S). The

expectation is taken over all possible (sub-) configurations

{w̃i}i∈S , w̃i ∈ {0, 1, 2}, such that
∑

i∈S w̃i = w.

For any subset S of coins, all with unknown weights, such

that w(S) = 2, denote by TΨ(s|∆) the expected number

of weighings that the strategy Ψ performs to determine the

weight of all coins in S, given that ∆({wi}i∈S) = ∆, where

s = |S|. Here, the expectation is taken over all possible

(sub-) configurations {w̃i}i∈S , w̃i ∈ {0, 1, 2}, such that
∑

i∈S w̃i = 2 and ∆({w̃i}i∈S) = ∆.

For any disjoint subsets A and B of coins, all with un-

known weights, such that w(A) = 1 and w(B) = 1, denote

by TΨ(a, b) the expected number of weighings required by

the strategy Ψ to determine the weight of all coins in A
and B, where a = |A| and b = |B|. The expectation is

here taken over all possible (sub-) configurations {w̃i}i∈A

and {w̃i}i∈B , w̃i ∈ {0, 1}, such that
∑

i∈A w̃i = 1 and
∑

i∈B w̃i = 1. For convenience, we adopt the convention

TΨ(1, s) = TΨ(s, 1) = TΨ
1 (s).

From now on, whenever the strategy Ψ is clear from the

context, we omit the superscript Ψ, and denote TΨ
ave(n),

TΨ
w (s), TΨ(s|∆), and TΨ(a, b) by Tave(n), Tw(s), T (s|∆),

and T (a, b), respectively. Moreover, we define Tmax(n),
T ⋆
w(s), T

⋆(s|∆), and T ⋆(a, b) similarly as Tave(n), Tw(s),
T (s|∆), and T (a, b), respectively, except for the maximum

number of weighings, instead of the expected number of

weighings, that the strategy Ψ must perform.

Theorem 1. For any weighing strategy Ψ, we have

TΨ
max(n) ≥ max

{

log2 n, log3

(

n

2

)}

and

TΨ
ave(n) ≥

2

n+ 1
log2 n+

n− 1

n+ 1
log3

(

n

2

)

.

Proof. Recall that there are two types of weight configu-

rations: Type-I and Type-II. For any Type-I configuration,

the result of weighing on any subset of coins is either zero

or non-zero, and the number of distinct Type-I configu-

rations is n. Thus, at least log2 n weighings are needed

to distinguish a particular configuration of this type. For

any Type-II configuration, the result of weighing on any

subset of coins can be 0, 1, or 2. Thus, there are
(

n
2

)

distinct Type-II configurations, and to distinguish a particular

configuration of this type, one requires at least log3
(

n
2

)

weighings. Accordingly, for a configuration of an unknown

type, at least max{log2 n, log3
(

n
2

)

} weighings are required

to identify the configuration. Since all configurations are

equiprobable, it can be easily verified that a randomly chosen

configuration is of Type-I or of Type-II with probability
2

n+1 or n−1
n+1 , respectively. Consequently, on average, at

least 2
n+1 log2 n+ n−1

n+1 log3
(

n
2

)

weighings are necessary to

identify a particular configuration of an unknown type.

III. PROPOSED WEIGHING STRATEGY

In this section, we propose a weighing strategy that

determines the weight of all coins, for the setup in Section II.
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For any set S = {i1, . . . , i|S|} such that |S| is a power

of 2, we denote by S1 and S2 the two disjoint subsets

{i1, . . . , i|S|/2} and {i|S|/2+1, . . . , i|S|}, respectively.

The proposed strategy is based on three recursive proce-

dures Π0, Π1, and Π2, described shortly. At the beginning,

the strategy initializes the weight of all coins by zero, i.e.,

ŵi = 0 for all i ∈ N . Then, it starts with the procedure

Π0 over the set N . The weights of coins will be updated

recursively according to the procedures Π0, Π1, and Π2. This

process is terminated once the sum of weights of all coins,
∑

i∈N ŵi, is equal to 2, and the strategy returns {ŵi}i∈N .

The inputs of the procedure Π0 are a set S and its weight

w(S). The procedure Π1 takes as input two disjoint sets A
and B such that w(A) = w(B) = 1, and the procedure Π2

takes as input two disjoint sets A and B such that w(A) =
w(B) = w(A1∪B1) = 1. (Recall that A1 = {i1, . . . , i|A|/2}
and B1 = {j1, . . . , j|B|/2} when A = {i1, . . . , i|A|} and

B = {j1, . . . , j|B|}.) We represent these procedures by

Π0(S), Π1(A,B), and Π2(A,B), respectively.

A. Procedure Π0

For any S = {i}, the procedure Π0(S) updates ŵi by

w(S); and for any S, |S|> 1, the procedure Π0(S) begins

with weighing S1. If w(S1) = 0 or w(S1) = 2, the procedure

Π0(S) continues with Π0(S2) or Π0(S1), respectively. Oth-

erwise, depending on w(S) = 1 or w(S) = 2, the procedure

Π0(S) continues with Π0(S1) or Π1(S1, S2), respectively.

We note that for w(S1) = 0 or w(S1) = 2, the procedure

Π0 follows a simple bisecting strategy, and for w(S1) = 1,

it follows a generalized bisecting strategy defined below.

B. Procedure Π1

For any A = {i} and B = {j}, the procedure Π1(A,B)
updates ŵi and ŵj by 1; For any A and B such that

|A|= 1 and |B|> 1 or |A|> 1 and |B|= 1, the procedure

Π1(A,B) continues with two procedures Π0(A) and Π0(B).
For any A and B such that |A|> 1 and |B|> 1, the

procedure Π1(A,B) weighs A1 ∪ B1. If w(A1 ∪ B1) = 0
or w(A1 ∪ B1) = 2, the procedure Π1(A,B) continues

with Π1(A2, B2) or Π1(A1, B1), respectively; otherwise, it

continues with Π2(A,B).

C. Procedure Π2

For any A = {i1, i2} and B = {j1, j2}, the procedure

Π2(A,B) weighs A1 = {i1}, and updates ŵi1 , ŵi2 , ŵj1 ,

and ŵj2 by w(A1), 1 − w(A1), 1 − w(A1), and w(A1),
respectively. For any A and B such that max(|A|, |B|) > 2
and |A|≤ |B|, the procedure Π2(A,B) weighs A1 ∪ (B2)1.

(Recall that (B2)1 = {j|B|/2+1, . . . , j3|B|/4} when B2 =
{j|B|/2+1, . . . , j|B|}.) If w(A1 ∪ (B2)1) is equal to 0, 1,

or 2, the procedure Π2(A,B) continues with Π1(A2, B1),
Π1(A1, (B2)2), or Π1(A1, (B2)1), respectively. For any A
and B such that max(|A|, |B|) > 2 and |B|< |A|, the pro-

cedure is the same, except for A and B being interchanged.

Example 1. Consider n = 8 coins of weights w3 = w6 = 1
and wi = 0 for all i 6∈ {3, 6}. Let N = {1, . . . , 8}.

Initialize ŵi by 0 for all i ∈ N . Applying Π0(N), the

set {1, . . . , 4} is weighed. Since w({1, . . . , 4}) = 1, the

strategy proceeds with Π1({1, 2, 3, 4}, {5, 6, 7, 8}). Accord-

ing to the strategy, the set {1, 2} ∪ {5, 6} is weighed.

Since w({1, 2} ∪ {5, 6}) = 1 the strategy continues with

Π2({1, 2, 3, 4}, {5, 6, 7, 8}). According to the procedure Π2,

weighing is performed on {1, 2} ∪ {7}. Since w({1, 2} ∪
{7}) = 0, the strategy proceeds with Π1({3, 4}, {5, 6}),
and weighs {3} ∪ {5}. Since w({3} ∪ {5}) = 1, the

strategy continues with Π2({3, 4}, {5, 6}). According to the

procedure Π2, the weighing is performed on {3}. Since

w({3}) = 1, the strategy updates ŵ3 = 1, ŵ4 = 0, ŵ5 = 0,

and ŵ6 = 1. Since
∑

i∈N ŵi = 2, the process is terminated.

IV. ANALYSIS OF THE PROPOSED STARTEGY

In this section, we analyze the average-case and worst-case

performance of the strategy proposed in Section III.

For simplifying the notation, for all 0 ≤ i, j ≤ l, we denote

T (2i, 2j) and T ⋆(2i, 2j) by Ti,j and T ⋆
i,j , respectively.

A. Average-Case Setting

The following two lemmas are useful for computing Ti,j

recursively for different values of i and j. (The proofs of all

lemmas can be found in [14].)

Lemma 1. T0,0 = 0, T1,1 =
3
2 , and for all 1 < i < l,

Ti,i =
3

4
Ti−1,i−1 +

1

4
Ti−2,i−1 +

3

2
.

Lemma 2. For all 1 ≤ j < l, T0,j = j; for all 1 < j < l,
T1,j = j+ 1

4 ; and for all 1 < i ≤ l−1 and 1− i < j ≤ l− i,

Ti,i+j =
3

4
Ti−1,i+j−1+

1

8
Ti−2,i+j−1+

1

8
Ti+j−2,i+j−2+

3

2
.

For any 0 ≤ ∆ ≤ n− 1, define ∆n = n
2 −

∣

∣∆− n
2

∣

∣. For

simplifying the notation, let

q∆,i ,











2i−1∆n

2l−1−2i−1∆n
, ∆n < 2l−(i+1), 2l−(i+1) ≥ 1,

1, ∆n ≥ 2l−(i+1), 2l−(i+1) ≥ 1,

0, otherwise,

for all 1 ≤ i < l, and

q∆,0 ,

{

∆n

2l−1 , ∆n < 2l−1,

1, otherwise.

Also, let q∆,l , 1. Moreover, let

p∆,j ,

{

2l−1−2j∆n

2l−1−2j−1∆n
, ∆n < 2l−1, 2l−1 ≥ 1,

0, otherwise,

for all 1 ≤ j < l, and

p∆,0 ,

{

2l−1−∆n

2l−1 ∆n < 2l−1, 2l−1 ≥ 1

0 otherwise.

The following lemma is useful for computing T (n|∆)
based on the values of Ti,j .

Lemma 3. For any 0 ≤ ∆ ≤ n− 1, we have

T (n|∆) =

l−1
∑

i=0

m∆,i(Tl−i−1,l−i−1 + i+ 1) +m∆,ll
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T (n|∆) T (n2 |∆)

Tl−1,l−1 Tl−2,l−2

... T (2|∆) T (1|∆)

T1,1

p∆,0

q∆,0

p∆,1

q∆,1

p∆,l−2

q∆,l−1

p∆,l−1

Fig. 1. Recursive form of T (n|∆).

where m∆,0 = q∆,0, and

m∆,i = q∆,i

i−1
∏

j=0

p∆,j

for all 1 ≤ i ≤ l.

By combining the results of Lemmas 1–3, we can compute

Tave(n) for the proposed strategy as follows.

Theorem 2. For the proposed strategy, Tave(n) can be

computed as Tave(n) = PMI , where P = [P0, . . . , Pn−1]

is a row vector of length n, where P∆ = 2(n−∆)
n(n+1) for all

0 ≤ ∆ ≤ n− 1; and I = [I1, . . . , Il, l]
⊤ is a column vector

of length l + 1, where Ii = Tl−i,l−i + i for all 1 ≤ i ≤ l;
and M = (m∆,i)0≤∆≤n−1,0≤i≤l is an n × (l + 1) matrix,

where {m∆,i} are defined in Lemma 3.

Proof. Fix an arbitrary 0 ≤ ∆ ≤ n − 1. It is easy to

verify that there exist n − ∆ distinct configurations {wi}
such that ∆({wi}) = ∆. Also, the total number of possible

configurations are n+
(

n
2

)

= n(n+1)
2 . Thus, for a randomly

chosen configuration {wi}, the probability that ∆({wi}) =

∆ is equal to P∆ = 2(n−∆)
n(n+1) . Then, it is easy to see that

Tave(n) =
∑n−1

∆=0 P∆T (n|∆). Re-writing this equation in

matrix form by using the result of Lemma 3, the result of

the theorem follows immediately.

B. Worst-Case Setting

Theorem 3. For the proposed strategy, we have

Tmax(n) = 2 log2 n− 1.

Proof. First, we prove that Tmax(n) = T ⋆
2 (n) = T ⋆

2 (
n
2 ) + 2.

It is easy to verify that T ⋆(n|∆) and T ⋆
i,i can be computed

recursively similar to T (n|∆) and Ti,i, respectively, as shown

in Fig. 1 and Fig. 2, by replacing T with T ⋆ everywhere.

As can be seen in Fig. 1, the straight lines correspond to the

cases in which one weighing resolves the weights of half of

the coins; whereas, the diagonal lines correspond to the cases

in which the weight of none of the coins is determined. That

is, the diagonal lines correspond to the cases that require

more number of weighings. Moreover, from T ⋆(n|∆) to

T ⋆(n4 ,
n
4 ), there are two ways (see Fig. 2); one way is

through T ⋆(n2 |∆) which requires two weighings, and the

other way is through T ⋆(n2 ,
n
2 ) which requires, in worst case,

three weighings, noting that T ⋆(n2 ,
n
2 ) = T ⋆(n4 ,

n
4 )+2. Thus,

among the diagonal lines, the first one, reaching to T ⋆(n2 ,
n
2 ),

yields the maximum number of required weighings. By

these arguments, T ⋆
2 (n) = T ⋆(n2 ,

n
2 ) + 1. Similarly, it can

be shown that T ⋆
2 (

n
2 ) = T ⋆(n4 ,

n
4 ) + 1. Thus, T ⋆

2 (n) =

Ti,i

Ti−1,i−1 Ti−1,i−1

Ti−2,i−1

1
2

1
2

1
2

1
2

Fig. 2. Recursive form of Ti,i.

T ⋆
2 (

n
2 ) + 2. More generally, we can write the recursive

formula T ⋆
2 (2

i) = T ⋆
2 (2

i−1) + 2 for all 1 < i ≤ l. Noting

that T ⋆
2 (2) = 1, by solving the above recursion, we have

T ⋆
2 (n) = 2 log2 n− 1.

V. OPTIMAL NESTED WEIGHING STRATEGY

In a nested strategy, followed by weighing a subset S of

coins, if the weight of some coin(s) in S remains undeter-

mined, the next weighing must be performed on a proper

subset of S. Moreover, if there are multiple such subsets S,

this procedure must be performed separately for each S.

A. Average-Case Setting

For any collection S of coins, denote by d(S) the number

of coins in S with non-zero weight. For any 1 ≤ s ≤ n,

w ∈ {1, 2}, and d ∈ {1, 2}, denote by Ψd(s, w) an optimal

nested strategy for all collections S of coins, each with

an unknown weight in the set {0, 1, 2}, such that |S|= s,

w(S) = w, and d(S) = d. That is, the expected number

of weighings required by the strategy Ψd(s, w) over all

such S (for any given s, w, and d) is minimum, among

all possible nested strategies. Similarly, define Ψ(s, w) as

Ψd(s, w), except when the expectation is taken over all S
such that |S|= s and w(S) = w, and define the strategy Ψ
as {Ψ(s, w)}1≤s≤n,1≤w≤2. We wish to design the strategy

Ψ and analyze TΨ
ave(n).

Take an arbitrary collection S of coins such that |S|= s,

w(S) = w, and d(S) = d. Consider the application of a

nested strategy, represented by Ψm
d (s, w), on S as follows.

The strategy Ψm
d (s, w) begins with weighing an arbitrary

subset R of coins in S of size 1 ≤ m ≤ |S|−1. If w(R) = 0
or w(R) = 2, the strategy Ψm

d (s, w) proceeds with applying

the strategy Ψd(s−m,w) on S\R, or the strategy Ψd(m,w)
on R, respectively. Otherwise, the strategy Ψm

d (s, w) applies

the strategies Ψd(m, 1) and Ψd(s−m, 1) on R and S \ R,

respectively. Denote by Tm
w,d(s) the expected number of

weighings required by the strategy Ψm
d (s, w) over all such

S, and let T opt
w,d(s) , min1≤m≤s−1 T

m
w,d(s). Similarly, define

the strategy Ψm(s, w) the same as Ψm
d (s, w), except when

Ψd is replaced by Ψ everywhere. Denote by Tm
w (s) the

expected number of weighings required by the strategy

Ψm(s, w) over all S such that |S|= s and w(S) = w,

and let T opt
w (s) , min1≤m≤s−1 T

m
w (s). A simple recursive

argument yields that for the strategy Ψ defined earlier, we

have TΨ
ave(n) = T opt

2 (n).
For the ease of notation, for any 2 ≤ s ≤ n and

1 ≤ m ≤ s− 1, we define αi,j(s,m) ,
(

s−i
m−j

)

/
(

s
m

)

for all

i, j such that 0 ≤ m− j ≤ s− i, and define αi,j(s,m) , 0,
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otherwise. For brevity, we simply refer to αi,j(s,m) by αi,j

whenever s and m are clear from the context.

Based on the above definitions, the following results can

be shown.

Lemma 4. For any 2 ≤ s ≤ n and 1 ≤ m ≤ s− 1, we have

Tm
1 (s) = α1,0(T

opt
1 (s−m) + 1) + α1,1(T

opt
1 (m) + 1),

where T opt
1 (1) = 0. Moreover, for any 3 ≤ s ≤ n and

1 ≤ m ≤ s− 1, we have

Tm
2 (s) =

2

s+ 1
Tm
2,1(s) +

s− 1

s+ 1
Tm
2,2(s),

Tm
2,1(s) = α1,0(T

opt
2,1 (s−m) + 1) + α1,1(T

opt
2,1 (m) + 1),

and

Tm
2,2(s) = α2,0(T

opt
2,2 (s−m) + 1) + α2,2(T

opt
2,2 (m) + 1)

+ 2α2,1(T
opt
1 (m) + T opt

1 (s−m) + 1),

where T opt
2,1 (1) = T opt

2,2 (1) = 0, and T opt
2,1 (2) = T opt

2,2 (2) = 1.

Lemma 5. For any 2 ≤ s ≤ n, we have ⌊ s
2⌋, ⌈

s
2⌉ ∈

argmin1≤m≤s−1 T
m
1 (s); for any 3 ≤ s ≤ n and d ∈ {1, 2},

we have ⌊ s
2⌋, ⌈

s
2⌉ ∈ argmin1≤m≤s−1 T

m
2,d(s); and for any

3 ≤ s ≤ n, we have ⌊ s
2⌋, ⌈

s
2⌉ ∈ argmin1≤m≤s−1 T

m
2 (s).

Lemma 6. For any 0 ≤ i ≤ l, we have T opt
1 (2i) = i, and

T opt
2 (2i) = (i−1)2i+1+i+2

2i+1 .

Recall that for the optimal nested strategy Ψ defined

earlier, we have TΨ
ave(n) = T opt

2 (n). Thus the following

result is immediate by the result of Lemma 6.

Theorem 4. For the optimal nested strategy Ψ, we have

Tave(n) =
2n+1
n+1 log2 n− 2(n−1)

n+1 .

B. Worst-Case Setting

Consider an optimal nested strategy Ψ⋆ for the worst-case

setting, defined similarly as the strategy Ψ for the average-

case setting, except when considering the maximum number

of required weighings (instead of the expected number of

required weighings). Then, the following result holds [4].

Theorem 5. [4] For the optimal nested strategy Ψ⋆, we

have Tmax(n) = 2 log2 n− 1.

VI. COMPARISON RESULTS

In this section, we present our numerical results for the

performance of the proposed strategy in both the average-

case and worst-case settings. For each setting, the perfor-

mance of the proposed strategy is compared with the perfor-

mance of the optimal nested strategy (defined in Section V)

and the information-theoretic lower bound (Theorem 1).

Fig. 3 illustrates that the proposed strategy, in the average-

case setting, significantly outperforms the optimal nested

strategy. Also, in the worst-case setting, the proposed strategy

achieves the same performance as the nested strategy. Our

numerical evaluations suggest that the expected number

of weighings required by the proposed strategy, which is
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Lower Bound (Worst Case)

1.365 log n - 0.5

Fig. 3. The average-case and worst-case results for the proposed strategy,
the optimal nested strategy, and the information-theoretic lower bound.

computable using the recursive formulas in Section IV, can

be also approximated by 1.365 log2 n− 0.5 as n grows un-

bounded (see Fig. 3). In this asymptotic regime, the optimal

nested strategy requires 2 log2 n − 2 weighings on average,

and the information-theoretic lower bound is 2 log3 n ≈
1.262 log2 n. Thus, a simple calculation shows that the

proposed strategy, when compared to the optimal nested

strategy, requires about 31.75% less number of weighings

on average. Additionally, when compared to the information-

theoretic lower bound, the proposed strategy requires at most

about 8.16% extra number of weighings on average.
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