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Abstract— As sensing and instrumentation play an increas-
ingly important role in systems controlled over wired and
wireless networks, the need to better understand delay-sensitive
communication becomes a prime issue. Along these lines, this
article studies the operation of data links that employ incre-
mental redundancy as a practical means to protect information
from the effects of unreliable channels. Specifically, this work
extends a powerful methodology termed sequential differential
optimization to choose near-optimal block sizes for hybrid
ARQ over erasure channels. Furthermore, results show that
the impact of the coding strategy adopted and the propensity
of the channel to erase symbols naturally decouple when
analyzing throughput. Overall, block size selection is motivated
by normal approximations on the probability of decoding
success at every stage of the incremental transmission process.
This novel perspective, which rigorously bridges hybrid ARQ
and coding, offers a pragmatic means to select code rates and
blocklengths for incremental redundancy.

I. INTRODUCTION

As the reach of the Internet keeps expanding beyond
its traditional applications and incorporates more sensing,
actuation, and cyber-physical systems, there is a pressing
need to better understand delay-sensitive communication
over unreliable channels. The increasing popularity of in-
teractive communications, live gaming over mobile devices,
and augmented reality also contribute to a growing interest
in low-latency connections. These circumstances have been
an important motivating factor underlying several recent
inquiries pertaining to information transfers under stringent
delay constraints. Such contributions include the divergence
framework for short blocklengths [1], [2], the interplay
between coding and queueing [3], and ongoing work on the
age of information [4], [5].

Hybrid automatic repeat request (ARQ) has been identi-
fied as a key approach to deliver information in a timely
manner over unreliable channels. It can be designed to
adapt gracefully to channel degradations associated with
fading and interference, and it has found wide application
in theory and practice. In some sense, hybrid ARQ is a
means to leverage limited feedback between a source and
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its destination to ensure the timely delivery of information,
especially in short blocklength regimes. Researchers have
developed techniques to analyze the benefits of commu-
nication systems with hybrid ARQ [6], [7]. Yet, until re-
cently, brute force searches, simulation studies, and ad-hoc
schemes remained the primary means of parameter selection
in terms of blocklengths and code rate for such systems,
see, e.g., [8]. This situation changed when Vakilinia et al.
introduced a novel approach for parameter selection [9],
[10]. Their proposed methodology captures the effects of
the physical channel on code performance by defining an
approximate empirical distribution on the probability that
a rate compatible code decodes successfully at each of its
available rates. Based on the ensuing distribution, the authors
then put forth a numerically efficient, sequential differential
optimization (SDO) algorithm that yields best operational
parameters for hybrid ARQ.

In this work, we extend the algorithm of [10] to erasure
channels, and we characterize performance for a class of
random codes. Our results provide an algorithmic blueprint
for parameter selection applied to hybrid ARQ and random
codes, a popular combination in the literature. The analysis
reveals a clear separation between the effects of the erasure
channel and the attributes of the underlying code in selecting
block sizes. For the adopted coding scheme, a systematic
approach that links decoding success to the number of
observed symbols is derived based on moment matching.
Altogether, the performance of a system with incremental
redundancy hinges on three main components: the coding
scheme employed, the behavior of the erasure channel,
and the quantization effects associated with hybrid ARQ
blocks. These components, along with design decisions, are
discussed below.

II. CODING SCHEME AND INCREMENTAL REDUNDANCY

We assume that the communication system employs for-
ward error correction to protect information bits from po-
tential channel erasures, as in [3]. We denote the size of the
original message by k. Redundancy is added using a random
coding scheme, which serves as an analytically tractable
proxy for more practical codes [11], [12]. Specifically, the
encoding of a message proceeds as follows. First, a random
binary parity-check matrix of size (n — k) X n is generated,
with every entry selected uniformly over the binary alphabet,
independently from other elements. The nullspace of this
matrix yields a codebook for the transmission. The mapping
of a message to a codeword is then performed using an



arbitrary choice function known to both the source and the
destination. Maximum-likelihood decoding is performed at
the destination to recover the original message. This coding
scheme is known to perform well for large n, and it enables
the fine selection of a code rate, as any rate of the form k/n,
where k < n, is admissible.

Under hybrid ARQ, encoded symbols are transmitted in
distinct sub-blocks, rather than all at once. Untransmitted
bits can simply be labeled as erasures during early decoding
attempts. Furthermore, the statistical symmetry in the random
code structure ensures that the probability of decoding suc-
cess only depends on the number of erased symbols, rather
than their specific locations. In this context, one can examine
the effective blocklength after the transmission of j sub-
blocks or, equivalently, one can focus on the size of sub-
block j. Throughout, we represent the effective blocklength
upon transmission of j sub-blocks by n;, and we write [; to
denote the number of symbols transmitted as part of step j.
These quantities are related via the equations n; = > 7_, [;
and [; = n; —n;j_ for all j € [m], where, for convenience,
we adopt the convention ng = 0. Consider the use of such a
random code paired to a memoryless binary erasure channel
with erasure probability 0 < ¢ < 1. Let ¢ = (¢1,...,¢n)
denote the codeword corresponding to a given message X =
($1,...,l‘k). Also, let c; 4 {Cj T < g < nl} for
i € [m] be the ith sub-block of this codeword; consequently,
the length of sub-block i is |¢;|= ;.

Each transmission round proceeds as follows. First, the
source sends sub-block ci. The destination then receives
sub-block c;, or a proper subset thereof, depending on the
realized erasure pattern. The destination seeks to recover the
message x, and responds by sending an ACK or NACK
to the source (over an erasure/error-free feedback channel)
based on the outcome of the decoding attempt. If the source
receives a NACK, it continues with the transmission of sub-
block co, and waits for an ACK or NACK. This action
repeats until (i) the source receives an ACK and forgoes
the transmission of the remaining sub-blocks, if any; or
(i1) the source exhausts all the available sub-blocks for this
codeword. In case (i), the transmission round is deemed
successful, and the source proceeds to the next message;
whereas, in case (ii), the transmission round fails. In the
event of a failure, the destination discards the information
aggregated since the beginning of the round, and the source
starts a new transmission round for the message x. Within
the framework where a maximum of m sub-blocks are
available for retransmission, our goal is to identify sub-block
sizes {l; ;’;1 such that the expected number of transmitted
symbols until the message becomes decodable is minimized.

ITII. ASYMPTOTIC ANALYSIS OF RANDOM CODES

For the random coding scheme at hand, we use Ps(k, n,r)
to represent the probability of decoding success as a function
of the number of symbols available at the receiver, r. We
note that the probability of decoding failure as a function
of r necessarily becomes P;(k,n,r) £ 1 — Ps(k,n,r). The

following result holds. (The proofs of all lemmas in this
section can be found in [13].)

Lemma 1. The probability of decoding success for the
aforementioned random code is

0, r<k
P(k,nr) £ AT (1=27079) b <r<n (1)
1, r>n.

Although the number of sent symbols and, consequently,
the number of symbols available at the receiver cannot
exceed the blocklength in practice, we extend function
Pi(k,n,r) in (1) to cases where r > n. The utility of
this definition will become manifest shortly, when comparing
coding schemes.

Lemma 2. For any k and r, the function Ps(k,n,r) is
monotone decreasing in n.

Let R; be the number of observed (non-erased) symbols
available to the receiver at time ¢, and let Pgr, be the
discrete probability measure associated with R;. Then, R,
has a binomial distribution with parameters ¢ and 1 — e, i.e.,
Pg,(r) = (%)€="(1—¢)". Moreover, the probability that the
destination sends an ACK at time ¢ or earlier becomes

Poac(t) 21— Pr(k,n,t —e)Pg,(t —¢)

for k <t <mn; Pax(t) =0 for t < k. Consequently, we get
Prack(t) £ 1 — Paac(t). In words, Pack(n;) and Paack(n;)
designate the probabilities that, after the transmission of
the 7th block, the source receives an ACK and a NACK,
respectively.

Let S € [m] be the index of the last sub-block that the
source sends within a transmission round, and let ng be the
corresponding number of symbols. Note that .S and ng are
random variables; the expected number of symbols, E[ng],
is given by

E[”S] - 222 g (Pack(ni) - Pack(ni—l))
+ nlpack(nl) + nmPnack(nm) (2)
= Z:’;l(m — Nig1) Pack (i) + 1.

Expectation E[ng] is a multivariate function of {n;};c [y, —1]-
For any given k,n,m, and e, the problem is to find
{ni}icpm—1) such that E[ns] is minimum.

A. Asymptotic Behavior over Reliable Channels

We initiate our analysis by focusing on the special case
of a lossless channel, i.e., ¢ = 0. We consider an elementary
version of the problem where the transmitted symbols are
received in sequence (not in blocks), and a decoding attempt
takes place every time a new symbol arrives (not only after
the reception of a new sub-block). For k and n fixed, let M,
be a random variable that denotes the number of symbols
needed for the message to become decodable, following the
prescribed order. Under this definition, we get £ < M,, <
n and Pr(M, < r) = Py(k,n,r). We wish to study the
asymptotic behavior of the mean and variance of M,, as n
grows unbounded.



Denote the Erdds-Borwein constant by ¢y = Z?f e =

i=1 2t—1
1.6066951524..., and the digital search tree constant by ¢; =
dim1 (2—;1)2

= 1.1373387363.... The following infinite
sums of products are key components in our analysis.

Lemma 3. For a; = 27 2 —279), it holds that
Zzo a; =1
2% ia; = ¢o = 1.6066951524...
S i2a; = 3+ co + 1 = 5.3255032015...

j= 1+1(

Let Py, be the discrete probability measure for M, i.e.,
Py, (r) = Py(k,n,r)—Ps(k,n,r—1). It is easy to verify that
Par, (1) = 25" Py(k,nyr) = 26 [T~ (1 — 202 (k)
for k <r <mn;and Py, (r) =0 forr < k and r > n. We

emphasize that ", Pu, (r) = 1. Thus, the mean of M,

is given by
n n—=k . n—Fk )
E[M,] =Y rPu,(r) =Y (k+27 [] (1-27).
r=k i=0 j=i+1

Similarly, the second moment of M,, is given by

E[M?2] = Zn: r?Pur, (r S(kﬂ')%*i n]'f (1—279).
r=k i=0 j=i+1
Theorem 1. For any k,
nlirrgo E[M,] =k+co 3)
nh_}rlgo Var[M,,] = co + ¢1. 4)

Proof: Taking the limit, as n becomes large, we get
lim E[M,] =377, (k +14)2~ Hg (1 =27 7)

n—oo
lim E[M?2] = > 00, (k2 + 2ki +42)2

n—oo

By Lemma 3, we have

lim E[

n—oo

Mn] = k —|— Co.
Similarly, we have
lim E[M2] = k2 + 2keo + (CO +¢o + ).
n— 00

Also, since the variance of M, can readily be computed as

Var[M,,] = E[M?2] — E[M,,]?, we obtain
nh_)ngo Var[M,,] = k? + 2kco + (c§ + co + c1) — (k + co)?
=co+ 1.
This completes the proof. |

B. Asymptotic Behavior over Unreliable Channels

We turn to the more elaborate problem whereby symbols
are transmitted over a lossy channel. That is, individual
symbols are erased with probability ¢ > 0. For k, n, and €
fixed, we represent the length of a communication round by
N,,. Note that £ < N,, < n. We can partition rounds into two
categories: (i) the receiver can decode before all the symbols
are transmitted, and /V,, corresponds to the first instant at
which the message can be successfully recovered; (ii) all

B H] z+1(1_2 J)'

the symbols are exhausted during the transmission phase,
and N, = n irrespective of the outcome of the decoding
process. Again, we wish to study the asymptotic behavior of
the mean and variance of N,, as n increases to infinity.

Define E, as the number of symbols erased prior to
observing the rth unerased symbols at the receiver. We write
Pg,. to denote the discrete probability measure associated
with F,., and we note that this random variable possesses
a negative binomial distribution with parameters r and e.
In other words, we have Pg (e) = ("7 !)e¢(1 — €)" for
e > 0. Then, Pr(N,, = t) = 3.'_, Py, (t — r)Pas, (r) for
k<t<mn, and Pr(N, =n) =1- Y1 Pr(N, =t) =
S S P (t —7)Par, (r). Thus, we can write

E[N,] = > tPr(N, =1t)
= 302k Y min(t, n) Pe, (t — ) Par, (7)
=3 o min(r + e,n)Pg, (€) Py, (7).
Similarly, we can write

= Z Zmin((r +e)?,

r=k e=0

TL2)PET (G)PA{n (7’)

Theorem 2. For any k and e,

plk,0) 2 Tim B[N, = S2% )
o2(k,e) & Tim Var[N,] = FE@etata o

n—oo

(1—e)?
Proof: Observing that min(r + e, n) < r + e, we get
E[Nn] < 3204 2eso(r + €)Pp, ()P, (r)

for all n. For a memoryless erasure channel, F, possesses a
negative binomial distribution with parameters r and € and

Yemo(r+e)Pe, (e) =132 Pr,(e) + 302 ePr, (¢)

— 7+ E[B] =r/(1-¢)
for all r. Thus, for any n, we have
1 n E|M,
BN, < 1 S rPan, (1) = Sl )

Next, we establish a lower bound for E[N,,];

E[Nn] = 320 2ezo (r + €) P, (€) Par, ().

Since Ps(k, n,r) is monotone decreasing in n and Py, (1) =
2k=7 P (k,n,r) for all k < r < n, we gather that Py, (r) is
monotone decreasing in n for all £ < r < n. This implies
that Pys, (r) > limy, o0 Py, (1) for all n and all k£ < r <

n. Note that lim,, o Par, (1) = ok—r H?;_Hl(l —279).
Thus, for all n, we can write ‘
BN =Y Y (r+e)Pg (2" J[ (1-27)
r=k e=0 j=r—k+1
=Y 2N (rte)Ps.(e) [ (1-27).
r==k e=0 j=r—k+1

®)



Using Theorem 1, we deduce that the RHS of (7) converges
to (k4 co)/(1 — €) as n grows unbounded. Furthermore, in
view of Lemma 3, we see that the RHS of (8) converges to

> 2’“ T o+ e)Pr () 122, iy (1 —279)
T1_¢ k2 S g (1= 279)
k+ Co

1 0o N—i TTOO
:—1_62120(1€+Z)2 Hj:lJrl(l_ 1_6.

Combining (7) and (8), the sandwich theorem yields (5).
By adopting a similar approach, we can obtain upper
bound

E [N <300 i 2ooto(r + €)* P, () Par, (r)

9-7) =

E[M?2] + €E[M,,] ©)
(1—¢)?
and lower bound
N21 =) (r+e)*Pg, ()P, (r)
r=k e=0 . (10)
> ZQk TZ r+e)?Pg(e) [ (1-27)
e=0 j=r—k+1

for all n. As n goes to infinity, the RHS of (9) converges to
((k+co)® + (k+ co)e+ co + 1) /(1 — €)* by Theorem 1.
Likewise, by Lemma 3, the RHS of (10) converges to

e S+ 02 I a1 27)
- ﬁ Sisolk +)27 [T}, (1—277)
221 O(k+l)2 H] H—l(

(1— €)
= ((k+co)?®+ (k+co)e+co+c1) /(1 —€)*.

Combining (9) and (10), the sandwich theorem offers a tight
characterization of the asymptotic second moment of N,

—277)

lim IE[NQ] (k+co)? + (k+co)e + co + c1

n— o0 (1 — e)
From its first and second moments, we can infer the
variance of N,; lim, o Var[N,] = lim, . E[N?] —
limy, 00 E[Np)2 = ((k + co)e +co +c1) /(1 — €)?. O

IV. SEQUENTIAL DIFFERENTIAL OPTIMIZATION

In this section, we apply sequential differential optimiza-
tion (SDO) to incremental redundancy in the context of
random codes over erasure channels [10]. This technique
works with continuous random variables and, as such, we
must find a suitable approximation for the distribution of
discrete random variable N,,. To begin, we emphasize that
P, matches the cumulative distribution function (CDF) of
N, for t < n. Below, we adopt moment matching to find a
smooth approximation to P,k [14]. The mean and variance
of N,, in the asymptotic regime where n becomes large,
are given in Theorem 2. We can therefore approximate P,k
by the CDF of a real-valued random variable X, which we
denote by F', where E[X] = pu(k, ¢) and Var[X] = o2(k,¢).

Henceforth, we replace ju(k,€) and o(k,€) by the implicit
forms g and o2, respectively, for notational convenience.
The CDF approximation enables us to utilize SDO to find
near optimal values for sub-block sizes {n;}. This technique
works as follows. Given {n; }1<;<;, the optimal value of n;,
1 <% < m, can be computed via setting the partial derivative
of E[ns], which is defined as E[ng] when P, is replaced
by F, with respect to n;_; to zero and solving for n;. The
structure of SDO immediately yields the following result.

Result 1. For any 1 < ¢ < m, an approximation of
the optimal value of n;, denoted by n;, as a function of
{"j}1<j<i is obtained recursively via

dF (z)
dx

n; = MNi—1 + | (F(Ri—1) — F(n;—2)) (

~ . . A
where ny is given and ng = —oo.

Proof: Since E[ng] = 37" 11(ni—ni+1)F(ni)+nm, we

have
OE[ns) dF (x
F — .
8711 (nl) + (nl n2) dx T=n1
Setting a["s] = 0 and solving for ny yields the result for

1 = 2. Similarly, it can be seen that

OE[ng dF (x
8511 ] = F(nl) — F(nifl) + (nz - ni+1) di ) x:ni.
Setting BE["S] = 0 yields the result for all 2 <7 <m. O

Normal Approximation: Paralleling the steps in [10],
we first approximate the distribution of N,, by a normal
distribution N (1,0%) with mean p and variance o2, as
defined above. The CDF of N,, is then approximated by
F(z) £1-Q(XL), where Q(z) = \/% [ e~t/24dt is the
complementary CDF of a standard Gaussian variable. Note
that dF(m) —1Q'(2L) where Q'(z) £ —#e‘wz/?

For any k, m, and €, an approximation of the optimal value
of n;, denoted by n;, is given by

Py = i 1+ KQ <u> s (w))
X (lQ' (w

)]

for all 1 < 4 < m, where n; is given, and 79 2 o,
Log-Normal Approximation: An alternate candidate ap-
proximation for P, is given by the log-normal distribution
LN (j1x,02) with parameters i, = In(pu?/\/p? + 02) and
o? = In(1 + o%/p?). That is, the CDF of N, can be

approximated by F(z) £ Q(h]%“—) Note that, in this

dF, (z)

case, 4L) :—;mm )
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Fig. 1. A comparison between exhaustive search (ES), the SDO op-
timization based on the normal approximation (SDO-NA) and the log-
normal approximation (SDO-LNA). While SDO-based methods are more
computationally efficient, ensuing performance is nearly indistinguishable.

For any k, m, and €, an approximation of the optimal value
of n;, denoted by n;, is given by

~ ~ lnﬁi_ — My lnﬁi_ — My
e [ G N G )
(g (=)’
MNi—10% Ox

for all 1 < 4 < m, where n; is given, and 79 £0.

V. RESULTS

In this section, we first compare the performance of a
system where parameters are obtained via exhaustive search
to that of a competing implementation with parameters
tuned using SDO, both with the normal approximation (NA)
and the log-normal approximation (LNA). Figure 1 depicts
throughput T £ kP,q(n)/E[ns] versus message size k
for e = 0.5, n € {88,104}, and m € {2,4}. As can be
seen, both SDO-NA and SDO-LNA result in near optimal
throughput, with the performance curves being essentially
indistinguishable. For scenarios beyond those shown in the
figure, our extensive numerical evaluations suggest that
SDO-LNA slightly outperforms SDO-NA.

Figure 2 shows the effect of the number of sub-blocks
(m) on the throughput (7") as a function of the blocklength
(n), for k = 32 and ¢ = 0.5. When n is fixed, the
throughput increases with m; this is to be expected. Still, the
benefits in terms of throughout for m > 5 becomes relatively
small, offering diminishing returns. This suggests that a small
number of feedback messages suffice to achieve a throughput
close to the maximum throughput obtained with unlimited
feedback, an encouraging result for pragmatic systems.

More generally, the methodology developed in this work
offers a technical pathway to using incremental redundancy
for queueing analysis [3], [7] or age of information prob-
lems [4], [5] over erasure channels. In addition, SDO may
also play a role in real-time scheduling [15], fundamental
limits of control under communication constraints [16], and
learning methods for communication systems.

0.5 T T T T T T
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0.35

Throughput (T)

03
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o m=3
v m=4 ||
* m=5
m=16

. . . . . .
70 80 90 100 110 120
Blocklength (n)

Fig. 2. Throughput (7T") as a function of blocklength (n) for different
constraints on the maximum number of sub-blocks (m). The optimal
blocklength is very robust to constraint m, and largely dictated by channel
characteristics.
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