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Abstract—Good API design enables many clients to effectively
use the core functionality implemented by the APIs. For real-
world applications however, correctly using the APIs and identi-
fying what methods to use and how to invoke them appropriately
can be challenging. Researchers have developed a number of API
synthesis approaches that enable a semantically rich form of API
completion where the client provides a description of desired
functionality, e.g., in the form of test suites, and the automatic
tools create method sequences using the desired APIs based on
the given correctness criteria (e.g., all given tests pass). However,
existing API synthesis approaches are largely limited to creating
single basic blocks of code and do not readily handle multiple
blocks in the presence of loops (or recursion) and complex test
executions. A key issue with handling multiple blocks is the very
large space of possible method sequences and their combinations.

This paper introduces EDSYNTH, an API synthesis approach
that explores the sequence spaces on-demand during the test
execution; that is, the given tests not only provide a validation
mechanism - as is common in test-driven API synthesis — but
also play a vital role in guiding the space exploration by helping
prune much of it. EDSYNTH follows the spirit of recent work
on test-execution-driven synthesis and lazily initializes candidates
during the execution of given tests where the part of the candidate
completion that is actually executed directly determines the
generation of future candidates. To further optimize the space
exploration, EDSYNTH ranks API candidates based on a set of
pre-defined heuristics.

We evaluate EDSYNTH’s ability to synthesize complex APIs in
the presence of conditional statements, loops and multiple basic
blocks. The experimental results show that EDSYNTH is effective
at handling synthesis tasks with multiple API sequences in both
the conditions and bodies of loops/branches; moreover, when
applied to synthesis of straight-line code, EDSYNTH compares
well with a state-of-the-art API synthesis tool that only handles
straight-line code. The experiments show that EDSYNTH’s rank-
ing strategies help reduce synthesis time by 43%.

1. INTRODUCTION

Good API design enables many clients to effectively use the
core functionality implemented by the APIs. For real-world
applications however, correctly using the APIs in general, and
identifying what methods to use and how to invoke them
appropriately by providing valid values for all parameters
in particular, can be challenging. Prior work shows that
even experienced programmers might spend hours trying to
understand how to use a simple API [1].

To facilitate writing code against complex APIs, researchers
have developed a number of approaches [1]-[7] to support
synthesis of code fragments that make appropriate use of the
APIs and provide a semantically rich form of API completion.
For effective space exploration, some synthesis techniques
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require users to provide queries in natural language [6], [7]
as correctness criteria and synthesize a suitable code fragment
that satisfies the given query. Other API synthesis techniques
rely on existing code corpus to suggest “statistically similar”
code [1], [4], [5] based on the context similarity [2], [8],
which assume that a similar API usage already exists in the
code base. More recent work on SYPET [3] uses SAT solvers,
graph-reachability analysis and Petri nets to synthesize method
sequences with respect to given test suites. While existing
synthesis approaches for complex APIs are well-founded and
handle various practical synthesis problems, previous work is
largely limited to creating single basic blocks of code and does
not readily handle multiple blocks in the presence of loops
(or recursion) and complex tests. A key issue with handling
multiple blocks is the very large size of the space of possible
method sequences and their combinations.

This paper introduces EDSYNTH, a synthesis approach for
creating code fragments that comprise of method sequences
for multiple basic blocks against complex APIs with re-
spect to given test suites, which characterize the expected
behavior of synthesized fragments. Our key insight is to
explore the method sequence spaces on-demand — during
test execution; therefore, the given tests not only provide a
validation mechanism — as is common in test-driven synthesis
— but also play a vital role in guiding the space exploration
by helping prune much of it. EDSYNTH lazily initializes
candidates during the execution of given tests where the part
of the candidate completion that is actually executed directly
determines the generation of future candidates. To illustrate,
consider synthesizing a while-condition and the body of the
while-loop, if a test execution returns a false value for while-
condition, all combinations of the while-loop body are pruned
from the search, which may contains thousands of candidates.
Such lazy candidate generation is particularly useful in loops
and conditionals, where the part of the candidate that is
actually executed directly determines the generation of future
candidates. This foundation enables EDSYNTH to naturally
support API synthesis in conditionals and loops, as well as
synthesizing multiple API blocks without any special handles
compared to traditional synthesizing techniques [9]-[15].

Given a partial program (i.e., sketch [15]) with unknown
method sequence fragments (“holes”) and a test suite that char-
acterizes the correctness specification, EDSYNTH compiles a
sketch once which may represent thousands of candidates, exe-
cutes the test suite against the sketch and dynamically selects
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candidates to fill in the “holes” of the incomplete program
using the EDSKETCH synthesis engine [16]. Whenever the
test execution raises a failure (runtime failure or test failure),
EDSYNTH backtracks the search immediately and fetches the
next candidate until the space of candidates is exhausted or a
complete program that satisfies all tests is found. EDSYNTH
handles the combinatorial explosion issue with the runtime
information of the test execution.

To further expedite the search process, EDSYNTH ranks
candidates using a set of heuristics that fit particularly well
with on-demand candidate generation. E.g., when EDSYNTH
initializes a candidate of the method invocation, if there does
not exist any arguments or intermediate values that are in the
type of a method parameter, this API is ignored as one of its
parameters cannot be initialized based on the Java semantics.

To evaluate EDSYNTH, we first demonstrate its ability
to synthesize API sequences in loops and conditionals as
well as synthesizing multiple blocks of APIs with 12 API
synthesis tasks. EDSYNTH completes all tasks in an average
of 4 minutes, while 75% are completed in 1 minute. We
then compare EDSYNTH with a state-of-the-art API synthesis
tool called SYPET using 38 straight-line tasks in loop-free
programs since SYPET only handles straight-line tasks. Within
a time limit of 30 minutes, EDSYNTH completes 30 tasks in
an average of 67 seconds, while SYPET completes 34 tasks
in an average of 53 seconds with advanced graph-reachability
analysis. We also discuss our effort to extend an existing API
synthesis technique SYPET for conditionals and loops, aiming
to illustrate the fundamental hardness of this extension for
the traditional test-based API synthesis technique. We finally
investigate the efficacy of our prioritization strategies, and the
result shows that these strategies effectively reduce 43% of the
synthesis time.

This paper makes the following contributions:

o Synthesizing API sequences with Loops and Condi-
tionals. We introduce a novel approach to synthesize
multiple API sequences at different control points, es-
pecially in loops and conditionals where one test may
reach multiple basic blocks to synthesize;

o Lazy Candidate Exploration for API Sequences.
EDSYNTH builds on test-execution-driven synthesis [16]
to substantially prune a large number of API sequence
candidates and naturally supports API synthesis in loops
and conditionals. On-demand candidate generation is par-
ticularly helpful where the previously executed candidates
in conditions directly determine the generation of next
candidates in the loop bodies;

o Prioritization Strategies. We introduce ranking strate-
gies to prioritize candidates based on heuristics that
work in synergy with on-demand candidate generation.
The experimental results show that our strategies can
effectively expedite the search process.

II. BACKGROUND AND ILLUSTRATIVE EXAMPLES

In this section, we first define the problem of API syn-
thesis using a straight-line example in loop-free program. To
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(A) A method that contains an unknown API sequence

//Compute the ith eigenvalue of a matrix
1.Vector2D eigenvalue (RealMatrix arg0O, int argl) {
2. //Synthesize a sequence of APIs

//for desired functionality

3.}

(B) A given test case that specifies the desired behavior
1l.public static boolean test0() throws Throwable {
2. double[][] mat = new double[][]1{{0,-20},{10,10}};
3. RealMatrix matrix = new Array2DRowRealMatrix (mat);
4. Vector2D result = eigenvalue (matrix, 0);

5. Vector2D target = new Vector2D(5,5*Math.sqrt (7));
6. return Math.abs (result.getX()-target.getX())<le-6
&& Math.abs (result.getY()-target.get¥Y())<le-6;
7.}
(C) Input configuration JSON file for SYPET written by users
1.
2. "methodName": "eigenvalue",
3. "srcTypes": [ "RealMatrix", "int"],
4. '"paramNames": ["argO", "argl"],
5. "tgtType": "Vector2D",
6. "packages": ["org.apache.commons.math3.linear"],
7. "testPath": "TestSource.java"
8.}

(D) Input sketch for EDSYNTH with similar information
1.Vector2D eigenvalue (RealMatrix arg0, int argl) {
2. EdSynth.INVOKE (0) /* Hole IDx/

3. .addParameter (RealMatrix.class, arg0)

4. .addParameter (int.class, argl)

5. .setReturnType (Vector2D.class)

6. .addPackage ("org.apache.commons.math3.linear")
7. .invoke();

8.}

(E) A solution generated by EDSYNTH based on the test suite

1.EdSynth.INVOKE (0)

2. EigenDecomposition res0
EigenDecomposition (arg0);

double resl res0.getImagEigenvalue (argl) ;
double res2 resO.getRealEigenvalue (argl);

Vector2D res3 new Vector2D (res2, resl);

.return res3;

new
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Fig. 1. A synthesis example of straight-line API sequence

illustrate the limitation of existing API synthesis techniques
on loops and conditionals, we present a synthesis task that
involves unknown APIs on both the while-condition and the
body of the loop. Lastly, we present our preliminary study
on the usage of APIs in loops and conditionals using a set
of large-scale open source projects. The examples used in
this section come from the Apache-Math library [17], which
consists of 95k lines of code, 541 classes, and 5k methods.

A. Problem Definition

API synthesis is an approach that generates a sequence of
method invocations to perform a desired functionality based
on the given input types, arguments and the output type of
the API sequence. Similar to other API synthesis tools [2],



[3], EDSYNTH defines the desired behavior as the satisfaction
of all test cases. We present an example of the API synthesis
in Figure 1 (A), which tries to create an API sequence to
compute the i*" eigenvalue of a matrix. Several test cases
are provided as correctness criteria and we highlight one of
them in Figure 1 (B). This example is brought from the
evaluation of SYPET [3], a state-of-the-art API synthesizer
that compares favorably with other synthesis tools [2], [18].
The authors find this task by mining the StackOverflow forum
where developers post their questions and seek for the answers.
This API synthesis task is not trivial and even experienced
developers spend hours trying to solve the problem [1], [3].
In this scenario, developers know visible objects, have ideas
about the scope of the relevant APIs and can specify the output
type they plan to receive as the output of the API sequence.
Considering the large number of method invocations provided
by the open source projects, the search space of candidates’
for this example can be as large as 10'5.

We show an input configuration file for SYPET in Fig-
ure 1 (C). SYPET asks for the visible variables, libraries
that specify the scope of the API exploration as well as the
output type of the API sequence. Figure 1 (D) presents the
input of EDSYNTH for the same synthesis task. In order to
complete a desired task, developers use EdSynth.INVOKE ()
methods provided by EDSYNTH to register visible variables
(addparameter()), define the scope of API exploration
(addpackage () ) and set the target type of the API sequence
(setReturnType ()). This example indicates that the input
for EDSYNTH is also required by other techniques.

API synthesis tools return a desired method sequence that
satisfies the given test suite. Figure 1 (E) presents a synthesized
method sequence from EDSYNTH that pass all test cases. This
solution is semantically identical to the result from SYPET
using the same test suite. Given that our experimental envi-
ronment is different from SYPET, we could not fully replicate
their experiments. Based on their report, SYPET completes
this task in 164 seconds. Using our machine, EDSYNTH
synthesizes the desired API sequence in 62 seconds whereas
SYPET throws an out of memory exception.

B. Synthesizing API Sequences in Loops and Conditionals

Figure 2 presents a task that synthesizes both the condition
and the body of the while-loop using API sequences. Existing
techniques [1]-[3], [18] do not handle multiple API blocks in
loops or if-branches where one test may reach multiple basic
blocks to synthesize. In this example, developers try to use a
vector iterator to conduct the element-by-element division for
a RealVector and returns an OpenMapRealVector object.
Shown as Figure 2 (A), with the insight that the element-
by-element division requires a while-loop, developers write a
code skeleton with a while-loop and leave the condition and
the body as “holes”. To specify the expected behavior of the
synthesis task, users provide a suite of test cases and Figure 2
(B) highlights one of them written in JUnit framework. Taking

'We describe how we calculate this space in Section IV
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(A) A code skeleton that has APIs in both loop condition and body

1.public OpenMapRealVector ebeDivide (RealVector v){

2. checkVectorDimensions (v.getDimension());

3. OpenMapRealVector res = new

OpenMapRealVector (this) ;

Iterator iter res.entries.iterator();

while (/+Hole 0x/(Boolean)EdSynth.INVOKE (0)...){
/*Hole 1x/ EdSynth.INVOKE (1)...;

}

return res;

W W ~J o Ul

(B) A test case written in the JUnit framework

@Test
l.public void testBasicFunctions() {

2. RealVector v_ebeDivide = vl.ebeDivide (v2);
3. double[] result_ebeDivide = {0.25d, 0.4d, 0.5d};
4. assertClose ("compare vect",v_ebeDivide.getData(),

result_ebeDivide,

5.1

normTolerance) ;

(C) A solution generated by EDSYNTH that passes all tests

1. EdSynth.INVOKE (0) :
2 iter.hasNext ()

3. EdSynth.INVOKE (1) :
4., iter.advance();

5 Object ol = iter.key();
6 Object 02

7 res.setEntry (ol,

divideval (v,
02);

itr);

Fig. 2. An API synthesis example with multiple APIs in a loop

a program sketch that specifies the high-level user insight
and a suite of test cases that define the expected behavior,
EDSYNTH completes the low-level implementation details for
the synthesis task.

Figure 2 (C) presents a solution generated by EDSYNTH that
satisfies all test cases. This solution is semantically identical
to the original implementation in the library based on the
manual inspection. The search space of candidates for this
API synthesis task can be as large as 9.4 billion and EDSYNTH
finds this solution in 16 seconds (including compilation and
test execution time) after exploring 7.6k candidates.

C. Preliminary Study of APIs in Loops and Conditionals

We discuss our preliminary study on the use of APIs in
conditions and bodies of loops and conditionals where one test
may reach multiple basic blocks to synthesize. We first select
top 10 popular Java projects from Github, following the spirit
of prior works [19], [20]. Github is a widely-used repository
for open source projects that allows users to mark the projects
they are interested in with stars. Leveraging Github API, we
construct a dataset of Java projects and sort them by their
number of stars. The entire dataset contains 3m lines of code,
31k classes and 251k methods.

Using this small but representative dataset, we calculate
the number of conditions with APIs for loops (while loops
and for loops) and if-else branches. Our result shows that
29% of loops and 41% of if-branches use APIs in their
conditions. And for these loops and if-branches that have APIs



in their conditions, almost all of them have at least one method
invocations in the body of loops or branches, and 59% have
more than one consecutive APIs in their body. Although our
dataset is relatively small, our preliminary study brings the
attention to extend the scope of API synthesis: APIs have
been widely adopted in the conditions and bodies of loops
and if-branches. To the best of our knowledge, none of the
existing API synthesis techniques supports API synthesis for
conditions and bodies of loops or if-branches where one test
may reach multiple basic blocks to synthesize.

III. APPROACH

In this section, we explain how we synthesize API se-
quences during the test execution that naturally supports loops
and conditionals. We then discuss our prioritization strategies
that aim to expedite the synthesis process.

A. Synthesizing During Test Execution

EDSYNTH takes a sketch with holes and a given test suite as
input, trying to fill all holes and generate a complete program
such that all test cases pass. User specifies holes for unknown
APIs (EdSynth.INVOKE ()) as a regular method invocation,
which can be used at any locations including conditions
and bodies of loops/if-branches. Therefore, EDSYNTH does
not require additional handling for conditionals and loops
where one test may reach multiple basic blocks to synthesize,
because the method invocation provided by EDSYNTH is
treated exactly the same as a regular method invocation during
the test execution. EDSYNTH only compiles the user-provided
sketch once and generates candidates on demand, i.e., if the
condition is evaluated to be false, the candidates for the body
of the loops or if-branches will not be generated.

Algorithm 1 illustrates the execution-driven synthesizing
procedure [16]. When the test execution reaches a hole at
the first time, EDSYNTH initializes this hole and contin-
ues executing the program based on the selected candidate.
If this candidate throws a runtime exception or fails in a
test assertion, EDSYNTH breaks from the current execution
(line 13) and executes the test again from the beginning. When
the program backtracks, EDSYNTH increments the counter
(line 7), thus when the test execution reaches a hole again,
EDSYNTH selects the next candidate for the hole based on
the counter, and executes the program with the new candidate.
This process stops when a generated candidate passes all tests
or the entire search space of candidates is explored.
Constructing API Sequence. Shown as Algorithm 2, when
the test execution first reaches the hole of unknown API
sequence (hole.isNotInitialized()), EDSYNTH lazily
generates the APl sequence and invokes them in place
using the function sketchAPISequence (). The function
sketchAPISequence () dynamically generates candidates
for API sequences when the test execution first reaches the
“hole”. If this method invocation chain has been initialized,
this chain will be used consistently across all test cases (line 5).
Yet if this hole is not reached by the test execution, its
candidate initialization will not be triggered. In the function
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Algorithm 1: Test-Execution-Driven Synthesis [16]

Input : Partial program P with holes, test suite 7'
Output: Complete Program P’ that pass all test cases

1 Function sketch () is

2 do

3 try

4 L exploreCurrentChoice();
5 catch BacktrackException

6 | nextChoice() ;

7 while incrementCounter(),

8 Function exploreCurrentChoice() is

9 try

foreach test € T do
| testrun() ;

catch TestFailureException
L throw BacktrackException;

printSolution() ;

| searchExit(); /» if only one result needed =/

sketchAPISequence (), EDSYNTH first yields a set of con-
straints described in the next section of ranking strategies.
Based on these constraints (rule), EDSYNTH incrementally
inserts a given number of method calls into the sequence
(rule.stmt). The inserted method is invoked via reflection.
If it throws any runtime exception, EDSYNTH backtracks
immediately and re-executes the whole program from the very
beginning. Whenever the test execution reaches the hole again,
it selects the next candidate (line 15) based on the incremented
counter (Algorithm 1 line 7).

Single Method Generation. For each API in the unknown
API blocks, EDSYNTH generates a vector of method can-
didates based on the generated constraints (rule, line 10)
and the constraints from the Java syntax. Considering a large
amount of classes in the libraries, EDSYNTH only collects all
methods from the given libraries once and reuse them for the
entire synthesis process. Shown as the function sketchAPI (),
for each method invocation, EDSYNTH selects all type in the
search scope, fetches all methods of these types (line 20)
and filters out the infeasible methods based on the generated
constraints and Java syntax constraints. If there does not
exist a given argument or intermediate value with the type
of a parameter in the method m, this method will not be
considered because one of its parameters cannot be initial-
ized. The selected methods are put into a vector of method
candidates for this unknown API. EDSYNTH dynamically
selects a candidate method with a non-deterministic choose ()
operator. To complete the selected method candidate (line 23),
EDSYNTH further non-deterministically selects receiver object
and parameters of this method from given arguments and
intermediate values. Finally, EDSYNTH returns this generated
method call, invokes it using reflection and incrementally
inserts more invocations into the API sequence.

Following the same spirit of other API synthesis tools [2],
[3], we only consider one method invocation for each



Algorithm 2: API Candidate Generation

Input : Program hole hole, Maximum length of the API
sequence len, Input variables vars
Output: Invocation result result of generated API sequence
1 Function execute () is
2 if hole.isNotlnitialized() then

3 L return hole.sketchAPISequence();
4 else
5 L return hole.getAPISequence().invoke(vars);

Function sketchAPISequence () is

rule +— getConstraints(len).choose();
sequence <— O, args <— vars;

for int i=0; i<rule.stmt; i++ do
call < sketchAPI(rule, i);

try

L

catch Exception e
L reExeute();

sequence <— sequence U call;

e ® 9

result <— call.invoke(args);
args <— args U result;

16

17
18

hole.setAPISequence(sequence);
| return getReturnVal(rule, args);

Function sketchAPI(rule, i) is

// Generate single API sketch

methods <— fetchMethods(hole.getClasses(), rule, i);
method < methods.choose();

// Complete expressions holes in methods
calls < method.fillParameters(hole.getArgs(i), rule);
return calls.choose();

19

20
21

22
23

statement. E.g., EDSYNTH only considers a method call
iterator.next () for one statement, but will not consider
method chains like iterator.next ().toString() when
it synthesizes a single method invocation. The method chain
will be represented as multiple API calls: Object obj
iterator.next () and String str obj.toString().
Similar to SYPET, EDSYNTH currently only supports variables
as receiver objects and parameters, without considering field
dereferences derived from these variables. E.g., field deref-
erences like node.val are not considered while node is an
element in a linked list and val is the integer value of this el-
ement. EDSKETCH supports field dereferences sketching [16]
and we leave field dereference for EDSYNTH as future work.

Advanced Java Feature Support Many Java libraries use
parametric polymorphism. Existing techniques require special
models based on static analysis to handle generic types [2],
[3]. Without additional modeling, EDSYNTH supports API
sequences with generic types by leveraging the runtime infor-
mation. We present an example of generic type in Figure 3.
EDSYNTH also supports reflections and native calls, which
can hardly be translated to SAT (refer to EDSKETCH [16]). If
users are not clear about the return type of the sequence, they
can set the return type as null, and EDSYNTH will consider
all types as well as the void type.
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B. Prioritization Strategies.

Once the test execution triggers on-demand candidate ex-
ploration, EDSYNTH first generates a set of pre-defined con-
straints to rank the candidates (line 7). These constraints divide
the search space of the API candidates to multiple sub-spaces
with more constraints. EDSYNTH generates 4 elements to
prioritize the candidates: the number of API invocations in the
method sequence (rule.stmt), the statement that generates the
return object (rule.rtn), the maximum distance that interme-
diate values must be consumed (rule.vc), and the maximum
number of repetitive APIs in the method sequence (rule.rep).
We describe the effect of each constraint element as below.
The number of API calls. Intuitively, the search space of the
API sequence increases if EDSYNTH wants to synthesize more
methods for the “hole”. Therefore, we prioritize the candidates
with the fewer API invocations and increase the bound of API
calls until we reach the given bound from users or the pre-set
bound for the number of API calls. For each unknown API
hole, this bound is set as 4 by default and is configurable
by the end users. Yet EDSYNTH can synthesize multiple API
blocks while each of them contains a given bound of APIs.
For instance, the fifth task shown in Table I synthesizes an if-
condition with one API, a while-loop-condition with one API
invocation and 4 APIs (in total of 6 API calls) in the body
of loops/if-branches. It can be a while-loop nested with an if-
condition or vice versa, and the 4 APIs can be inside the loop
but not within the if-branch, inside the if-branch body nested
in the loop, or even outside the loop.

The statement that generates the return object. Method
invocations appearing later in the execution are more likely to
have more information because it can use parameters generated
before. Therefore, these methods tend to generate the return
value for the API sequence. We prioritize the statements that
are called later during the test execution and add a constraint
that the selected statement must generate a value with the
return type. Figure 1 illustrates this idea that the return value
res3 of the API sequence is the output of the last API call.
Maximum distance that values must be consumed. Similar
to other API synthesis tools [1], [3], EDSYNTH assumes that
all arguments and intermediate values generated from previous
method invocations must be consumed in later API calls. With
the insight that arguments and intermediate values should be
consumed as fast as possible, we set up a constraint that
all values must be used within a given bound of statements.
For instance, shown as Figure 1 (E), given a constraint that
all intermediate values must be consumed in the distance
of two statements, the code at line 5 that initializes a new
Vector2D object res3 must consume the intermediate value
resl generated at line 3. To eliminate duplication, we ensure
that there exists at least one value used at the maximum value-
consumption distance. If the maximum value-consumption
distance is set as 2, at least one value is used at the second
next statement, otherwise all objects will be consumed at the
next statement, which has been explored with rule.vc = 1.

Maximum number of repetitive APIs. With the notion that



developers hardly use the same API for multiple times in a
method sequence, we restrict the number of repetitive APIs in
a method sequence, and relax this bound by allowing multiple
repetitive APIs.

These prioritization strategies are based on the heuristics
for API synthesis, which may not always expedite the API
synthesis process or lead to the correct answer. Therefore,
we conduct a comprehensive evaluation for these strategies
in Section IV-C.

IV. EVALUATION

To evaluate EDSYNTH, we first demonstrate our ability to
synthesize multiple API blocks where one test may reach
multiple basic blocks to synthesize. In particular, we select 12
tasks with loops and conditionals derived from open source
projects. To further compare EDSYNTH’s performance with
existing techniques, we use a benchmark of 38 straight-line
tasks in loop-free programs that have been used to evaluate
SYPET, a state-of-the-art API synthesis approach, followed by
a discussion of extending existing API synthesis techniques for
loops and conditionals. Lastly, we investigate the effectiveness
of our prioritization strategies based on the same benchmark.
We address the following research questions in the evaluation:

e Can EDSYNTH complete multiple API blocks that may
be reached by a single test execution, especially for loops
and conditionals?

« How well does EDSYNTH perform on synthesizing
straight-line code compared to other techniques?

« Can our prioritization strategies effectively expedite the
synthesizing process?

All performance experiments are conducted on a MacBook
Pro with 2.7 GHz Inter core i5 processor and 8GB memory
running OS X version 10.12.4. The maximum heap memory
is set as 2 Gigabytes.

A. Synthesizing Multiple Sequences in Loops and Conditionals

To evaluate EDSYNTH’s ability to synthesize API blocks
that may be reached by the same test execution, especially
for the conditions and bodies of loops/if-branches, we select
12 tasks that use 1) at least one API in the condition, 2) at
least one method invocation in the body of loops/branches,
3) at least one test case in the test suite should covered
both the conditions and the bodies of the loops/branches
and 4) every hole of the partial program is covered by at
least one test case. We use the original test suites from
the open source projects as the correctness criteria, which
are usually written in JUnit test framework. These tasks
are selected from three open source Java projects that have
been widely used in the evaluation of software testing [21],
[22]: JFreeChart [23], Apache-Math [17], and Closure
compiler [24] for Javascript. We manually create program
sketches and introduce holes for API sequences based on the
original implementation.

Case Study. Figure 3 presents an example from Closure
project [24] with generic types and an if-else branch. Using the
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(A) A program sketch with generic types and unknown APIs

) ...

Ju

. public void wvisit (...

2. T type = ...;
3. 1if ((Boolean) EdSynth.INVOKE (0)
.addArgument (Object.class, type)...) {
4. EdSynth.INVOKE (1)
.addArgument (Object.class, type)
.setReturnType (null) ...;
5. } else {
6. EdSynth.INVOKE (2)
.addArgument (Object.class, type)

.setReturnType (null) ...;

7.}

(B) A sample test case of Closure project with special format

1. public void testTypedExterns() {
2. testSets(false, externs, js, output,
"{alert=[[Foo.prototypell}");

3.}

(C) A solution found by EDSYNTH that satisfies all test cases

EdSynth.INVOKE (0) :
typeSystem.isInvalidatingType (type)
EdSynth.INVOKE (1) :
prop.invalidate();
EdSynth.INVOKE (2) :
prop.addTypeToSkip (type) ;

o O W N

Fig. 3. A synthesis task from open source projects that uses generic types

visit () method, developers try to set properties as ineligible,
but they are not sure about the implementation details of
the branch and they also don’t know the return type of the
branch, but they are able to provide some high-level insights
of the if-else skeleton and ask EDSYNTH to complete the
condition of the if-branch, the if-body as well as the else-
body. Note that the visible variable type is in generic type.
Without additional modeling, EDSYNTH simply requires users
to define the argument type as Object .class. The type of the
argument is necessary because if a variable is nul1l, EDSYNTH
is not able to identify its type using reflection at runtime. Users
further set the return type as null since they are not sure
about the return type, which might be void. In particular, the
test cases of the Closure project are known to be organized
in a non-conventional way of using scripts rather than the
standard JUnit framework. Figure 3 (B) presents a test case
from Closure project that covers one branch of this if-else
statement, written in this special test format. Our practical
test-execution-driven synthesis approach does not have special
requirements on the test format and can be applied to large-
scale projects in the presence of libraries.

Evaluation Results. Table I lists these 12 subjects, including
basic information of the open source projects (lines of code
Loc and the number of test cases #Tests), a brief summary
of each synthesis task (Column Description) and the number
of test cases that reaches the “holes” (Column #7est). Column
#Cond represents the number of APIs in conditions of loops/if-
branches. The 2if indicates that EDSYNTH synthesizes a total
of 2 method invocations in the if-condition expressions. It



TABLE 1
SUBJECTS WITH MULTIPLE API SEQUENCES IN LOOPS AND CONDITIONALS

Project | ID | Description | #Cond  #Stmt Space  #Tests #Run  Time(s)
Chart 1 createAndAddEntity (): Created an entity for the axis 3if 3 57x1018 1 497 18
Loc: 90k; 2 addBaseTimelineException (): Add a segment 1wh 1 2.4k 2 2 12
#Tests:2.2k 3 addBaseTimelineException (): Add a segment 1if 3 180.3m 1 23 13
Math 4 ebeDivide () : Element-by-element division in a vector 1wh 4 9.4b 1 7.6k 16
Loc: 95k 5 add () : Optimized method to add two RealVectors 1if, 1wh 4 565.2b 1 10 1
#Tests: 3.6k | 6 | setEntry (): Set entry in specified row and column 3if 2 93x1014 1 529 33
7 append () : append a vector to an existing one 1wh 3 208.8m 1 53 1

8 | visit (): sets properties as ineligible 1if 2 9k 57 1 3

Closure 9 applyCollapses (): Collapse variable declarations 1if, 1wh 2 12.5b 6  125.0k 220
Loc: 90k 10 | remove (): Remove this node lif 3 l4x1iolt 10 1724k 333
#Tests: 7.8k | 11 flattenReferences (): Flattens to collapsible properties 2if 2 7.0m 23 9 6
12 | removeVar (): remove var if it has been coalesced 3if 3 1.8x1014 28 195.1k 2.3k

*if represents the total number of synthesized APIs in if-conditions, and *wh represents the total number of generated methods in while loops.

can be an API chain of two methods in an if-condition, an
if-condition and an else-if-condition, or nested if-conditions.
Similarly, we use /wh to represent a while-condition with one
API call. The column #Stmt represents the total number of
synthesized APIs in the body of the conditions/loops, and these
APIs may scatter in different branches. Column Space shows
the search space of API sequence candidates with respect to
the identified solution. Column #7ests represents the numbers
of provided test cases for the synthesis. Column #Run shows
the number of executed program candidates when EDSYNTH
finds the first solution that passes all test cases. Column Time
represents the total performance time including the program
compilation time and the test execution time when EDSYNTH
finds the first solution.

Following other API synthesis techqulvles we define the
search space of program candidates as )} (m X vP)? where
N is the number of synthesized APIs in the correct solution,
m is the total number of methods collected from the input
objects, ap represents the average number of parameters for
these m methods, and v is the number of given input variables.
We define the search space as is because each argument in a
method candidate can have a maximum of v options and we
incrementally insert more APIs into the sequence searching
for a desired solution. Note that it is just an estimated search
space because API candidates are dynamically generated based
on the previous APIs and constraints, and not all candidates
in the search space will be generated based on the on-demand
candidate generation.

On average, EDSYNTH explores 41.7k program candidates
when it finds the API sequences that satisfy all test assertions.
Our on-demand candidate generation approach can substan-
tially prune a significant portion of candidates. In our ex-
periment, EDSYNTH completes partial programs by executing
only a very small amount of candidates (less than 0.001%).
Regarding the performance time, 75% of synthesis tasks can
be done in 1 minute. We also observe that EDSYNTH does
not require many test cases to synthesize an API sequence. In
particular, some tasks with multiple holes in both the while-
condition and the while-body can be synthesized using a single
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JUnit test case, such as the subject No.4 shown in Figure 2. We
manually validate each synthesized program to ensure that it
is semantically identical to the original implementation. To the
best of our knowledge, none of these 12 tasks can be address
by the state-of-the-art API synthesizers.

B. Synthesizing Straight-Line API sequences

To further compare EDSYNTH’s synthesizing efficacy with

other API synthesizers, we curate a benchmark of 38 synthesis
tasks for straight-line APIs in loop-free program. 30 of them
are used in the original evaluation of SYPET [3]. The 30
synthesis tasks used in SYPET evaluation are collected from 4
open source projects based on StackOverflow online forum and
Github repositories, and the corresponding test cases are man-
ually created in an incremental manner until SYPET can find
a correct solution with respect to the original implementation.
To eliminate the overfitting issue of using SYPET’s dataset,
we add another 8 tasks derived from the same open source
projects. We select SYPET as it is known as the state-of-the-
art API synthesizer using advanced graph reachability analysis,
which compares favorably with other synthesis tools [2],
[18]. As we cannot replicate the experiments with the same
machine used in SYPET’s evaluation, we execute it under our
experiment setting (with smaller memory compared to their
machine) and report the comparison result. We set up a time
limit as 30 minutes for our experiments, the same as the default
setting of SYPET.
Evaluation Results. Table II reports the 38 subjects with brief
descriptions. With ranking strategies, EDSYNTH successfully
synthesizes 30 subjects with an average of 67 seconds. We
manually investigate the tasks that EDSYNTH could not gener-
ate a solution within the time limit and find that these outliers
usually have a relatively large distance for the intermediate
value consumption, thus EDSYNTH de-prioritizes these candi-
dates. For instance, shown as Figure 4 (A), the input argument
argl is not consumed until the 6" statements, indicating
that the maximum distance of the value consumption is 6.
Therefore, EDSYNTH fails to prioritize the correct solution.



TABLE 11
STRAIGHT-LINE SUBJECTS

SYPET EDSYNTH

ID | Description #Tests . ‘With Rankin, ‘Without Rankin

b #APL  Time(s) | #API Space Time(s) #Rgun Time(s) #Ru%l
1 Compute the pseudo-inverse of a matrix 1 3 41 3 1.7b 6 1.8k 12 5.3k
2 Compute the inner product between two vectors 1 3 24 2 258.6m 2 124 3 134
3 Determine the roots of a polynomial equation 1 3 35 3 23.1t 109 9.0k 380 69.3k
4 | Compute the singular value decomposition of a matrix 1 3 24 3 45.5b 3 286 8 993
5 Invert a square matrix 1 3 28 2 12.7m 2 135 3 217
6 | Solve a system of linear equations 1 6 115 - 1022 - 146.7k - 959.7k
7 Compute the outer product between two vectors 1 4 37 2 258.6m 2 117 3 127
8 | Predict a value from a sample by linear regression 2 3 244 3 18.1b 517 3.7k 4 3.8k
9 | Compute the ith eigenvalue of a matrix 2 - 1 4 101® 62 211.2k 339 850.3k
10 | Scale a rectangle by a given ratio 1 4 36 3 502.0b 314 32.0m 710 18.3m
11 | Shear a rectangle and get its bounds 1 4 36 3 502.0b 308  31.9m 133 13.1m
12 | Rotate a rectangle about the origin by quadrants 1 4 17 3 32.2b 2 907 3 2.6k
13 | Rotate 2-D shape by the specified angle about a point 2 4 33 - 1018 - 19.7m - 182m
14 | Perform a translation on a rectangle 1 4 26 3 502.0b 308  322m - 55.0m
15 | Intersect a rectangle and an ellipse 1 3 11 2 10.1m 2 40 1 3
16 | Compute number of days since a date 2 3 22 3 45.8b 37 80.8k 70  111.6k
17 | Subtract two dates considering timezone 3 4 408 3 2.3t 56  150.4k 122 2142k
18 | Determine if a year is a leap year 3 4 68 3 45.8b 24 102.3k 3 1.2k
19 | Return the day of a date string 2 3 11 3 2.5t 42 2529k 43 57.7k
20 | Find the number of days of a month in a date string 2 4 83 - 1016 - 38.Im - 5.6m
21 | Find the day of the week of a date string 2 4 44 - 1016 - 19.4m - 5.4m
22 | Compute age given date of birth 2 3 30 3 45.8b 63  158.6k 86 174.1k
23 | Compute the offset for a specified line in a document 1 3 19 3 1.7t 5 1.2k 11 4.0k
24 | Get a paragraph element given its offset in a document 1 3 24 3 1.7t 4 1k 11 3.8k
25 | Obtain the title of a webpage specified by a URL 1 3 110 3 1.1b 35 10.7k 35 19.2k
26 | Return doctype of XML document generated by string 1 6 21 - 1019 - 5.4m - 5.6m
27 | Generate an XML element from a string 1 6 24 - 1019 - 3.8m - 4.8m
28 | Read XML document from a file 1 3 14 3 5.5b 4 3.9k 5 2.8k
29 | Generate an XML from file and query it using XPath 1 6 78 - 1026 - 3.2m - 3.3m
30 | Get the value of root attribute from a XML file 1 5 17 - 1018 - 13.0m - 13.8m
31 | Check if a point is inside a rectangle 8 5 66 1 3.1k 0.5 1 0.4 1
32 | Check if a line segment intersects a rectangle. 8 - 1 2 63.1m 1 224 2 265
33 | Compute number of minutes between two time 8 - 1 2 175.5m 1 183 1 350
34 | Get number of seconds since the midnight of sometime 8 2 15 1 3.5k 1 2 0.7 2
35 | Compute the transpose of a matrix 8 3 12 3 1.7b 1 88 1 401
36 | Compute the sum of two matrices 8 4 14 4 911.1t 99 3.8k 1.4k 56.5k
37 | Compute exclusive or between an area and a rectangle 2 - - 2 10.1m 3 135 3 136
38 | Create an element with given name 3 4 18 4 3.3t 5 6.5k 1 779

1 represents out of memory. - represents time out after 30 minutes. The first 30 subjects are from the evaluation benchmark of SYPET, 31-38 are 8 subjects
derived from the open source projects used in SYPET evaluation, and the rest are small synthesis tasks such as absolute value calculation.

SYPET finds desired API sequences for 34 subjects with
an average of 53 seconds. Figure 4 (B) presents a subject that
SYPET fails to identify a correct solution within the time limit
whereas EDSYNTH detects the solution in 3 seconds. We are
not aware of the root cause of this failure as the source code
of SYPET is not publicly available, yet we conjecture that
the translation to SAT and the advanced graph reachability
analysis may cause some impractical issues for open-source
projects. In addition, SYPET throws out of memory exception
in 3 synthesis tasks, indicating that construction of the large
reachability graph using SAT solver can consume a large
amount of memory. The memory EDSYNTH uses for API
synthesis is linear with respect to the number of method
invocations under synthesizing. Regarding the performance
of the API synthesis, out of 26 subjects that both tools can
generate desired code, EDSYNTH outperforms SYPET in 17
subjects.

Discussion It is possible in principle to enhance existing API
synthesis approaches with test partition to handle a broader
class of synthesis problems which are handled by EDSYNTH.
To illustrate, consider using SYPET to synthesize parts of an
“if-else” statement. Intuitively, the synthesis problem can
be divided into three subproblems of synthesizing the if-
condition, the if-body, and the else-body. Given that a test
case can only exclusively execute either the if-block or the
else-block, we partition the given test suite and synthesize
these two blocks and the if-condition based on two subsets
of test cases. Yet this partition requires an enumeration of all
combinations for the given test cases, in order to search for an
adequate test partition such that SYPET could generate API
sequences for both the if-body and the else-body based on
these two subsets of tests. If the test partition can successfully
generate two method sequences for the if-body and the else-
body, we further collect test oracles for the if-condition with
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(A) A subject that EDSYNTH times out (No.6)

(A) A code skeleton with branches as the input of extended SYPET

iy

.public static double[] solvelinear

(double[][] arg0, double[] argl) {

RealMatrix vl MatrixUtils.createMatrix (arg0);
RealMatrix v2 vl.transpose();

LUDecomposition v3 new LUDecomposition (v2);
DecompositionSolver v4 = v3.getSolver();
RealMatrix v5 v4.getInverse();

double[] v6 v5.preMultiply (argl) ;

return vé6; }

0 J o Ul W

(B) A subject that SYPET times out (No.37)

1l.public void exclusiveOr (Area area,
Rectangle2D rect){

2. Area res0 new Area(rect);

3. area.exclusiveOr (res0); }

(C) A subject that ranking strategies fail to expedite the search (No.11)

l.public Rectangle2D shear (Rectangle2D argO0,
double argl, double arg2){

2. AffineTransform resO AffineTransform
.getShearInstance (argl, arg2);

3. Shape resl resO.createTransformedShape (arg0) ;

4. Rectangle2D res2 resl.getBounds2D () ;

5. return res2; }

Fig. 4. Ourlier examples in the evaluation

respect to the tests, and let SYPET synthesize an API sequence
for the if-condition that generates this test partition. Based
on this idea of dividing multiple API sequences synthesis
tasks to multiple straight-line synthesis problems, we build
an extension of SYPET to synthesize chained if-conditions.
To illustrate this extension based on the test partitioning,
consider the method classify () in Figure 5 that tries to
classify the triangle based on its three edges. The method takes
the lengths of three edges as input and returns the triangle’s
classification as either acute, right angled, or obtuse. Figure 5
(A) presents a method skeleton with chained if-conditions. We
manually provide more than 10 test cases to ensure 100%
branch coverage for this synthesis task: three bodies of the
branches and two if-conditions. Figure 5 (C) shows a solution
from the extension of SYPET based on the test partition.

Using this extension of the existing straight-line API synthe-
sis technique [25], we observe that it can be very expensive to
find an adequate test partition that satisfies constraints for both
conditions and bodies of the branch. Given 10 test cases, the
possible partitions can be as large as 3'C. The test-partition-
based extension for multiple API blocks assumes that the
synthesized APIs for the conditions cannot change the current
program state, otherwise it may fail due to the side effect
of the if-condition. EDSYNTH does not suffer from these
limitations as it effectively leverages runtime information of
the test execution to synthesize the desired method invocations.
Moreover, the test-partition-based synthesis for multiple API
blocks can fail in synthesizing while-loops and more complex
control flows such as nested if-branches whereas EDSYNTH
treats the unknown API blocks as a regular Java method
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.String classify(int a, int b, int c) {
if (conditionl(a, b, <¢)) {

return bodyl () ;

} else if(condition2(a, b, c)) {
return body2();

} else {

return body3();

-1}

W Jo Ul bW

(B) Sample test cases that define correct behaviors

public static boolean testl() throws Throwable {
return classify (78, 79, 80) .equals("acute");

public static boolean test2()
return classify (12, 13,

throws Throwable {
5) .equals ("right");

public static boolean test3() throws Throwable {
return classify (10, 15, 10).equals ("obtuse");

(C) A solution from extended SYPET

body3(a,b,c): Library.obtuse(a,b,c);
body2(a,b,c): Library.right(a,b,c);
bodyl(a,b,c): Library.acute(a,b,c);
condition2(a,b,c): Library.isRight (a,b,
conditionl (a,b,c): Library.isAcute(a,b,

)
)

o w N

C
C

7
’

Fig. 5. An example of extended SYPET that synthesizes multiple APIs in
conditionals

invocation that can be used in nested loops and if-branches.

C. Efficacy of Prioritization Strategies

To evaluate if our prioritization strategies expedites the
search of the desired APIs, we report the performance time
(Time) and the number of executed programs (#Run) when
EDSYNTH finds the first solution that satisfies all test cases.
The last 4 columns of Table II lists these results with and
without prioritization strategies.

Given a 30-minute time limit, EDSYNTH successfully com-
pletes 30 synthesis tasks with prioritization strategies, whereas
only 29 can be completed without the ranking strategies and
23 of these tasks take longer to complete the task without the
ranking strategies. We manually inspect the subjects where the
ranking strategies perform poorly and highlight one example
in Figure 4 (C). In this example, the first argument (arg0) is
used in the second statement while the other two arguments
are used in the first statement, which leads to some additional
exploration with our ranking strategies. We further use the
Spearman test to measure if the performance time and the
number of executed candidates are significantly different with
and without prioritization strategies. And the result of p < 0.01
indicates that our prioritization strategies significantly reduce
the performance time and the number of explored candidates.
Threats to Validity. We use test cases as the correctness
criteria, which can generate plausible solutions that pass all
test cases but are not equivalent to some hypothetical correct
ones. We manually inspect the first generated solution for each
subject to validate its correctness.



We focus on a new problem of synthesizing multiple API
sequences, and we curate a benchmark of tasks with multiple
unknown API sequences in both the conditions and the bodies
of loops/if-branches to evaluate our approach, yet these tasks
may not be real challenges from developers’ perspective. We
conduct a preliminary study to investigate the usage of APIs
in loops and conditionals, and our relatively small dataset used
in the study may not extend to larger datasets. We leave the
user study as future work and refer to existing studies [1], [2].

We only compare EDSYNTH with a state-of-the-art API
synthesizer; thus our comparison result might not extend to
other such tools, e.g., CODEHINT [2] and INSYNTH [18]. We
note that SYPET has shown to compare favorably with both
CODEHINT and INSYNTH using its evaluation subjects, which
are also used in our evaluation.

V. RELATED WORK

EDSYNTH is related to a number of works on API synthesis,
code completion and program synthesis.
API synthesis. PROSPECTOR [1] is one of the first works that
introduces the notion of synthesizing “jungloid code snippets”.
A jungloid is a composition of single-argument methods with a
single return type. PROSPECTOR synthesizes method sequence
based on the jungloids mined from existing code corpus.
Similar to PROSPECTOR, CODEHINT [2] leverages empirical
statistic models to prioritize runtime recommendation for the
API completion. It allows users to set up breakpoints in
Eclipse IDE and rollbacks to the previous state whenever
the selected candidate encounters a runtime exception or test
failure. In contrast to the tools with expensive state restoration,
EDSYNTH simply backtracks till the beginning of the program
and re-executes the next candidate. SYPET [3] further extends
PROSPECTOR by introducing Petri-net for reachability analysis
based on SAT solvers. We believe their reachability analysis is
complementary to ours, yet in this paper, we show that using
a relatively simple test-execution-driven approach for API
synthesis, EDSYNTH compares generally well with SYPET
and further supports multiple API sequences where one test
may reach multiple basic blocks to synthesis, especially for
the loops and conditionals where both conditions and bodies
of loops/if-branches use APIs.
Code Completion. A series of other tools [4], [5], [26], [27]
mine API usage pattern from the code repositories and use
empirical probabilistic models to guide the search towards the
methods that are more often used in practice. In particular,
SLANG [28] predicts probabilities of API calls using statistical
models based on machine learning, while STRATHCONA [8]
assists developers in finding relevant API invocations with
similar program contexts. Different from these techniques
that train offline data corpus for method invocation comple-
tion, EDSYNTH leverages runtime information to substantially
prune a large portion of candidates. We envision that empirical
statistical models can be helpful to prioritize the sequences.
Program Synthesis. Program synthesis has achieved many
success on synthesizing code in small well-defined domains
such as bit-vector logic [11] and data structures [29], [30]
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based on test cases [9] or specifications [10], [12]. These tools
transform partial programs [15], input-output examples [31],
[32] or oracles [11], [33] to decision procedures and SMT
solvers, which have shown as very efficient in certain domains
that have been fully modeled [18], [34]. Other synthesis tools
try to generate small code snippets. Perelman et al. [35] infer
partial expressions using type-directed completion and IN-
SYNTH [18] handles high-order functions and polymorphism
using theorem proving. Yet both of them are confined to
generating a single statement rather than the method sequence.
Recent works leverages natural language queries [6], [7], [36]
to infer expressions and simple method invocations, whereas
EDSYNTH could synthesize code in a much large scope:
multiple method invocations in loops and conditionals.

Our idea of exploiting the programmers’ expertise to pro-
vide high-level insight of program skeletons share the same
spirit with the sketching-based synthesis [37]. The SKETCH
system [15] asks programmers to write a program sketch with
“holes”, and uses counter-example-guided inductive synthesis
to complete the holes. JSKETCH brings the sketch-based
synthesis to Java [38]. Given a partial Java program written
in the sketch syntax, JSKETCH translates the Java program
to SAT-based sketch synthesizer and transfers the synthesizer
result back to executable Java code. Yet JSKETCH supports
a limited number of libraries due to the difficulty of trans-
forming libraries to SAT. Sullivan’s doctoral dissertation [39]
introduces a test-driven approach for sketching declarative
models in Alloy [40]. Our synthesis approach based on the
test execution is also similar to other test-driven synthesis
techniques [9], [34], [41], yet we focus on a more complex
scenario of synthesizing Java method invocations with loops
and conditionals in open source projects.

VI. CONCLUSION

We introduced EDSYNTH, an approach that synthesizes
method invocation sequences in programs with loops and
conditionals, where the fragments may be scattered across
multiple basic blocks. EDSYNTH utilizes runtime information
to substantially prune a large number of candidate fragments
using on-demand candidate generation. To further expedite the
search, EDSYNTH leverages a set of ranking strategies that
apply in synergy with on-demand candidate generation.

We evaluated EDSYNTH using a suite of API synthesis
tasks with loops and conditionals, and compared it with
a state-of-the-art tool for straight-line API sequences. The
experimental results showed the effectiveness of EDSYNTH
at handling synthesis tasks with loops and conditionals where
one test may reach multiple basic blocks to synthesize. We
believe execution-driven synthesis with on-demand candidate
generation holds a key to a practical and scalable approach for
synthesis in a variety of domains.
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