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Abstract

Creating models of software systems and analyzing the models
helps develop more reliable systems. A well-known software mod-
eling tool-set is embodied by the declarative language Alloy and
its automatic SAT-based analyzer. Recent work introduced a novel
approach to testing Alloy models to validate their correctness in
the spirit of traditional software testing: AUnit defined the foun-
dations of testing (unit tests, test execution, and model coverage)
for Alloy, and MuAlloy defined mutation testing (mutation opera-
tors, mutant generation, and equivalent mutant checking) for Al-
loy. This tool paper describes our Java implementation of MuAlloy,
which is a command-line tool that we released as an open-source
project on GitHub. Our experimental results show that MuAlloy is
efficient and practical. The demo video for MuAlloy can be found
at https://youtu.be/3lvnQKiLcLE.

1 Introduction

Software models, which describe key properties of software sys-
tems at an abstract level, help build more reliable systems. Research-
ers developed various languages and tools for creating models [3,
5, 14]. A well-known software modeling tool-set is embodied by
the declarative language Alloy and its automatic SAT-based ana-
lyzer [3, 12] that performs scope-bounded analysis with respect to
a given bound on the universe of discourse.

The Alloy analyzer plays a key role in helping the users to val-
idate their models so that they accurately reflect the intended prop-

erties. Traditionally, Alloy users employ three validation techniques:

(1) solving for desired parts of the model to create instances that
satisfy the properties modeled, e.g., acyclic structure of a network;
(2) creating alternative but related (e.g., equivalent) formulations
of the properties modeled, and checking whether the expected re-
lation (e.g., equivalence) holds; and (3) using unsatisfiable cores to
highlight parts of the model that cause unsatisfiability. The Alloy
analyzer provides robust support for each of the three techniques.

More recent work introduced a novel approach to testing Alloy
models in the spirit of traditional software testing so that users
who are familiar with writing tests for their imperative code can
follow a similar method for testing their declarative models. Specif-
ically, the AUnit [8, 11] framework introduced the foundations of
testing — including unit tests, test execution, and model coverage
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sig List { header: lone Node }
sig Node { link: lone Node }
pred Acyclic (1: List) {
no l.header or some n: 1l.header.xlink | no n.link 3}
run Acyclic

Figure 1: Acyclic Singly-linked List.

— for Alloy. Follow up work on MuAlloy [10, 13] introduced muta-
tion testing [2] — including mutation operators, mutant generation,
equivalent mutant checking, mutation score - for Alloy.

This tool paper describes our Java implementation of MuAlloy,
which is a command-line tool that we released as an open-source
project on GitHub (https://github.com/kaiyuanw/MuAlloy). MuAl-
loy supports 9 mutation operators, which are inspired by previous
work on mutation testing for imperative languages [4]. MuAlloy
applies mutation operators at the AST level and generates a list
of mutants. For each mutant, MuAlloy automatically checks if
the mutant is equivalent (up to the given scope) to the original
model using SAT solving. For each non-equivalent mutant found,
this check creates an input that kills the mutant; MuAlloy saves
both the mutant and the input (as an AUnit test) to disk, which
provides mutation-based test generation. For traditional mutation
testing, given an Alloy model and its test suite, MuAlloy creates
non-equivalent mutants for the model and computes the mutation
score for the given suite with respect to the non-equivalent mu-
tants. We evaluated MuAlloy using 13 Alloy models that were used
in previous work [6, 9, 10]. The results shows that MuAlloy is ef-
ficient and practical (it takes <10 seconds for mutant generation
and <40 seconds for mutation testing for each subject model).

2 AUnit Background

Before describing the MuAlloy technique, we first describe AUnit
tests. To illustrate, Figure 1 shows an acyclic singly-linked list Al-
loy model. The model declares a set of "List" and "Node" atoms. Each
"List" atom has zero or one "header" of type "Node". Each "Node"
atom has zero or one following "Node" atoms named "link". Both
"header" and "link" are partial functions. The predicate "Acyclic"
restricts its parameter "1" to be an acyclic list. The body of "Acyclic”
states that "1" is acyclic if (1) it does not have a "header" or (2) there
exists some "Node" reachable from "1"’s "header" following zero or
more traversals of "1ink", such that the "Node"s "1ink" does not re-
late to any "Node".

If we run the "Acyclic" predicate, we can get an satisfiable in-
stance shown in Figure 2. The instance states that there are two
"List" atoms ("List@" and "List1") and two "Node" atoms (“Node®"
and "Node1"). "List@"’s "header" is "Nodel1" and "List1"’s "header" is
"Node@". "Node1"’s next node is "Node@". Note that "Liste" is explic-
itly passed as the argument of "Acyclic" predicate, and we can see
that "Liste" is indeed acyclic as there is no loop in the list.
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List0

header
| Nodel | l List1 I
link header

Figure 2: Satisfiable List Instance.

pred test {
some disj List@, Listl: List {
some disj Node@, Nodel: Node {

List = List@ + List1
header = List@->Nodel + List1->Node®@
Node = Node® + Nodel
link = Nodel->Node@
Acyclic[Liste] } } 3}

run test

Figure 3: List Test.

An AUnit test is a pair consisting of a model valuation and a
run command. For example, the Alloy instance in Figure 2 can be
written as an AUnit test as shown in Figure 3. The test declares
2 disjoint "List" atoms ("List@" and "List1") and 2 disjoint "Node"
atoms ("Node@" and "Node1"). It restricts the entire "List" set to be
{"List@", "List1"} and "Node" set to be {"Node@", "Node1"}. The predi-
cate also states that the "header" maps "List@" to "Node1" and "List1"
to "Node@", and the "link" maps "Node1" to "Node®". If you run the test
predicate, you will obtain an isomorphic Alloy instance to the one
shown in Figure 2.

3 Technique
A typical mutation testing technique has two phases:

e Mutation (M) Phase: Automatically inject faults into a program.
o Testing (T) Phase: Automatically run a given test suite against
each mutated program. If some test fails, the mutant is killed.

The quality of the test suite can be gauged from the mutation
score, which is the percentage of mutations killed. In this paper,
the program is an Alloy model and the test suite follows the AUnit
test convention.

In this section, we describe the mutation operators supported
in MuAlloy. Then, we describe each phase. Finally, we describe an
AST manipulation library built for MuAlloy.

Table 1: Mutation Operators

Mutation s

Description
Operator
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR Formula List Operator Replacement
UOI Unary Operator Insertion
U0oD Unary Operator Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange
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Algorithm 1: Mutant Generation

Input: Alloy model M, mutation operators Ops
Output: A list of non-equivalent mutants

Procedure visit(node, Ops, L)
ops = findApplicable(node, Ops)
foreach op € ops do
mutant = mutate(node, op)
if compile(mutant) then
L if lareEquivalent(M, mutant) then
| L.add(mutant)

foreach child € node.getChildren() do
| visit(child, Ops, L)
L « []; root = parse(M)
visit(root, Ops, L)
return L

A Mutation Operators

Table 1 shows the mutation operators supported in MuAlloy. MOR
mutates signature multiplicity, e.g. "lone sig" to "one sig". QOR mu-
tates quantifiers, e.g. "all" to "some", etc. UOR, BOR and LOR define
operator replacement for unary, binary and formula list operators,
respectively. For example, UOR mutates "a.*b" to "a.b"; BOR mu-
tates "a=>b" to "a<=>b"; and LOR mutates "a&&b" to "a| | b". UOI inserts
an unary operator before an expression, e.g. "a.b" to "a.~b". UOD
deletes an unary operator from an expression, e.g. "a.=~b" to "a.=b".
BOE exchanges operands for a binary operator, e.g. "a=>b" to "b=>a".
IEOE exchanges the operands of "imply-else" expression, e.g. "a
=> b else c" to "a => ¢ else b". All mutation operators are defined
at the AST level and modifying AST nodes properly is non-trivial.
For example, "88" and "| | " are list operators in Alloy. Replacing "8&"
with "[|"in "a| | (b&&(c||d))" should results in "a| |b| |c| |d", which
means we need to properly flatten the parent and child AST nodes
after mutation.

B Mutation (M) Phase

MuAlloy applies mutation operators to Alloy AST nodes. Algo-
rithm 1 describes how MuAlloy generates mutants from a given
model. The algorithm takes as input an Alloy model M and the set
of predefined mutation operators in Table 1. The output is a list of
non-equivalent mutant models L. MuAlloy first initializes the re-
sult list L as empty. Then, MuAlloy parses the target Alloy model
as an AST and returns the root node. MuAlloy implements a visi-
tor pattern to visit each AST node recursively using a depth first
search. For each visited node, MuAlloy finds all the applicable mu-
tation operators and applies each operator to the node one at a time.
The mutate method modifies the AST node and returns a clone ver-
sion of the mutated model (mutant). The mutant is added to the
result list L only if it compiles and is not equivalent to the original
model M. The areEquivalent method checks if the mutated model
is equivalent to the original model or not using Alloy’s built-in
"check” command. For each mutation, MuAlloy only checks equiv-
alence of the affected construct declared in M, which avoids redun-
dant checks and saves time. For example, if MuAlloy mutates "sig
List { header: lone Node }" to "sig List { header: one Node }", then
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Algorithm 2: Mutation Testing

Input: Alloy model M, generated mutants U, test suite T
Output: The mutation score for test suite T

killed = 0; resM = []
foreach test € T do resM.add(run(test, M))
foreach mutant € U do
foreach i€ 1.Tsize() do
if resM[i] != run(T[i], mutant) then
killed++
break

return killed / U.size()

the only affected Alloy construct is the "List" signature declara-
tion. MuAlloy canonicalizes the signature declaration as "sig List
{ header: set Node }" and automatically generates an equivalence
checking command as "check { all 1: List | lone 1.header <=> one
1.header }". Then, MuAlloy invokes the Alloy Analyzer to run the
above "check" command. If no counterexample is found, the mutant
is equivalent to the original model and MuAlloy will not add the
mutant to L. If a counterexample is found, then MuAlloy optionally
encodes the counterexample into an AUnit test which kills the mu-
tant. In the end of the this phase, MuAlloy generates a test suite
that kills all mutants and returns all non-equivalent mutants (L).

C Testing (T) Phase

MuAlloy can compute the mutation score for a given AUnit test
suite. Algorithm 2 describes how MuAlloy runs mutation testing.
The algorithm takes as input an Alloy model M, a set of mutant
models U and a given test suite T. The output is the mutation score
for the test suite T. MuAlloy initiates the number of killed mutants
(killed) to 0. Then, MuAlloy runs each AUnit test in T under M
and collects test results for the entire test suite as resM. The run
method invokes an AUnit test under a given model and returns a
boolean result indicating whether the test is satisfiable or not. For
each mutant model, MuAlloy runs each test and checks if the test
result varies from that of the original model M. If the test result
is different, the mutant model is marked as killed by increasing
killed variable and the algorithm checks the next mutant. If all test
results for the mutant model are the same as those of the original
model, then the test suite T does not kill the mutant. Finally, the
algorithm returns the mutation score indicating the percentage of
mutants killed along with the total number of mutants.

In practice, a user can provide an AUnit test with the "expect”
keyword, which indicates the expected satisfiability of the test. With
the expected satisfiability of all tests, M is not needed in Algo-
rithm 2. However, since the expected test output should be exam-
ined manually, we decide to not generate AUnit tests in the muta-
tion phase with "expect" keywords. We made this decision because
a given Alloy model may be faulty and assuming the ground truth
based on a potentially faulty model does not make sense.

D AST Traversal Library

To make MuAlloy robust and easy to extend, we implemented a
stand-alone Alloy parser library, i.e. AlloyParser. AlloyParser fol-
lows a similar design methodology to the JavaParser [1] and in-
cludes a set of visitors to help users traverse and make updates
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to any Alloy AST. Although the Alloy tool-set comes with visitor
classes like "VisitQuery" and "VisitReturn", they only support vis-
iting an Alloy expression. Our visitors are much more powerful as
they allow users to visit arbitrary nodes in the AST. AlloyParser
also extends existing Alloy AST nodes with richer types. The stan-
dard Alloy comes with a very compact AST node representation
and does not distinguish expressions from formulas in the imple-
mentation. This distinction may be useful in some cases. For ex-
ample, a user may want to define different mutation operators for
expressions and formulas, and with richer AST nodes, e.g. if for-
mulas and expressions are represented by different types of AST
nodes, the user does not need to repeat the logic that checks if an
AST node represents a formula or an expression. This check may
be duplicated many times because many AST nodes in the orig-
inal Alloy tool-set represent both expressions and formulas, e.g.
"ExprUnary”, "ExprBinary" and "ExprQt", etc. AlloyParser also comes
with a "PrettyStringVisitor" class and a "CloneVisitor" class. The
"PrettyStringVisitor" class converts an Alloy AST node and its
subnodes to code fragments. The "CloneVisitor" class creates a
deep copy of an Alloy AST node and its subnodes. MuAlloy’s mu-
tation phase is mainly built on top of the AlloyParser by extending
and using the AlloyParser’s visitors.

4 Usage

In this section, we describe how users can run MuAlloy. MuAlloy
is a command line tool that comes with the following features:

o Generate non-equivalent mutants and mutant killing AUnit tests.
e Run mutation testing for a given test suite.

In this section, we discuss how to use these features. More de-
tails can be found on the MuAlloy GitHub homepage.

A Generate Mutants and Tests

To generate non-equivalent mutants and mutant killing tests, run
"./mualloy.sh --generate-mutants -o <arg> -m <arg> [-s <arg>]
[-t <arg>]" or "./mualloy.sh
<arg> --mutant-dir <arg> [--scope <arg>] [--test-path <arg>]".
The options are explained below:

--generate-mutants --model-path

® "-0,--model-path": This argument is required. Pass the model
you want to mutate as the argument.

® "-m,--mutant-dir": This argument is required. Pass the directory
to which you want to save mutants as the argument. If the di-
rectory does not exist, a new directory will be created.

e "-s,--scope": This argument is optional. Pass the Alloy scope
for equivalence checking. For each non-equivalent mutant, the
scope will also be used to generate a run command for the cor-
responding AUnit test that kills the mutant. If the argument is
not specified, a default value of 3 is used.

e "-t,--test-path™ This argument is optional. Pass the path to
which you want to save mutant killing test suite as the argu-
ment. If the argument is not specified, no mutant killing test
suite will be generated. Note that the generated test suite only
contains unique test predicates and the run commands.

For each model, the command reports the number of equivalent
mutants, non-equivalent mutants and unique AUnit tests gener-
ated by MuAlloy.
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B Run Mutation Testing

For mutation testing, run "./mualloy.sh --run-mutation-testing
-0 <arg> -m <arg> -t <arg>" or "./mualloy.sh
--run-mutation-testing --model-path <arg> --mutant-dir <arg>
--test-path <arg>". The options are explained below:

e "-0,--model-path": This argument is required. Pass the original
model as the argument. MuAlloy collects the test satisfiability
result for the original model and then compares it with the test
result for a mutant model. If the results are different, then the
mutant is killed.

e "-m,--mutant-dir": This argument is required. Pass the directory
to which mutants are saved as the argument. MuAlloy collects
test results for each of the mutant models and checks if it can
be killed by the test suite or not.

e "-t,--test-path": This argument is required. Pass the test suite
you want to run as the argument. MuAlloy runs the test suite
against the original model and mutant models to compute the
mutation score for the test suite. Note that the test suite should
only contain the test predicates and the run commands.

The command reports whether each individual mutant is killed
by the test suite or not. After MuAlloy finishes running the test
suite against all mutants, the command reports the mutation score.

5 Evaluation

This section describes the experiment setup and results for MuAl-
loy. We ran MuAlloy on a MacBook Pro with a 2.5 GHz Intel Core
17-4870HQ. Table 2 shows the 13 Alloy models involved in the ex-
periment and the results when running MuAlloy. Model shows the
model names. Address book (addr) and Grandpa (grand) are from
Alloy’s example set. Grade book (grade), bad employee (bempl)
and other groups (other) are Alloy translations of access-control
specifications [7]. btree models binary trees. ctree models two col-
ored undirected trees. dijkstra models how mutexes are grabbed
and released by processes, and how Dijkstra’s mutex ordering cri-
terion can prevent deadlocks. farmer models the farmer-crossing-
river problem. fullTree models full binary trees. hshake models
the Halmos handshake problem. nqueens models the N queens
problem. list models acyclic singly-linked lists. #ast shows the
number of AST nodes in each model. scp shows the scope used
to check equivalence and generate tests. #eq and #neq show the
number of equivalent and non-equivalent mutants for each model,
respectively. #test shows the number of unique tests created by

Table 2: MuAlloy Subject Stats. Times are in seconds.

Model | #ast | scp | #eq | #neq | #test | Tyen | Trest
addr 114 4 4 58 43 1.9 4.3
bempl 46 3 1 30 25 1.0 2.2
btree 58 3 11 67 24 1.7 2.2
ctree 71 3 19 78 22 2.3 3.3
dijkstra 385 3 13 145 83 8.2 39.0
farmer 169 4 10 93 48 4.5 10.1
fullTree 81 3 17 83 28 2.9 3.6
grade 64 3 2 34 28 1.3 3.3
grand 96 4 13 87 40 3.0 8.7
hshake 127 5 43 92 30 3.8 6.7
nqueens | 104 4 10 54 33 29 8.2
other 64 3 3 34 20 1.3 2.4
list 35 3 5 28 17 1.2 1.8
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MuAlloy. Tgen shows the mutant generation time. Tres; shows
the mutation testing time.

The most complex subject is dijkstra (385 nodes) and the sim-
plest subject is list (35 nodes). The number of equivalent mutants
is relatively small compared to the number of non-equivalent mu-
tants. The number of unique tests is strictly smaller than the the
number of non-equivalent mutants because MuAlloy removes du-
plicate AUnit test cases that kill multiple mutants. The time to gen-
erate mutants ranges from 1.0 to 8.2 seconds while the time to run
mutation testing for all mutants given a model ranges from 1.8
to 39.0 seconds. In general, MuAlloy generates more mutants and
tests for more complex models and takes a longer time to generate
mutants and run mutation testing in these cases. Overall, these re-
sults show that both mutant generation and mutation testing are
fast and practical using MuAlloy.

6 Conclusion

This paper introduced the MuAlloy tool for mutation testing of Al-
loy models. MuAlloy provides command line options to automat-
ically generate non-equivalent mutants as well as tests that kill
non-equivalent mutants. Given an Alloy model and its test suite,
MuAlloy reports the mutation score for the test suite against non-
equivalent mutants. MuAlloy additionally provides an Alloy AST
manipulation library. Our evaluation shows that MuAlloy is effi-
cient and practical. Moreover, MuAlloy provides a sound basis for
developing new techniques and tools that leverage mutation test-
ing, e.g., for fault localization.
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