
Test Input Generation with Java PathFinder: Then and Now
(Invited Talk Abstract)

Sarfraz Khurshid
University of Texas

Austin, USA

khurshid@ece.utexas.edu

Corina S. Păsăreanu
Carnegie Mellon University

Silicon Valley, NASA Ames

Research Center

Moffet Field, California

corina.pasareanu@west.cmu.edu

Willem Visser
Stellenbosch University

Stellenbosch, South Africa

wvisser@cs.sun.ac.za

ABSTRACT

The paper Test Input GenerationWith Java PathFinderwas published

in the International Symposium on Software Testing and Analysis

(ISSTA) 2004 Proceedings, and has now been selected to receive the

ISSTA 2018 Retrospective Impact Paper Award. The paper described

black-box and white-box techniques for the automated testing of

software systems. These techniques were based on model checking

and symbolic execution and incorporated in the Java PathFinder

analysis tool. The main contribution of the paper was to describe

how to perform efficient test input generation for codemanipulating

complex data that takes into account complexmethod preconditions

and evaluate the techniques for generating high coverage tests.

We review the original paper and we discuss the research that

preceded it and the research that has happened between then (2004)

and now (2018) in the context of the Java PathFinder tool, its sym-

bolic execution component that is now called Symbolic PathFinder,

and closely related approaches that target testing of software that

manipulates complex data structures. We close with directions for

future work.

CCS CONCEPTS

· Software and its engineering → Formal software verifica-

tion; Software testing and debugging;

KEYWORDS

Software Testing, Symbolic Execution, Model Checking

ACM Reference Format:

Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. 2018. Test Input

Generation with Java PathFinder: Then and Now (Invited Talk Abstract).

In Proceedings of 27th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA’18). ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3213846.3234687

OVERVIEW

Fourteen years ago, at ISSTA 2004, we published a paper [17] that

described three automated testing techniques and applied them

to systematically create structurally complex test inputs for high

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5699-2/18/07.
https://doi.org/10.1145/3213846.3234687

code coverage of an intricate program. Back then, model check-

ing [2] was already established as the premier method for hardware

verification, but was only starting to find its impact on validating

software systems. The field of software model checking was in its

early stages and researchers were starting to realize its usefulness,

not just for traditional verification tasks, but even more so for sys-

tematic bug finding, specifically to find subtle bugs that are hard to

find otherwise [6, 17]. At the same time, constraint solvers were

coming of age. Propositional satisfiability (SAT) solvers were al-

ready handling industrial scale benchmarks [5, 13]. Satisfiability

modulo theories (SMT) solvers were starting to gain traction as a

practical backend tool [15]. Overall, the field of software analysis

was primed for significant advances to be fueled by modern solvers.

The initial techniques for software model checking, which ap-

peared in the mid and late 1990’s focused on properties of control,

where data was abstracted away or concretely provided, often via

non-deterministic choice operators [4, 6ś8, 16]. The early 2000’s

saw the beginning of systematic techniques that focused instead

on properties of data, specifically heap-allocated data structures

that have complex structural integrity constraints and provided

constraint-based systematic test generation using SAT and dedi-

cated solvers [1, 12].

In 2003 [9], we introduced the first software model checking

approach that could, in principle, systematically test programs for

both properties of data, which were handled by a generalization

of traditional symbolic execution [3, 10], and properties of con-

trol, which were handled by embodying the approach in the Java

PathFinder (JPF) model checker [16] that natively handled them

using its custom Java Virtual Machine (JVM). Our ISSTA 2004 pa-

per built on that approach to provide automated generation of

test suites at the black-box level and at the white-box level, and

supported the use of specifications given as executable code, e.g.,

method preconditions written as Java predicates [11]. In addition,

our techniques provided testing in the traditional spirit of executing

unit tests using standard (concrete) execution, and testing based

on symbolic execution, where path conditions are built and solved

(if feasible) to analyze the program’s execution paths. Our work

employed the Omega Library decision procedure for solving path

conditions [14, 18].

In this talk, we take a look back at the systematic test input gen-

eration problem, specifically in the context of JPF and generalized

symbolic execution, and provide an introductory account of the

foundational ideas and our basic techniques. Our goal is not to

provide a formal treatment or a critical evaluation of the work or its

impact, rather to present the basic concepts and how they fit in the

1



ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser

context of specification-based black-box and white-box testing in a

way that is accessible to a wide audience, including students who

may want to learn more about the exciting area of automated test

input generation. Moreover, we do not intend to review the vast

amount of literature in this area, rather we focus on some some

key related projects that we were a part of and some very closely

related work.

ACKNOWLEDGMENTS

This material is based upon work partially supported by the US

NSF under Grant Nos. CCF-1319688 and CCF-1718903. We thank

Darko Marinov for insightful comments.

REFERENCES
[1] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:

Automated testing based on Java predicates. In ISSTA.
[2] EdmundM. Clarke, Jr., Orna Grumberg, and DoronA. Peled. 1999.Model Checking.

MIT Press, Cambridge, MA, USA.
[3] L. A. Clarke. 1976. A System to Generate Test Data and Symbolically Execute

Programs. IEEE Transactions on Software Engineering 2, 3 (May 1976).
[4] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.

Păsăreanu, Robby, and Hongjun Zheng. 2000. Bandera: Extracting Finite-state
Models from Java Source Code. In ICSE.

[5] Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In SAT.
[6] Patrice Godefroid. 1997. Model Checking for Programming Languages Using

VeriSoft. In POPL.
[7] Klaus Havelund and Jens U. Skakkebñk. 1999. Applying Model Checking in Java

Verification. In SPIN.
[8] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Transactions on

Software Engineering 23, 5 (May 1997).
[9] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. 2003. Generalized Sym-

bolic Execution for Model Checking and Testing. In TACAS.
[10] James C. King. 1976. Symbolic Execution and Program Testing. CACM 19, 7

(1976).
[11] Barbara Liskov and John Guttag. 2000. Program Development in Java: Abstraction,

Specification, and Object-Oriented Design (1st ed.). Addison-Wesley.
[12] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for

Automated Testing of Java Programs. In ASE.
[13] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In DAC.
[14] William Pugh. 1992. A Practical Algorithm for Exact Array Dependence Analysis.

Commun. ACM 35, 8 (1992).
[15] Cesare Tinelli. 2002. A DPLL-Based Calculus for Ground Satisfiability Modulo

Theories. In JELIA, Vol. 2424.
[16] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park. 2000.

Model Checking Programs. In ASE.
[17] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. 2004. Test input

generation with Java PathFinder. In ISSTA.
[18] The Omega Project Website. 2018. https://www.cs.umd.edu/projects/omega/.

(2018).

2


	Abstract
	References

