Test Input Generation with Java PathFinder: Then and Now
(Invited Talk Abstract)

Sarfraz Khurshid
University of Texas
Austin, USA
khurshid@ece.utexas.edu

Corina S. Pasareanu
Carnegie Mellon University
Silicon Valley, NASA Ames

Research Center

Willem Visser
Stellenbosch University
Stellenbosch, South Africa
wvisser@cs.sun.ac.za

MofTet Field, California
corina.pasareanu@west.cmu.edu

ABSTRACT

The paper Test Input Generation With Java PathFinder was published
in the International Symposium on Software Testing and Analysis
(ISSTA) 2004 Proceedings, and has now been selected to receive the
ISSTA 2018 Retrospective Impact Paper Award. The paper described
black-box and white-box techniques for the automated testing of
software systems. These techniques were based on model checking
and symbolic execution and incorporated in the Java PathFinder
analysis tool. The main contribution of the paper was to describe
how to perform efficient test input generation for code manipulating
complex data that takes into account complex method preconditions
and evaluate the techniques for generating high coverage tests.

We review the original paper and we discuss the research that
preceded it and the research that has happened between then (2004)
and now (2018) in the context of the Java PathFinder tool, its sym-
bolic execution component that is now called Symbolic PathFinder,
and closely related approaches that target testing of software that
manipulates complex data structures. We close with directions for
future work.

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion; Software testing and debugging;

KEYWORDS
Software Testing, Symbolic Execution, Model Checking

ACM Reference Format:

Sarfraz Khurshid, Corina S. Pasdreanu, and Willem Visser. 2018. Test Input
Generation with Java PathFinder: Then and Now (Invited Talk Abstract).
In Proceedings of 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’18). ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3213846.3234687

OVERVIEW

Fourteen years ago, at ISSTA 2004, we published a paper [17] that
described three automated testing techniques and applied them
to systematically create structurally complex test inputs for high

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA’18, July 16-21, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5699-2/18/07.

https://doi.org/10.1145/3213846.3234687

code coverage of an intricate program. Back then, model check-
ing [2] was already established as the premier method for hardware
verification, but was only starting to find its impact on validating
software systems. The field of software model checking was in its
early stages and researchers were starting to realize its usefulness,
not just for traditional verification tasks, but even more so for sys-
tematic bug finding, specifically to find subtle bugs that are hard to
find otherwise [6, 17]. At the same time, constraint solvers were
coming of age. Propositional satisfiability (SAT) solvers were al-
ready handling industrial scale benchmarks [5, 13]. Satisfiability
modulo theories (SMT) solvers were starting to gain traction as a
practical backend tool [15]. Overall, the field of software analysis
was primed for significant advances to be fueled by modern solvers.

The initial techniques for software model checking, which ap-
peared in the mid and late 1990’s focused on properties of control,
where data was abstracted away or concretely provided, often via
non-deterministic choice operators [4, 6-8, 16]. The early 2000’s
saw the beginning of systematic techniques that focused instead
on properties of data, specifically heap-allocated data structures
that have complex structural integrity constraints and provided
constraint-based systematic test generation using SAT and dedi-
cated solvers [1, 12].

In 2003 [9], we introduced the first software model checking
approach that could, in principle, systematically test programs for
both properties of data, which were handled by a generalization
of traditional symbolic execution [3, 10], and properties of con-
trol, which were handled by embodying the approach in the Java
PathFinder (JPF) model checker [16] that natively handled them
using its custom Java Virtual Machine (JVM). Our ISSTA 2004 pa-
per built on that approach to provide automated generation of
test suites at the black-box level and at the white-box level, and
supported the use of specifications given as executable code, e.g.,
method preconditions written as Java predicates [11]. In addition,
our techniques provided testing in the traditional spirit of executing
unit tests using standard (concrete) execution, and testing based
on symbolic execution, where path conditions are built and solved
(if feasible) to analyze the program’s execution paths. Our work
employed the Omega Library decision procedure for solving path
conditions [14, 18].

In this talk, we take a look back at the systematic test input gen-
eration problem, specifically in the context of JPF and generalized
symbolic execution, and provide an introductory account of the
foundational ideas and our basic techniques. Our goal is not to
provide a formal treatment or a critical evaluation of the work or its
impact, rather to present the basic concepts and how they fit in the



ISSTA’18, July 16-21, 2018, Amsterdam, Netherlands

context of specification-based black-box and white-box testing in a
way that is accessible to a wide audience, including students who
may want to learn more about the exciting area of automated test
input generation. Moreover, we do not intend to review the vast
amount of literature in this area, rather we focus on some some
key related projects that we were a part of and some very closely
related work.

ACKNOWLEDGMENTS

This material is based upon work partially supported by the US
NSF under Grant Nos. CCF-1319688 and CCF-1718903. We thank
Darko Marinov for insightful comments.

REFERENCES

[1] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:
Automated testing based on Java predicates. In ISSTA.

[2] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking.

MIT Press, Cambridge, MA, USA.
[3] L. A. Clarke. 1976. A System to Generate Test Data and Symbolically Execute
Programs. IEEE Transactions on Software Engineering 2, 3 (May 1976).

[4] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.

Pasareanu, Robby, and Hongjun Zheng. 2000. Bandera: Extracting Finite-state
Models from Java Source Code. In ICSE.

Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser

[5] Niklas Eén and Niklas Sérensson. 2003. An Extensible SAT-solver. In SAT.
[6] Patrice Godefroid. 1997. Model Checking for Programming Languages Using
VeriSoft. In POPL.
[7] Klaus Havelund and Jens U. Skakkebzek. 1999. Applying Model Checking in Java
Verification. In SPIN.
[8] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Transactions on
Software Engineering 23, 5 (May 1997).
[9] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. 2003. Generalized Sym-
bolic Execution for Model Checking and Testing. In TACAS.
[10] James C. King. 1976. Symbolic Execution and Program Testing. CACM 19, 7
(1976).
Barbara Liskov and John Guttag. 2000. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design (1st ed.). Addison-Wesley.
[12] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for
Automated Testing of Java Programs. In ASE.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In DAC.
William Pugh. 1992. A Practical Algorithm for Exact Array Dependence Analysis.
Commun. ACM 35, 8 (1992).
Cesare Tinelli. 2002. A DPLL-Based Calculus for Ground Satisfiability Modulo
Theories. In JELIA, Vol. 2424.
[16] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park. 2000.
Model Checking Programs. In ASE.
[17] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. 2004. Test input
generation with Java PathFinder. In ISSTA.
[18] The Omega Project Website. 2018. https://www.cs.umd.edu/projects/omega/.
(2018).

[11

[13

[14

[15



	Abstract
	References

