BlueBee: a 10,000x Faster Cross-Technology Communication via
PHY Emulation

Wenchao Jiang
Department of Computer Science and
Engineering, University of Minnesota

jlang832@umn.edu

Zhijun Li*T
Department of Computer Science and
Engineering, University of Minnesota

lixx5427@umn.edu

ABSTRACT

Cross-Technology Communication is a promising solution proposed
recently to the coexistence problem of heterogeneous wireless tech-
nologies in the ISM bands. The existing works use only the coarse-
grained packet-level information for cross-technology modulation,
suffering from a low throughput (e.g., 10bps). Our approach, called
BlueBee, proposes a new direction by emulating legitimate ZigBee
frames using a Bluetooth radio. Uniquely, BlueBee achieves dual-
standard compliance and transparency by selecting only the pay-
load of Bluetooth frames, requiring neither hardware nor firmware
changes at the Bluetooth senders and ZigBee receivers. Our im-
plementation on both USRP and commodity devices shows that
BlueBee can achieve a more than 99% accuracy and a throughput
10,000x faster than the state-of-the-art CTC reported so far.

CCS CONCEPTS

« Networks — Wireless personal area networks;

KEYWORDS

Cross Technology Communication; Signal Emulation; Bluetooth
Low Energy, ZigBee, Internet of Things

ACM Reference Format:

Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li, Song Min Kim,
and Tian He. 2017. BlueBee: a 10,000x Faster Cross-Technology Communica-
tion via PHY Emulation. In Proceedings of 15th ACM Conference on Embedded
Networked Sensor Systems (SenSys’17). ACM, New York, NY, USA, 13 pages.
https://doi.org/http://dx.doi.org/10.1145/3131672.3131678

*Zhijun Li is a visiting professor at the University of Minnesota and officially affiliated
with Harbin Institute of Technology, China.
TZhijun Li and Tian He are the corresponding authors of this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SenSys’17, November 68, 2017, Delft, The Netherlands

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5459-2/17/11...$15.00
https://doi.org/http://dx.doi.org/10.1145/3131672.3131678

Zhimeng Yin
Department of Computer Science and
Engineering, University of Minnesota

yinxx283@umn.edu

Song Min Kim
Department of Computer Science,
George Mason University
song@gmu.edu

Ruofeng Liu
Department of Computer Science and
Engineering, University of Minnesota

liu4189@umn.edu

Tian He®
Department of Computer Science and
Engineering, University of Minnesota
tianhe@umn.edu

1 INTRODUCTION

The body of wireless devices has undergone explosive increase in
the last decade, which, under the emerging Internet of Things (IoT)
era, is anticipated to grow as large as 20 billion by 2020 [12]. The
dense deployment induces highly-coexisting wireless environment
which has long been perceived as a harsh habitat with severe in-
terference. However, recent studies reveal that coexistence offers
unique opportunities — by taking advantages of specialized fea-
tures among heterogeneous wireless technologies, collaboration
enables them to reach beyond independent operation. For example,
in ZiFi [44] energy expenditure of power-hungry WiFi interfaces
are significantly cut down with the assistance from low-power Zig-
Bee radio, where it turns on the WiFi only when APs are found in
the vicinity.

The traditional way of communicating among heterogeneous
devices is to deploy multi-radio gateways, which suffers from sev-
eral drawbacks including additional hardware cost, complicated
network structure, and increased traffic overhead due to traffic
flowing into and out from the gateway. To address these issues,
latest literature introduces Cross-technology communication (CTC)
techniques which achieve direct communication among heteroge-
neous wireless devices with incompatible PHY layer, using legacy
devices. Such techniques commonly use packet-level modulations,
where the combinations of timing [22] and durations [7]of packets
convey the data. Despite their effectiveness, the bit rates are inher-
ently limited as they adopt coarse-grained ‘packets’ as the basis for
modulation (analogous to ‘pulse’ in typical digital communication).
For instance, the bit rate of BLE to ZigBee communication in the
state of the art is limited to 18bps [22]. This not only constraints
the usage, but also indicates spectrum inefficiency compared to
250kbps and 1Mbps if used for legacy ZigBee and Bluetooth.

This paper introduces BlueBee, which paves the way to practical
CTC via physical-layer emulation. By smartly selecting the payload
bits in a Bluetooth packet, BlueBee effectively encapsulates a ZigBee
packet within a Bluetooth packet payload. This is fully compatible
with legacy ZigBee devices while reaching the ZigBee bitrate cap of
250kbps. In other words, BlueBee does not require any hardware or
firmware change to either Bluetooth transmitter or ZigBee receiver,
offering full compatibility (i.e., implementable as an application) to
existing billions of commodity IoT devices, smartphones, PCs, and
peripherals.

https://doi.org/http://dx.doi.org/10.1145/3131672.3131678
https://doi.org/http://dx.doi.org/10.1145/3131672.3131678

SenSys’17, November 6-8, 2017, Delft, The Netherlands

The emulated ZigBee packet transmitted from Bluetooth is, in
fact, indistinguishable by the ZigBee receivers. This is surprising,
especially when the bandwidth of Bluetooth (1MHz) is only half
of that of ZigBee (2MHz). The BlueBee design stems from two key
technical insights: (i) similarity of (de)modulation techniques of
Bluetooth and ZigBee and (ii) error tolerance of ZigBee demodula-
tion (OQPSK/DSSS). Specifically, both technologies use the phase
differences between samples, referred to as phase shifts, to indicate
symbols, which makes emulation possible. Although the ZigBee
signal cannot be perfectly emulated due to a narrower bandwidth
of Bluetooth, BlueBee is optimally designed such that the inevitable
error is minimized and kept under the tolerance of (i.e., the error
is successfully corrected by) ZigBee’s OQPSK/DSSS demodulator.
BlueBee effortlessly runs on commodity Bluetooth devices by sim-
ply putting specific bit patterns in the Bluetooth packet payload. It
achieves 250kpbs at 90% frame reception ratio (FRR), 10,000 times
faster than the state-of-the-art [22]. Also, BlueBee effectively uti-
lizes the frequency hopping feature of Bluetooth to support concur-
rent communication across devices operating on different channels.
Lastly, BlueBee offers reliable communication under dynamic wire-
less channel conditions. The contribution of this work is three-fold.

o We design BlueBee, the first CTC technique that emulates
a legitimate ZigBee frame within the payload of a legiti-
mate Bluetooth packet. The design does not require any
modification to the hardware or the firmware, for either the
transmitter (Bluetooth) or the receiver (ZigBee), enabling
full compatibility to billions of existing commodity devices.

e We address several unique challenges of signal emulation,
including (i) optimized ZigBee phase shifts emulation using
Bluetooth signal, (ii) supporting concurrent communication
and low duty cycle operation under frequency hopping of
Bluetooth, and (iii) link layer reliability under dynamic chan-
nel conditions. These solutions offer general insights for
other signal emulation between heterogeneous devices.

e We design and implement BlueBee on both the USRP plat-
form and commodity devices. Our extensive experiments
demonstrate that BlueBee establishes a high throughput and
reliable communication under various environments and
settings. Compared to a 18bps rate achieved by the state-
of-the-art CTC from Bluetooth to ZigBee [22], BlueBee’s
reliable throughput of 225kbps indicates performance gain
of more than 10,000 times!'

2 MOTIVATION

With the rapid development of wireless technologies, such as WiFi,
Bluetooth, and ZigBee, the ISM band suffers from the cross-technology
interference (CTI) and channel inefficiency [17, 24, 40]. That is be-
cause the wireless technologies coexisting in the ISM band have
heterogeneous PHY layer and can not communicate directly, thus
not able to effectively coordinate channel use. To achieve effective
channel use, the traditional approach is to use a multi-channel gate-
way. And recently, researchers also propose cross-technology com-
munication (CTC) techniques as a promising solution for channel
coordination. However, neither the traditional gateway approach

Jiang et al.

nor the existing CTC technologies work well for the channel coor-
dination due to their intrinsic limitations.

e Limitation of Gateway. Multi-radio gateway is a usual and
straightforward solution to bridge multi-technology communicatio
[13, 14, 20, 26, 29]. However, a gateway introduces not only addi-
tional hardware cost but also the labor intensive deployment cost,
which would be prohibitive for the mobile and ad hoc environment.
Also, a dual-radio gateway increases the traffic overhead by dou-
bling traffic volume in the ISM band, which further intensifies the
cross-technology interference.

e Limitation of Packet-Level CTC. The recent cross-technology
communication aims at direct communication among heterogenous
wireless technologies, thus make explicit channel coordination
available. For examples, heterogeneous devices can allocate the
channel in a way similar to the RTS/CTS in the 802.11 protocol [1],
thus leading to a better channel efficiency. Unfortunately, to our
knowledge, existing CTC designs [7, 22, 43] rely on sparse packet
level information such as the beacon timing [22] and multi-packet
sequence patterns [37], introducing a delay of at least hundreds
of milliseconds. Such a delay prevents the existing solutions from
coordinating channels effectively in real-time.

In contrast to the limitations of gateway approach and existing
CTC approaches, BlueBee is able to transmit a ZigBee packet di-
rectly from a Bluetooth radio within a few milliseconds, for the first
time, making channel coordination feasible. In the paper, although
our description will be based on one specific Bluetooth protocol,
Bluetooth Low Energy (BLE), the idea can be generalized to other
Bluetooth protocols, such as Bluetooth Classic (discussed in Section
7.1).

BLE Devices ZigBee Devices
Ignore
BLE Frame

25

Preamble

Signal in Payload
9 v Detection

Demodulation

ZigBee Frame

|
|
I
|
|
I
Emulated ZigBee :
I
|
|
I
|
|

Figure 1: The system architecture of the BlueBee.
3 BLUEBEE IN A NUTSHELL

Overview. BlueBee is a high data-rate CTC communication from
BLE to ZigBee, while being compatible to both ZigBee and BLE
protocols. The basic idea of BlueBee is illustrated in Fig. 1 — BlueBee
encapsulates a legitimate ZigBee frame within the payload of a
legitimate BLE frame, by carefully choosing the payload bytes. At
the PHY layer, the selected payload resembles (i.e., emulates) the
signal of a legitimate ZigBee frame. When the BlueBee-emulated
BLE packet reaches a ZigBee device, the payload part is detected
(via preamble) and demodulated, just like any other ZigBee packet
originated from a ZigBee sender. We note that the header and
trailer of the BLE frame are incompatible to ZigBee and is naturally
disregarded, or equivalently, treated as noise. In fact, such a design
makes BlueBee transparent; At the sender, the BLE device can

BlueBee

not distinguish whether it is a normal BLE packet or it contains
emulated ZigBee frame because it is merely a byte pattern in the
payload. Conversely, at the receiver, the ZigBee device can not tell
whether the frame is from a ZigBee device or is emulated by a BLE
device, due to the indistinguishable PHY layer waveform.

Cost Egﬁg{?ﬁ; Throuput Multh;}?nnel
Gateway Medium | Medium High Not Support
ESense [7] Low Low Low Not Support
FreeBee [22] Low Medium Low Not Support
Bw? [11] Low Medium Low Support
BlueBee Low High High Support

Table 1: Comparison of BlueBee and existing CTC solutions

Unique Features. In Table 1, we illustrate the technical advantages
of BlueBee, as the first PHY-layer CTC, compared to the gateway
approach and the state-of-the-art packet-level CTC approaches.
BlueBee overcomes the shortages of existing gateway approach by
providing direct communication between heterogeneous devices.
As opposed to the gateway, BlueBee does not incur deployment
cost or additional traffic. At the same time, it offers significantly
higher communication throughput and lower transmission delay
compared to the CTC presented until now. Also, BlueBee enables
multi-channel concurrent CTC by the inherent frequency hopping
in the BLE communication.

BlueBee also has a few innovative and unique features in com-
patibility: First, it is the first CTC design from BLE to ZigBee that
requires neither hardware nor firmware change. Other designs re-
quire at least firmware changes [7, 22, 37] at the receivers. Second,
BlueBee is “dual-standard compliance” in a sense that a frame can
be received and demodulated by both ZigBee and BLE receivers.

4 BLUEBEE DESIGN

This section illustrates the BlueBee design in detail.

4.1 Background

We first give a brief introduction of how a BLE transmitter and
a ZigBee receiver work in relation to BlueBee, followed by the
feasibility of signal emulation.

BLE bits NRZ Square Wave= Gaussian Phase Shift
0,0,1,1 A,-1,1,1 Pulse Shaping Ap=%, I I
(i) (ii)
_'f Instant Phase a I=cos(D(1)) Emulated
= | go3.m-3.0 (MOML] ooy Radio Z9Bee Signals
- Front-end

(i) (iv)
Figure 2: BLE as the transmitter with GFSK modulation.

BLE Transmitter. BLE uses Gaussian Frequency Shift Keying
(GFSK) modulation, which is normally realized by phase shift over
time 1. Fig. 2 illustrates the entire procedure from payload bits to
corresponding radio waves from steps (i) to (iv). In (i) BLE bits

!Note that a frequency shift keying s(t) = Acos(27n(f + Af)t) is equivalent to a
phase shift keying of s(t) = Acos(2zft + ®(¢)), where O(t) = 2nAft.

SenSys’17, November 6-8, 2017, Delft, The Netherlands

first go through a non-return-to-zero (NRZ) module that modu-
lates series of BLE bits to series of squarewaves with amplitudes
of either -1 or 1. Since each wave is 1us long and carries a single
bit, this leads to the 1Mbps bitrate of BLE. (ii) This wave passes
through the Gaussian low pass filter, which shapes the waves into
a band-limited signal. This baseband signal corresponds to phase
shifts of +7/2 when multiplied to the carrier. (iii) Taking integral
of the series of waves to t yields phase with respect to time (i.e.,
instant phase). This is essentially a time-domain representation of
the accumulated phase shifts from the previous step. (iv) The In-
phase and Quadrature (I/Q) signal is calculated through the cosine
and sine of the instant phase, respectively, which are multiplied to
the carrier and pushed into the air through the BLE RF front-end.
The goal of BlueBee is to construct time-domain waveforms
that can be demodulated by a commodity ZigBee receiver. In other
words, emulate ZigBee signal at BLE. To do so, we imagine ZigBee
signal containing the data of our choice is emitted from the BLE
RF front-end, and reverse engineer steps (iv) to (i) accordingly. In
step (iv), ZigBee signal in the air is sampled at BLE sampling rate
(1Msps). From the sampled I/Q signals, the corresponding instant
phases are obtained. Reversing step (iii) yields the phase shifts
between consecutive BLE samples, where the corresponding series
of square waves are found by reversing step (ii). Finally, these waves
are mapped to data bits at the BLE packet payload which can be
freely set, indicating that the targeted ZigBee signal is emulated
simply by setting the BLE packet payload with the correct bits.
Such an approach enables the emulated waveform to be seam-
lessly demodulated by commodity ZigBee radios as legitimate Zig-
Bee packets, without any change incurred to BLE’s GFSK modulator.
However, such emulation is not trivial due to various constraints,
such as the narrower bandwidth of BLE (1MHz) compared to ZigBee
(2MHz), which will be discussed in the later part of the section.

\/
i I;mulg?ed I 1/Q Phase Zs(n) x s¥(n = 1)
igBee Signals s(m)=1(n)+jQ(n)

(a) (b)
Phase Shift "_|F ZigBee chips ["Chip-Symbol ZigBee
T T T ﬂ'l_l - Ma in Frame
Ab=-7,-3, 7,7 111
(c) (d)

Figure 3: ZigBee as the receiver with OQPSK demodulation.

ZigBee Receiver. As Fig. 3 depicts, BlueBee enables BLE to trans-
mit emulated ZigBee packets which can be demodulated by any
commodity ZigBee device through the standard Offset Quadrature
Phase Shift Keying (OQPSK) demodulation procedure. This is ini-
tiated by step (a), where ZigBee captures the BLE signal on the
overlapping 2.4GHz ISM through the analog-to-digital converter
(ADC), to obtain I/Q samples. A pair of I/Q samples are often re-
ferred to as a complex sample s(n) = I(n) + jQ(n). In step (b), the
phase shifts between consecutive complex samples are computed
from arctan(s(n) X s*(n — 1)), where s*(n — 1) is the conjugate of
s(n—1). In step (c) positive and negative phase shifts are quantized
to be 1 and -1, corresponding to ZigBee chips 1 and 0.

Finally, in (d), 32 ZigBee chips are mapped to a ZigBee symbol,
by looking up a symbol-to-chip mapping table (Table 2) predefined
in DSSS. There are 16 different symbols where each represents
log216 = 4 bits. We note that in the face of noise/interference the

SenSys’17, November 6-8, 2017, Delft, The Netherlands

Symbol (4 bits) Chip Sequence (32 bits)
0000 11011001110000110101001000101110
0001 11101101100111000011010100100010
1111 11001001011000000111011110111000

Table 2: Symbol-to-chip mapping in ZigBee (802.15.4)

phases may suffer from errors (+ < —), which induce reversed
chips (1 < 0). In such case, the closest symbol with smallest Ham-
ming distance is selected.

4.2 Opportunities and Challenges of Emulation

Conceptually, emulation of ZigBee signal via BLE is possible due to
two key technical insights. First is the similarity of (de)modulation
techniques of BLE and ZigBee. That is, BLE’s GFSK and ZigBee’s
OQPSK commonly utilize phase shifts between consecutive samples
to indicate symbols (chips for ZigBee). Furthermore, ZigBee only
considers sign (+ or -) of the phase instead of a particular phase
value, which offers great flexibility in emulation. However, the
challenge comes from the fact that the bandwidth of BLE (1IMHz) is
only half of that of ZigBee (2MHz). This fundamentally limits BLE’s
rate of phase shifts. In other words, phase shifts in BLE are not
sufficiently fast to express all ZigBee chips, leading to inevitable
errors in emulation. This shortage is covered by the second key
component to BlueBee emulation — i.e., DSSS in ZigBee.

DSSS maps 32bit chip sequences to 4bit symbols (Table 2), leaving
tolerance margin for robustness against noise and interference. Due
to this margin, a ZigBee symbol can be correctly decoded if the
Hamming distance between the received and ideal chip sequence
is within a threshold of 12 (may be adjusted up to 20 [24]). This
tolerance margin can be exploited to recover from the inevitable
error caused by the bandwidth asymmetry. In the following sections,
we provide a detailed illustration on the two insights, and how
BlueBee is designed to effectively explore them to enable CTC.

8 ZigBee Chips

4us
In-phase —
W \M\ Quadrature
1/4 1ues 1/45 1ees

Ky as

| OQPSK Emulation
4th BLE
Symbol RF End

Figure 4: Emulating ZigBee with BLE

2nd BLE
Symbol

3rd BLE

1st BLE
Symbol

Symbol

4.3 OQPSK Emulation

Here we demonstrate emulating ZigBee’s OQPSK modulation with
BLE, which is a nontrivial problem due to the narrower bandwidth
of BLE compared to ZigBee (1MHz vs 2MHz). Fig. 4 illustrates the
emulation process with an example of 8 ZigBee chips, where it starts
by cutting the sequence into two-chips pieces (one In-phase chip

Jiang et al.

and one Quadrature chip) with durations of 1us. Each of the pieces
is then emulated to be a BLE symbol which we will discuss in detail
in the following section. We note that the technique introduced
only involves setting bit pattern of BLE packet payload, and does
not enforce any change to hardware or firmware.

(b) Emulation of (a) by BLE

Figure 5: (a) ZigBee signal indicating two chips, ‘11’, as phase
shifts from T; to T3, and from T, to T3 are both positive (r/2).
(b) is the emulated signal of (a), by BLE (which is in fact BLE
symbol ‘1’). When fed into ZigBee receiver this signal is sam-
pled at T}, Ty, and T3 to give two consecutive positive (17/4)
phase shifts. This yields ZigBee chips of ‘17’, indicating suc-
cessful emulation.

Let us now look into how the emulation is performed on a two-
chip piece divided in Fig. 4. Recall that OQPSK (i.e., ZigBee) observes
phase shifts between consecutive samples, whose signs are trans-
lated to chips of -1 and 1 (steps (a) and (b) in Fig. 3). The left in
Fig. 5a depicts ZigBee signal (not emulated) containing two chips
of ‘11°, where Ty — T3 are the timings of three consecutive samples
every 0.5us, the ZigBee sampling rate. On the right, the constella-
tion of the samples at the corresponding timings are plotted with
arrows. The phase shift between the arrows of Ty and T is /2.
Since a positive value, this is translated to chip of ‘1". The next chip
is computed similarly between samples Tz and T3, which also yields
a chip of ‘1",

Now we show that the above mentioned ZigBee signal can be
successfully emulated by BLE, which is demonstrated in the left
in Fig. 5b. Although the signal appears to be distinct from ZigBee
signal (left in Fig. 5a), it still delivers the same chips of ‘11’ to
ZigBee receiver. The key point here is that only sign of phase shift
is considered (not the amount). To understand this, we first notice
that the left in Fig. 5b reflects the bandwidth of BLE being only half
of ZigBee — i.e., the sinusoidal curves indicating I/Q signals have
half the frequency, or equivalently, double the period. When this
signal is fed into the ZigBee receiver and sampled at Ty — T3, the
resulting constellation is as the right in Fig. 5b. From the plot, phase
shift between T and T, is /4 (i.e., positive), which yields chip of
‘1’. The same applies to the phase shift between T» and Ts. This
indicates that the BLE signal in the left in Fig. 5b) indeed yields the
same chip sequence of ‘11’ at the ZigBee receiver, as the ZigBee

BlueBee

signal in the left in Fig. 5a. In other words, the ZigBee signal is
successfully emulated by the BLE.

In fact, from the BLE’s perspective, the signal at the left of the
Fig. 5b is simply a BLE signal representing phase shift of 7/2. This
is because the sampling rate of BLE is half of the ZigBee, due to the
bandwidth difference and the corresponding Nyquist sampling rate.
Specifically, BLE samples T1 and T3 whose phase difference is /2.
Conversely speaking, by letting BLE to transmit bits correspond-
ing to phase shift of 7/2, the BLE devices is able to deliver chip
sequences of ‘11’ to a ZigBee receiver. This is the key enabler to
BlueBee, where ZigBee packet is encapsulated within a BLE packet
simply through payload bit patterns.

ZigBee T, T, T;

BLE T, Ts

-—>
lus

(b) Imperfect signal emulation at BLE
Figure 6: Impact of inconsistent ZigBee phase shifts

From the example in Fig. 5b, we have found that a single phase
shift in BLE is interpreted as two phase shifts in ZigBee, as per
bandwidth difference. That is, BLE has lower degree of freedom,
where it can change phase shifts (- <> +) every 1us whereas it
is 0.5us for ZigBee. Due to this, while ZigBee chip sequences are
of ‘11’ or ‘00’ (‘consistent phase’ hereafter, since phase shifts are
kept consistent at + or -) can be perfectly emulated, this is not
the case for sequences ‘01’ or ‘10’. Fig. 6a demonstrates ZigBee
chip sequence of ‘10’. As shown in Fig. 6b BLE emulates this to
be ‘11’ (in the figure) or ‘00’, incurring 1 chip error in either cases.
While such a chip error is inevitable due to the nature of BLE’s
narrower bandwidth, interestingly, its impact on decoded bits can
be significantly reduced depending on the BLE phase shift. That is,
by smartly emulating chip sequence ‘01’ to either ‘11’ or ‘00’ (same
to ‘10’), we are able to maximize the probability of DSSS to map
the received chip sequences to the correct symbol, and to output
correct bits. We discuss this in detail in the following section.

As a proof of concept example, we emulate a 32-chip ZigBee
symbol ‘0’ (i.e., ‘0000’ in Table 2) from BLE. In Fig. 7a, the time
domain I/Q signals for both ZigBee and BLE are compared, which
are quite different due to the disparate pulse shapes, i.e., Gaussian
for BLE and half sine for ZigBee. As discussed earlier, phase shifts
depicted in the upper part of the Fig. 7b demonstrate that the shift
per 0.5us is =7 /4 for BLE, where it is +7/2 for ZigBee. Moreover,
some errors are observed where the phase shifts are inconsistent at
ZigBee This is also reflected in the chips (lower in Fig. 7b), which
we consider in emulating DSSS so as to minimize the error in the
decoded bits. This is explained in detail in the following section.

SenSys’17, November 6-8, 2017, Delft, The Netherlands

~

——BLE
(" ZigBee

Phase-Shift
o

Quadrature

5 10 15 20 0 10 20 30 40
Time (us) Sample Index

)

(a) Time domain emulated signal (b) Phase shifts of emulated sig-
nal

Figure 7: Comparison between BLE emulated signal and the

desired ZigBee signal

Legends: E }Emulatble Symbol Dldeal Symbol
o016 o T
0101 0100 0110 0111
1001 1000 1010 1011
1101 100! «— [I110] —» 11111

Figure 8: An example of optimized emulation

4.4 Optimal DSSS Emulation

In this section, we discuss how BlueBee minimizes the impact of the
inevitable chip error introduced in OQPSK emulation, via DSSS. To
start, let us first go through a simplified walk-through example: Fig 8
illustrates an emulation in the 4-bit hamming space (simplified from
32 in ZigBee DSSS). In this hamming space, there are three ideal
symbols, which need to be emulated using the method introduced
in Section 4.3. Due to the limited capability of BLE, BlueBee can
only generate limited number of emulation symbols, which are
marked with dashed rectangles in this figure. Other symbols in this
hamming space cannot be represented by BlueBee. Let S; denote
the it ideal symbol, and E; to denote the ith emulated symbol.
Then, we define two symbol (Hamming) distances as follows:

Definition 4.1. Intra symbol distance Dist(E;, S;) is hamming
distance from the emulation symbol E; to the ideal symbol S;.

Definition 4.2. Inter symbol distance Dist(E;, S;j) is hamming
distance from the emulation symbol E; to the ideal symbol S;,
where j # i.

Take Fig. 8 for example. To emulate the ideal symbol ‘1110’
BlueBee can generates two emulatable symbols ‘1100’ and ‘1111,
which have the same intra symbol distances of 1. After this, BlueBee
considers the inter symbol distance from these emulation symbol
to the other two ideal symbols. For emulation symbol ‘1100’, it
has the inter symbol distance of 1 and 3 to the ideal symbol ‘0100’
and ‘0010’ respectively. Similarly for emulation symbol ‘1111, it
has the inter symbol distance of 3 and 3 respectively. As a result,
BlueBee chooses the ‘1111’ as the emulation choice, since it has
the maximum value of the minimum inter symbol distance (i.e.,
maximum margin).

The previous example illustrates the idea of DSSS emulation in
the 4-bit hamming space. Now we will talk about how BlueBee
optimizes the DSSS emulation in the standard ZigBee symbol space,
following the same principles.

SenSys’17, November 6-8, 2017, Delft, The Netherlands

N =) o =)

Hammging Distance
[

0 5 10 15
Emulated ZigBee Symbol Index

Figure 9: Intra symbol Hamming distance between emulated
and ideal ZigBee symbols

Intra Symbol Distance. Each 4-bit ZigBee symbol is mapped to 32
chips. Dividing the 32 chips into 16 consecutive pairs of chips and
counting ‘01” or ‘10’ yields the number of chip errors in the ZigBee
emulation by BLE, or equivalently, Dist(E;, S;) (i.e., intra-symbol
Hamming distance). This value is constant for a given symbol, since
emulation of ‘01’ or ‘10’ always induce 1 chip error, regardless of
being emulated to ‘00’ or ‘11’. For example, in Fig. 9, we have plotted
the intra hamming distances for all possible ZigBee symbols. We
find the maximum intra hamming distance is 8, such as the intra
hamming distance of ZigBee symbol ‘0000’ . Note that the intra
symbol hamming distance can not be optimized, because there will
always be one chip error at whatever bits BLE choose to emulate
inconsistent ZigBee phase shifts.
Inter Symbol Distance. Although the intra symbol distance of
each symbol is fixed, BlueBee tries to increase the inter symbol
distance for improving the reliability. this is because the inter-
symbol Hamming distance Dist(E;, S;), i # j, depends on how ‘01’
or ‘10’ are emulated. For example, ‘01’ can be emulated via either ‘00’
or ‘11”. Therefore, a ZigBee symbol can be emulated in 2Dist(E;.Si)
different sequences, where BlueBee chooses the emulation symbol
with the maximum minimum inter-symbol hamming distance. This
optimization can be described in the following equation:

argmax min{Dist(E;, Sj),i # j} 1)

E;

We note that the computation is light weight with the limited search
space of 0 < i, j < 15. Furthermore, this only needs to be computed
once, and thus can be precomputed and loaded on the device prior
to running BlueBee.

4.5 Dealing with the BLE Data Whitening

5 Data
X X' (Payload)

[14

Whitened Data
(Symbol)

Figure 10: BLE data whitening through LFSR

Due to security concerns, the symbol transmitted by BLE is
not the plain message of payload. Instead, a scramble technique
called data whitening is adopted on BLE payload to randomize the
matching between the payload bytes and the bytes transmitted in

Jiang et al.

the air. Therefore, it is crucial to overcome the data whitening on
BLE to control transmitted signal through BLE payload.

In fact, recent literature have shown that BLE’s LFSR circuit is
reversible [19, 35]; Technically, BLE uses the 7-bit linear feedback
shift register (LFSR) circuit with the polynomial x” + x* + 1 as
shown in Fig. 10. The circuit is used to generate a sequence of
bits to whiten the incoming data by XOR operation. The initial
state of the LFSR circuit is the current channel number (i.e., from
0 to 39) in binary representation defined in the BLE specification.
BlueBee reverse engineers the whitening process to generate the
BLE payload according to the carefully chosen bytes for emulation.
This makes BlueBee fully compatible to commodity BLE devices,
validated with extensive testbed implementations and evaluations
on commodity devices in Sec. 8.

5 CONCURRENT COMMUNICATION

One specific feature of BLE is the frequency hopping, which helps
BLE devices to avoid busy channels occupied by other ISM band
radios. In BlueBee, this feature allows one BLE device to hop among
the 2.4GHz band and communicate with multiple ZigBee devices
at different channels. Furthermore, we can control BLE frequency
hopping sequence, while still following BLE frequency hopping pro-
tocol. In this section, we will first introduce briefly BLE frequency
hopping protocol, followed by our design of two BlueBee channel
scheduling solutions.

5.1 BLE Frequency Hopping

BLE has 40 2MHz wide channels, labeled as channel 0 to channel
39. Among them, channel 37, 38, and 39 are advertising channels
and the others are data channels. Once connection is established
on the advertising channels, two paired devices will hop among
the data channels.

Hopping
Interval

~J

2t 3t 4t t 2t 3t 4t 5t
Time Time

us

Channel
o N s
owesou]
Buiddoy
Channel
[SELSES

M

-
a
<A

Figure 11: BLE normal fre-
quency hopping

Figure 12: BLE adaptive fre-
quency hopping

In BLE, a simple yet effective frequency hopping protocol is used
to determine the next channel to hop. The first channel is always
‘0, and after a time duration of hopping interval, the BLE device will
hop to the next channel with an increment of hopping increment.
In formula

Cnext = Ccurrent + hoppingInc (mod37), (2)

where Cpext and Ceyrreny indicate next and current channel respec-
tively, 37 is the total number of BLE data channels, and hoppinglnc
is the hopping increment. In Fig. 11 we illustrate a frequency hop-
ping sequence on 5 channels (i.e., channel ‘0’ to channel ‘4’) with a
hopping increment of 2 and hopping interval of ¢.

To avoid collision with other wireless radios on the same ISM
band, BLE adopts adaptive frequency hopping (AFH) when packet
accept ratio is low on certain channels. In BLE AFH, a 37-bit channel

BlueBee

map is used to maintain the channel link quality where ‘0’ indicates
a bad channel and ‘1’ indicates a good channel. Let us use S04
and Sp,4 to indicate the good and bad channel sets respectively.
Whenever the next channel will be a bad channel, it will be replaced
by another channel in the Sg,,4. More specifically, a remaplndex
will be calculated through

remapIndex = Cpext mod |Sgoods 3)

and Crex will be replaced by Sy004(remapIndex). For example, in
Fig. 12, the channel 1 and channel 2 are bad channels. So whenever
BLE devices hop to these two channels, they will be remapped to
channel 3 and channel 4 respectively following the Equ. 3.

5.2 BlueBee Channel Scheduling

With AFH, the frequency to visit different channels becomes uneven.
For example, in Fig. 12, channel 0 will only be visited once during
one hopping period (i.e., 5 hops in the example) half the frequency
of channel 3 and 4. In real network environment, AFH will cause
unfair services to ZigBee nodes at BLE-ZigBee overlapped channels
(i-e., 2410, 2420, ... 2480MHz). In other words, the QoS of BlueBee
can not be guaranteed. To resolve this issue, we want to balance
BLE’s frequency of visiting overlapped channels in a non-disruptive
way.

To achieve that, we can take advantage of the 37-bit channel
bit map in BLE. As mentioned earlier, the channel bit map is used
to calculate the next channel to hop if AFH is enabled. In addi-
tion, current BLE protocol supports the update of the channel bit
map during normal transmission to adapt to the fast-changing net-
work environment. So we can control the hopping behavior of BLE
by only updating the channel bit map. For different optimization
goals in application scenarios, we propose two concurrent BlueBee
solutions.

Maximum-throughput solution. By updating the channel bit
map, we can control the set of channels BLE device can hop on. To
maximize the throughput of concurrent BlueBee, we can leave the
ZigBee-BLE overlapped channels in the channel bit map if they are
marked as idle in the original channel bit map (i.e., Sgo04), While
blacklisting the non-overlapped channels. The channel bit map
needs to be set only once in the connection initialization stage, so
the network overhead is very low. Note that what we do is just
choosing a subset channels from the idle channels, so we will not
disrupt the original functionality of BLE channel hopping, which is
to avoid channel collision. In addition, such change is supported by
BLE standard through host (i.e., user) level commands such as the
HCI_set_AFH_Channel_Classification [34].

Load balanced solution. In some scenarios, the fairness of CTC
is more important, such as the multi-channel synchronization prob-
lem. The maximum-throughput design may not guarantee a load
balanced CTC on different channels. Here a simple yet effective
heuristic method is proposed to balance the BLE’s frequency hop-
ping on overlapped channels while still being compliant to BLE’s
AFH protocol. More specifically, we can balance the BlueBee traffic
by slightly modify Sy04 and Spqq in the channel bit map. The
basic idea is that for each unbalanced channel c (i.e., visited less
than other overlapped channels), we find another channel ¢’ in
Sg00d Whose remapped channel will be ¢. Then we mark ’asa
bad channel in the channel bit map, so that whenever BLE devices

SenSys’17, November 6-8, 2017, Delft, The Netherlands

hop to ¢’, the channel will be remapped to ¢. Of course we need to
guarantee |S;004| unchanged so that the remaplIndex is unchanged.
To do that we choose to mark one bad channel to be good in the
channel bit map, so that [Sgo04] still keeps the same.

EE C I s T:’E
22 7)) &
] S
= = %
t 2t 3t 4t 5t t 2t 3t 4 5t
Time Time

(a) Choose a channel in S;,,q (b) Add a channel in S,,4 to
whose remapped channel willbe S;,04
the target channel

Figure 13: The steps of BlueBee channel scheduling

In Fig. 13a and Fig. 13b we illustrate our scheduling algorithm. In
the example, we try to rebalance channel 0 and channel 4. We find
channel 0 are visited less than channel 4, so we want to redirect
frequency hopping to channel 0. We first assume all the channels
need remapping (marked as red), except channel one. Then we find
the channel whose remapped channel will be channel 0, which is
channel 3, as shown in Fig. 13a . We add channel 3 to Sy, 4 to replace
one channel in S 44, i.e., channel 1, so that [Sy,04| doesn’t change
as shown in Fig. 13b. Finally we have rebalanced channel 0 and
channel 4. Admittedly, it is a best effort scheduling method, because
sometimes it is unable to balance all the overlapped channels due
to too many bad channels. In that case, we won’t disrupt a lot of
good channel to achieve the rebalance goal.

6 LINK LAYER PROTECTION

In this section, we introduce the link layer protection method of
BluBee, i.e. multiple preambles, link layer coding, and the adaptive
protection based on BLE link statistics.

6.1 Frame Retransmission

To improve the transmission reliability, BlueBee can transmit the
same Bluetooth packet multiple times for emulating the ZigBee
packets, in case some of the emulated ZigBee packet is dropped at
the receiver side. The ZigBee receiver is able to receive the correct
information if there is at least one copy of the same ZigBee packet is
correctly received, i.e., the packet passes through the CRC checksum
as specified in the 802.15.4 standard [18]. The frame retransmission
technique is naturally compatible with the ZigBee protocol at the
receiver side. That is because the ZigBee receiver will automatically
ignore retransmitted ZigBee frames if it has already received one
according to the 802.15.4 standard.

The number of frame retransmission is related to the frame re-
ception ratio (FRR). Assuming that the reception of each emulated
ZigBee frame is independent of the others, after transmitting k
copies, we will successfully receive at least one ZigBee frame with
probability 1 — (1 — FRR)K. As demonstrated in our experiment,
the successful reception of the BlueBee packet varies with different
SNR situations. Supposing we have a FRR of 70%, then after 6 re-
transmissions, the final successful reception rate is more than 99.9%,
suggesting that BlueBee can achieve a very high FRR by simply
retransmitting the emulated frames. Note that the retransmission

SenSys’17, November 6-8, 2017, Delft, The Netherlands

will not cause significant overhead to the channel efficiency, since
CTC is usually used for the control purpose with little total traffic
demand.

6.2 Repeated Preamble

In addition to the frame retransmission technique mentioned above,
BlueBee also utilizes the repeated preamble technique to further
improve the reliability. In the commodity ZigBee chips, the de-
modulation of possible ZigBee packets starts by searching for the
specific preamble, which consists of eight ‘0’ symbols, followed by
the symbols ‘a7’, which is the start frame delimiter (SFD). Since this
preamble detection is done before ZigBee can receive any frames,
it cannot be protected using upper layer coding. To improve the
packet reception rate, BlueBee sends out multiple repeated pream-
bles, as shown in Fig. 14. If the first preamble is successfully received,
the ZigBee receiver will then discard the remaining preambles in
the upper layer decoding. Otherwise, ZigBee still has a second
chance to detect the preamble.

Normal ZigBee packet

< >

ZigBee Payload

[o,...07A]0, .. 074A]

Repeated Normal
Preamble Preamble

Figure 14: Reliable CTC with repeated preamble

7 DISCUSSION

7.1 Compatibility with Bluetooth Classic

BLE is defined in Bluetooth core specification 4.0 [34]. Another
well known Bluetooth technique is Bluetooth Classic, defined in
Bluetooth core specification 1.0. There are some connection and
distinctive difference between these two techniques. First, in modu-
lation, although both adopts GFSK, Bluetooth Classic’s modulation
index is 0.35 while BLE’s modulation index is between 0.45 and
0.55. The difference in modulation index affects the shape of the
final signal. As mentioned earlier, the phase shift error brought by
pulse shape can be mediated through phase shift quantization at
ZigBee receiver, which means BlueBee can still be used in Blue-
tooth Classic. Second, Bluetooth Classic has 79 channels distributed
from 2402MHz to 2480MHz spaced 1MHz apart. So it can cover all
ZigBee channels. Third, on the frequency hopping, Bluetooth Clas-
sic will hop among all 79 channels following a frequency hopping
pattern calculated through master device’s MAC address and clock.
Its hopping interval will always be 625us. The hopping interval
is long enough to transmit a Bluetooth emulated ZigBee packets.
Although the channel scheduling methods will be different, the
same heuristic method can be used to find a channel scheduling
solution.

7.2 Feasibility of Reverse Communication

Although in this paper, we focus on the communication from BLE
to ZigBee, the reverse communication (e.g., CTC from ZigBee to
BLE) might be needed to provide the feedback (e.g., ACKs for BLE
to ZigBee packets) from ZigBee. The reverse communication from
ZigBee to BLE is also possible through the phase shift emulation.
More specifically, due to the similarity in (de)modulation, a BLE

Jiang et al.

receiver can get the information about the phase shifts of a Zig-
Bee symbol in the air, but only in coarse grain (i.e., IMbps BLE
data rate compared to the 2Mbps ZigBee chips) restricted to its
limited bandwidth. However, a BLE receiver is still able to derive
the corresponding ZigBee symbols from the detected phase shift
information because ZigBee chips are redundant. We will make
the communication from ZigBee to BLE and its compatibility with
commodity devices our future work.

8 EVALUATION

In this section, we evaluate the performance of BlueBee across
various domains, such as CTC performance comparison, communi-
cation reliability, support in mobility and low-duty cycle, and the
example application of coexistence between ZigBee and BLE.

BlueBee
(CC2540)

BlueBee ?
(Nexus 5X) FEHS

BlueBee | &
(UsRP N210)| |

ZigBee
(CC2530, CC2420)

ZigBee
I |(USRP N210)

Figure 15: Experiment Setting for BlueBee

8.1 Platform Setting

Fig. 15 demonstrates the evaluation platform of BlueBee. We have
implemented BlueBee as a sender on (i) a GNU radio BLE imple-
mentation called scapy radio [3] with a USRP-N210 platform, (ii) a
commodity BLE CC2540 development kit [2], and (iii) a commodity
smartphone Nexus 5X. Note that, we use USRP here only for its
convenience to change parameters in the experiments. Our design
is compatible with the widely used BLE 4.0 chips, such as CC2540,
as well as smartphones with the latest BLE 4.2 protocol, such as
Nexus 5X, which is back compatible to BLE 4.0 and supports the
long BLE frame up to 257 bytes.

As for the receiver side, we have tested the BlueBee on the
following platforms: 1) A commodity BLE receiver (i.e., CC2540 de-
velopment kit); 2) Commodity ZigBee receivers including CC2530
and CC2420 (i.e., MICAz and TelosB); and 3) 802.15.4 implemen-
tation on USRP N210 to provide detailed examination of the PHY
level emulation performance. The arrows from BlueBee to three
receivers indicate that a broadcast frame from BlueBee (either USRP
or commodity devices) can be decoded by both commodity ZigBee
receivers and commodity BLE receivers simultaneously, indicating
the emulated frames are both BLE-compliant and ZigBee-compliant.

8.2 CTC Throughput

To evaluate the CTC throughput of BlueBee, we compare its through-
put with the state-of-the-art packet level CTC methods.

BlueBee

8.2.1 Compare with FreeBee. The only state-of-the-art CTC
work on BLE to ZigBee communication is FreeBee [22]. FreeBee’s
throughput is 17bps with a single CTC transmitter, while the through-
put of BlueBee is 225kbps, 13,000% the throughput of FreeBee.
Admittedly, FreeBee has its unique advantage of a free channel
design, which differentiates it from those CTC designs that saturate
the channel for high throughput. BlueBee can also beat existing
packet-level CTC technologies that can saturate the channel for
high throughput.

8.2.2 Compare with Other Packet-Level CTC. Here we com-
pare BlueBee with other state-of-the-art packet-level CTC tech-
nologies, including Esense (WiFi — ZigBee), and BZW? (BLE —
WiFi) in throughput. Note that, these CTC techniques have a high-
bandwidth radio (i.e., 20MHz WiFi radio) either at the sender or at
the receiver. From Fig. 16, we can see that BlueBee can surpass the
state-of-the-art packet-level CTC by 70 X —100x. It indicates the
intrinsic advantage of PHY-layer CTC over packet-level CTC.

———

ESense w/ 802.11 b_ i
ESense w/ 802.1 19_ l
|
1

BlueBee

B2W2 w/ PAM _
Bow2 w/DAFSK |
Throughput (bps) 1K 2K 3K 7 220K

Figure 16: Comparison with the state of the arts

8.3 Emulation Reliability

Here we evaluate the emulation reliability of BlueBee, including
PHY-layer reliability (i.e., phase shift and hamming distance) and
link-layer reliability (i.e., frame reception ratio). To provide the de-
tails, we test these experiments under various situations, including
different transmission power, distances, scenarios, and different
packet duration.

Emulatéd signals

N

—_ ——Standard signals
5, 0> _40
g 2
- : =30
£ g Z
£ 0 £
7] Q20
-1 - .z S
] i]
F] Imperfect & 10
o-2 emulation

- 0

0 20 40 60 5 10 15 20

Sample Index Hamming Distance

(a) Phase shift of emulated and (b) Hamming distance of all em-
standard symbols ulated symbols

Figure 17: Performance of phase shift emulation

8.3.1 Emulated Signals. Since BlueBee’s BLE sender emulates
the phase shifts in legitimate ZigBee frames, we first examine the
performance of signal emulation.

Recall that in the Section IV, ZigBee’s OQPSK demodulation is
based on the phase shifts, whose positive and negative sign will be
further decoded as BLE symbol ‘1 and ‘0. In Fig. 17a, we plot the

SenSys’17, November 6-8, 2017, Delft, The Netherlands

phase shift of received ZigBee symbol and an ideal ZigBee symbol.
We find that BLE can emulate consistent phase shifts (i.e., slowly

changing phase shifts) while failing to emulate inconsistent phase
shifts (i.e., fast changing phase shifts) due to its limited bandwidth.
Note that the 64 samples for a ZigBee symbol is due to the over-
sampling of commodity ZigBee devices. The 64 samples will then
be decimated to 32 chips for decoding. In Fig. 17b, the distribution
of the Hamming distances of decoded ZigBee symbols is plotted.
We find that most Hamming distances are in the range of [6, 10]
especially in [8, 9], showing that the number of error chips caused
by inconsistent phase shifts is small and within the tolerance of
ZigBee.

—_
o

Ml Basic Design
| |[__JImproved

e e}

Q

Q

=

5

£

A

g 6f

=

5

A4

g

E 2 L

g

= 0

= 0 5 10 15

Emulated ZigBee Index

Figure 18: Hamming distance improvement of DSSS emula-
tion

Since the ZigBee’s OQPSK demodulation needs to consider the
closest hamming distance, the inter-symbol hamming distance also
affects the accuracy of emulation. In Fig. 18, we illustrate the per-
formance gain when BlueBee considers the intra symbol hamming
distance. For example, after the optimization, the hamming distance
improvement is in Figure 18. In the basic design, the hamming dis-
tance difference ranges from 3 to 7, while the hamming distance
difference of 3 suggests very little protection from the background
noises. With the optimization of BlueBee, we manage to increase
this hamming distance difference for the emulated ZigBee sym-
bols, as shown in Figure 18. This means that BlueBee can tolerate
more background noises than the basic design, leading to a better
reliability.

951
ES 4
g
£ o5
&
80 4
750
70 - -

JSRP) C2540) JSRP) C2540)
to CC2540 to CC2540 to Zigbee to Zigbee

Figure 19: FRR comparison under BLE and ZigBee

SenSys’17, November 6-8, 2017, Delft, The Netherlands

100 o -
—
= 90| T L—
o\ e e
el
o
70

0.3 0.6 0.9 1.2
Duration of Frame(ms)
Figure 21: FRR with different frame duration

8.3.2 Dual-standard Compliance. In BlueBee, a legitimate Zig-
Bee packet is embedded in a legitimate BLE frame. To verify and
evaluate such embedding, we have implemented BlueBee on vari-
ous hardwares, including 1) software defined radio, i.e., USRP N210
and 2) commodity BLE devices, i.e., CC2540 development kit. At the
receiver side, we use both commodity BLE receiver (i.e., CC2540)
and commodity ZigBee receiver (i.e., MICAz). As shown in Fig. 19,
BlueBee, either the USRP implementation or commodity device
implementation, can achieve over 99% frame reception ratio (FRR)
at commodity BLE receiver, showing that it is a BLE compliant
design. In addition, BlueBee’s USRP and commodity device imple-
mentations can achieve an over 90% FRR and an over 85% FRR
at commodity a ZigBee receiver, showing that it is also a ZigBee
compliant design.

The characteristic of dual-standard compliance indicates Blue-
Bee can achieve cross-technology broadcast. That means we can
construct a dual-standard frame where part of it is a ZigBee frame
and part of it is a BLE frame. Each technology can identify their
parts by detecting legitimate preamble and header while regarding
the rest as noise.

100 100

@ E 90 Q
g S e zaoF o _
e o e
£ £ . = = O
w 80 w
60
70 50
2 4 6 8 10 2 4 6 8 10
Distance(m) Distance(m)

(a) FRR with distance on USRP (b) FRR with distance on com-
(lab) modity devices (lab)

Figure 20: FRR with distance

8.3.3 Impact of Distance. We also evaluate the frame reception
ratio (FRR) where the BLE sender sends out emulated ZigBee frames
on both USRP and commodity CC2540 development kit. Fig. 20a
depicts the FRR when USRP N210 emulates the ZigBee frames with
the transmission power of 0dBm, the maximum energy level al-
lowed in BLE standard [34]. In all the experiments, the average FRR
is within 92% to 86%, demonstrating the reliability of BlueBee, at
a transmission distance of 10m (the usual communication range

Jiang et al.

between two BLE devices) Note that the FRR slightly decreases
with the increasing of distance, due to the lower SNR. Even so, in
all the experiments, the FRRs are all above 85%. The experiments
on commodity CC2540 development kit have similar trend. Dur-
ing these experiments, the FRR is above 73% for all the different
transmission distances.

8.3.4 Impact of Frame Duration. In BLE specification 4.2 [34],
the maximum payload for BLE has been extended from 39bytes to
257bytes, which means the frame duration will grow from around
0.3ms to over 2ms. So we here study the impact of frame duration
on BlueBee’s performance. In Fig. 21, we study the FRR with frame
duration ranging from 0.3ms to 1.2ms, following the latest standard.
We find that the increase in frame duration will slightly decreases
FRR, about 2% decrease. That is because a longer frame is usually
more vulnerable to environment noise and interference [33]. Even
so, over 90% FRR shows BlueBee’s resistance to the impact of long
frame.

60
F -2
+ 4 -1
»00% °, 8 10\
/’/tye 2 4 6 ‘a“ce\((\
’?)J 2 “*0\5

Figure 22: FRR with Tx power and distances

8.3.5 Impact of Tx Power and Tx Distance. In Fig. 22 we study
the frame reception ratio (FRR) of BlueBee with impact of various
Tx power and distance from a USRP to a commodity CC2530 ZigBee
device for its convenience to control transmission power. We find
that when Tx power increases from —2dBm to 2dBm , most FRR
also increases from 85% to 90%. Then we fix the Tx power, and study
the FRR of BlueBee with different distances. We find that when the
distance is as far as 10m , the FRR is still over 80%. Note that the
transmission power of a typical BLE device is 0dBm and the typical
transmission range is 10m. That means BlueBee can work well with
typical BLE setting.

8.3.6 Protection in the link layer-multiple header. In Fig. 23 we
study the performance of our link layer protection by repeated
preambles. Typical preamble length in ZigBee is 8 ZigBee symbols
‘0’.The number of ‘0’s can be changed with at least four ‘0’s. We
change the length of ZigBee preamble from 4 symbols to 16 symbols
which doubles the length of preamble. We can see from the figure,
with a typical preamble length of 8 symbols, FRR is about 84%,
When we increase the preamble length to 12 symbols, the FRR
jumps to about 95%, a 13% improvement. The experiments prove
the effectiveness of our multiple preamble technique. Even when we
reduce the preamble length to 4 symbols, we find that the average
FRR is still about 78%, which shows the robustness of BlueBee.

BlueBee
=== 2 meters
=© 5 meters
=10 meters |
§ 80 -
o
o
w 70
60
50
15 3 5 10 15 30

Duty Cycle Ratio(%)
Figure 25: BluBee’s support for low duty cycle network

100F ‘ ‘ E
;\; 90 r
o =
o 1
L g0t
]
70+
4 8 12 16

Preamble Length(symbol)
Figure 23: FRR with different preamble length out door

8.4 BlueBee Channel Scheduling

In this section, we evaluate the performance of the BlueBee sched-
uling algorithm to evenly distribute the BlueBee emulation frames.
Three TelosB nodes are set to ZigBee channel 22, 24, and 26, which
have the same central frequencies with BLE channel 27, 32, and 39
respectively. The BLE sender is implemented on the USRP N210-
platform, with a total number of 999 emulation frames. To test
the performance, BlueBee adopts out traffic adaptive algorithm to
evenly distribute the CTC traffic among ZigBee channels, i.e. 333
frames at each ZigBee channel (i.e., 33% of all packets).

33.5

= =

i

w
I
o

Ratio of Packets(%)
2
3] N

(2]
=

30.5
Ch22 Ch24 Ch26

ZigBee channel ID
Figure 24: Concurrent CTC on three ZigBee channels

Fig. 24 depicts the number of successful receptions at each ZigBee
channel. It is obvious that these ZigBee nodes working at different
ZigBee channels are able to receive the similar number of frames
(only 1% difference), demonstrating the efficiency of the traffic

SenSys’17, November 6-8, 2017, Delft, The Netherlands

adaption method based on the existing BLE channel bitmap. Note
that the ratio of received packet will be slightly lower in ZigBee
channel 26 because it overlaps with BLE advertising channel 39,
which is very busy.

8.5 Low Duty Cycle Support

In this section, we study the BLE’s support to the low duty cycle
network due to the fact that ZigBee devices are usually work on
low duty cycle mode to save energy. Low duty cycle scenario be-
comes even critical due to the fact that the BLE transmitter will do
frequency hopping. In the experiment, we transmit BLE frame from
USRP to MICAz, a commodity ZigBee device. The BLE transmitter’s

hopping interval is set to be 10ms, within the range of available
hopping interval in the standard. From Sec. 5.1 we know that BLE

will always return to the start channel after 37 hops, which means
the transmission interval of BLE to a ZigBee node at a specific chan-
nel will be 370ms. To make successful CTC from BLE to ZigBee in
low duty cycle mode, BLE will retransmit each frames 20 times. As
shown in Fig. 25, FRR increases when ZigBee’s duty cycle becomes
larger. When the duty cycle is larger than 10%, 100% FRR is reached.
However, even when BLE’s duty cycle is only 1.5%, a FRR of at least
88% still can be reached. This experiment indicate that BlueBee
has the potential to be used in a low duty cycle as a long lasting
coordinator.

100 Mlindoor |
[loutdoor
95
3
o«
oc 90
e
85
80
0.5 2 4 6 8
Speed(m/s)

Figure 26: BluBee’s support for mobile scenario

8.6 Mobility Support

In this part, we study the impact of mobility on the performance of
BlueBee because BLE radios are widely used in mobile scenario such
as in smart wristbands. In the experiment, a USRP with BlueBee
sender is put on a table broadcasting emulated ZigBee frames on
a fixed channel. A person carrying a commodity ZigBee node, i.e.,
MICAz node, is walking, jogging, and running with different speed
at about 10m away. As shown in Fig. 26, there is only a slightly
decrease in FRR when the speed increases. Even when the person
is running at speed 8m/s, we can still achieve about 90% FRR. Both
indoor and outdoor environment show similar results.

8.7 Application

Application I: Channel Coordination In this section, we demon-
strate one possible application built upon BlueBee, i.e. the channel
coordination between incompatible ZigBee and BLE. Note that
BlueBee enables many possible benefits as stated in Section II, and

SenSys’17, November 6-8, 2017, Delft, The Netherlands

[I [
va 4
ZigBee w/ CSMA ”

BLE scheduling

ZigBee w/o CSMA

. L L r
zosceweesee 1| G |\ WA .

Figure 27: Channel coordination between ZigBee and BLE

0
w/oCSMA w/CSMA BlueBee

we only introduce its channel coordination due to the limitation of
space as shown in the left part of Fig. 27.

In this experiment, the two ZigBee TelosB devices are commu-
nicating on ZigBee channel 26, to avoid other possible ISM band
interference. One BLE sender is transmitting its advertising frames
on frameBLE channel 39, which overlaps with the ZigBee channel
26. Since BLE does not perform CSMA before transmission, the
BLE frames might corrupt the ZigBee frames when they collide
into each other.

To evaluate the performance, we conduct experiments on dif-
ferent coordination methods, such as no CSMA, with CSMA, and
our channel scheduling method. In our channel scheduling, when
the BLE wants to transmit the BLE frames, it first broadcasts the
scheduling frame using BlueBee, which contains the future channel
usage of BLE. After successfully receiving these frames, the ZigBee
transmitter will coordinate the timing of the transmitted frames
accordingly.

In the right part of Fig. 27 shows the experimental results. Com-
pared with no CSMA, and with CSMA, BlueBee successfully im-
proves the frame reception ratio to 98%, clearly demonstrating the
channel efficiency of BlueBee’s coordination. This implies that ef-
fective radio coordination can be achieved through CTC, which
opens a door for cross-technology MAC design in the future.

Smart Bulb
(ZigBee)

2
3
8
2
=
w

Smartphone
(BlueBee)

Figure 28: BlueBee smart light bulb control

Application II: Smart Light Control BlueBee can be easily de-
ployed on commodity smartphones with BLE support, e.g., Nexus
5X smartphone, and benefit the smart home devices in real life.
In Fig. 28, we implement BlueBee on a Nexus 5X smartphone to
control ZigBee light bulbs at one of the overlapped channels, i.e.,
2.48GHz. Available commands including the on/off status, the color,
the intensity, and which light bulb to control. BlueBee achieves

Jiang et al.

direct control of ZigBee devices from a BLE radio without a ZigBee-

BLE gateway [16] and any hardware modification at either side.
BlueBee can be easily generalized to other IoT control scenario. It is

a key enabler for other IoT cross-technology control design under
commodity ZigBee and BLE devices.

9 RELATED WORK

With the rapid development of various wireless technologies, the
ISM band suffers from significant cross-technology interference
(CTI) [4, 5, 8-10, 15, 20, 25, 27, 30]. To alleviate this this, there has
been numerous researches on alleviating the CTI by detecting and
avoiding the interference, or recovering the corrupted signal from
the interference[31-33, 36, 38, 39, 41, 42, 44-46]. However, this line
of methods force the receivers to adapt to the interference pattern,
resulting in the unfairness between various technologies.

To address this issue, researchers propose cross-technology com-
munication (CTC) which directly builds the communication be-
tween heterogeneous devices [7, 11, 22, 42, 43]. The core idea of
these CTC methods is that the sender creates special energy pat-
terns by sending out legacy packets, while the receivers detect these
patterns by either the received signal strength (RSS) sampling, or
the channel state information (CSI), which are supported by the
existing hardware. However, the existing CTC technologies com-
monly use coarse packet-level information, thus suffer from the
significant low throughput and long transmission delay.

In contrast to these packet-level CTC methods, BlueBee is the
first approach to achieve the PHY-level CTC to the best of our
knowledge. The core idea of signal emulation in the BlueBee is
inspired by several recent works studying the signal manipulation[6,
19, 21, 23, 28]. In addition, in the LTE system, Ultran [6] emulates the
WiFi packets via a LTE transmitter to coordinate between LTE and
WiFi, while it requires the modification of existing LTE standard.
Different from these approaches, BlueBee does not require andy
modification to existing hardware, and is fully compatible with
existing commodify Bluetooth and ZigBee hardware.

In summary, BlueBee is the first PHY-level CTC which does
not require any hardware modification. It is fully compatible with
existing Bluetooth and ZigBee hardware, and achieves high CTC
throughput with little transmission delay.

10 CONCLUSION

In this work we present BlueBee, a new PHY layer cross-technology
communication technique proposing a direction of emulating legit-
imate ZigBee frames using BLE radio. BlueBee paves the road to
practical CTC by offering over 10, 000X the throughput compared to
the state-of-the-art CTC designs that rely on coarse-grained packet-
level information. The emulation is achieved simply by selecting
the payload bytes of BLE frames to provide unique dual-standard
compliance and transparency where neither hardware nor firmware
changes are required at the BLE senders and ZigBee receivers. Blue-
Bee includes advanced features such as multi-channel concurrent
CTC via adaptive frequency hopping in BLE operation. Comprehen-
sive testbed evaluation on both USRP and commodity ZigBee/BLE
devices show that BlueBee achieves 99% accuracy, while providing
reliability under mobile and duty cycled scenarios.

BlueBee

ACKNOWLEDGMENTS

This work was supported in part by the NSF CNS-1444021, NSF
CNS-1718456, NSF CNS-1717059, and NSF China 61672196. We
sincerely thank our shepherd Abusayeed Saifullah and anonymous
reviewers for their valuable comments and feedback.

REFERENCES

[1

(2]
[3
4]

=

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21

oo
sk

[23

1999. IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification (1999).

2013. TI cc2540 development kit. http://www.ti.com/tool/cc2540dk/. (2013).
2016. Scapy radio. https://github.com/BastilleResearch/scapy-radio. (2016).
Fadel Adib, Swarun Kumar, Omid Aryan, Shyamnath Gollakota, and Dina Katabi.
2013. Interference alignment by motion. In MobiCom ’13. ACM, 279-290.
Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda, Rohan Murty, and Matt
Welsh. 2009. White space networking with wi-fi like connectivity. ACM SIG-
COMM Computer Communication Review 39, 4 (2009), 27-38.

Eugene Chai, Karthik Sundaresan, Mohammad A Khojastepour, and Sampath
Rangarajan. 2016. LTE in unlicensed spectrum: are we there yet?. In MobiCom
’16. ACM, 135-148.

Kameswari Chebrolu and Ashutosh Dhekne. 2009. Esense: communication
through energy sensing. In Proceedings of the 15th annual international conference
on Mobile computing and networking. ACM, 85-96.

Bo Chen, Yue Qiao, Ouyang Zhang, and Kannan Srinivasan. 2015. Airexpress:
Enabling seamless in-band wireless multi-hop transmission. In MobiCom ’15.
ACM, 566-577.

Bo Chen, Vivek Yenamandra, and Kannan Srinivasan. 2015. Interference align-
ment using shadow channel. In INFOCOM 2015. IEEE, 2128-2136.

Lin Chen, Ruolin Fan, Kaigui Bian, Mario Gerla, Tao Wang, and Xiaoming Li.
2015. On heterogeneous neighbor discovery in wireless sensor networks. In
INFOCOM ’15. IEEE, 693-701.

Zicheng Chi, Yan Li, Hongyu Sun, Yao Yao, Zheng Lu, and Ting Zhu. 2016. B2W2:
N-Way Concurrent Communication for IoT Devices. In Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM. ACM, 245-258.
Inc Gartner. 2016. Gartner Report. Available at
urlhttp://cloudtimes.org/2013/12/20/gartner-theinternet-of-things-will-
grow-30-times-to-26-billion-by-2020/.

Minkeun Ha, Seong Hoon Kim, Hyungseok Kim, Kiwoong Kwon, Nam Giang,
and Daeyoung Kim. 2012. SNAIL gateway: Dual-mode wireless access points
for WiFi and IP-based wireless sensor networks in the internet of things. In 2012
IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas,
NV, USA, January 14-17, 2012.

Minkeun Ha, Kiwoong Kwon, Daeyoung Kim, and Peng-Yong Kong. 2014. Dy-
namic and Distributed Load Balancing Scheme in Multi-gateway Based 6LoW-
PAN. In 2014 IEEE International Conference on Internet of Things, IEEE Green
Computing and Communications, and IEEE Cyber, Physical and Social Computing,
iThings/GreenCom/CPSCom 2014, Taipei, Taiwan, September 1-3, 2014.

Tian Hao, Ruogu Zhou, Guoliang Xing, Matt W Mutka, and Jiming Chen. 2014.
Wizsync: Exploiting wi-fi infrastructure for clock synchronization in wireless
sensor networks. IEEE Transactions on mobile computing 13, 6 (2014), 1379-1392.
Mayur Hawelikar and Sunil Tamhankar. 2015. A design of Linux based ZigBee
and Bluetooth low energy wireless gateway for remote parameter monitoring.
In Circuit, Power and Computing Technologies (ICCPCT), 2015 International Con-
ference on. IEEE, 1-4.

Jun Huang, Guoliang Xing, Gang Zhou, and Ruogu Zhou. 2010. Beyond co-
existence: Exploiting WiFi white space for ZigBee performance assurance. In
Network Protocols (ICNP), 2010 18th IEEE International Conference on. 305-314.
Teee802.org. 2012. IEEE 802.15.4. (2012).

Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua Smith.
2016. Inter-technology backscatter: Towards internet connectivity for implanted
devices. In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference.
ACM, 356-369.

Tao Jin, Guevara Noubir, and Bo Sheng. 2011. WiZi-Cloud: Application-
transparent dual ZigBee-WiFi radios for low power internet access. In INFOCOM.
1593-1601.

Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and Joshua R Smith. 2016.
Passive wi-fi: Bringing low power to wi-fi transmissions. In NSDI ’16. USENIX
Association, 151-164.

Song Min Kim and Tian He. 2015. FreeBee: Crosstechnology Communication via
Free Sidechannel. In MOBICOM, 2013 Proceedings ACM.

Zhenjiang Li, Yaxiong Xie, Mo Li, and Kyle Jamieson. 2015. Recitation: Rehearsing
wireless packet reception in software. In MobiCom ’15. ACM, 291-303.

[24

[25

[26

[27

[28

[29

[30

[31

(33]

[34

[35

[36

®
=

[38

[39

[40

[41

[42

=
&

[44

[45

[46

SenSys’17, November 6-8, 2017, Delft, The Netherlands

Chieh-Jan Mike Liang, Nissanka Bodhi Priyantha, Jie Liu, and Andreas Terzis.
2010. Surviving Wi-fi Interference in Low Power ZigBee Networks. In Proceedings

of the 8th ACM ColilIference on Embedded Networked Sensor Systems (SenSys ’10).
ajesh Mahindra, Hari Viswanathan, Karthik Sundaresan, Mustafa Y Arslan, and

Sampath Rangarajan. 2014. A practical traffic management system for integrated
LTE-WiFi networks. In Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, 189-200.

Stefan Nastic, Hong Linh Truong, and Schahram Dustdar. 2015. SDG-Pro: a
programming framework for software-defined IoT cloud gateways. J. Internet
Services and Applications 6, 1 (2015), 21:1-21:17.

Georgios Nikolaidis, Mark Handley, Kyle Jamieson, and Brad Karp. 2015. COPA:
cooperative power allocation for interfering wireless networks. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and Technologies.
ACM, 18.

Jiajue Ou, Yuanqing Zheng, and Mo Li. 2014. MISC: Merging incorrect symbols
using constellation diversity for 802.11 retransmission. In INFOCOM 2014. IEEE,
2472-2480.

Soheil Qanbari, Negar Behinaein, Rabee Rahimzadeh, and Schahram Dustdar.
2015. Gatica: Linked Sensed Data Enrichment and Analytics Middleware for IoT
Gateways. In 3rd International Conference on Future Internet of Things and Cloud,
FiCloud 2015, Rome, Italy, August 24-26, 2015. 38—43.

Saravana Rathinakumar, Bozidar Radunovic, and Mahesh K Marina. 2016. CPRe-
cycle: Recycling Cyclic Prefix for Versatile Interference Mitigation in OFDM
based Wireless Systems. In Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies. ACM, 67-81.

Abusayeed Saifullah, Mahbubur Rahman, Dali Ismail, Chenyang Lu, Ranveer
Chandra, and Jie Liu. 2016. SNOW: Sensor network over white spaces. In Pro-
ceedings of the International Conference on Embedded Networked Sensor Systems
(ACM SenSys).

Souvik Sen, Romit Roy Choudhury, and Srihari Nelakuditi. 2011. No time to
countdown: Migrating backoff to the frequency domain. In MobiCom '11. ACM,
241-252.

Souvik Sen, Naveen Santhapuri, Romit Roy Choudhury, and Srihari Nelakuditi.
2013. Successive interference cancellation: Carving out MAC layer opportunities.
IEEE Transactions on Mobile Computing 12, 2 (2013), 346-357.
Bluetooth specification. 2011. Bluetooth technology website. (2011).
//www.bluetooth.com/

Dominic Spill and Andrea Bittau. 2007. BlueSniff: Eve Meets Alice and Bluetooth.
WOOT 7 (2007), 1-10.

Karthikeyan Sundaresan, Srikanth V Krishnamurthy, Xinyu Zhang, Amir Kho-
jastepour, Sampath Rangarajan, et al. 2015. TRINITY: A Practical Transmitter
Cooperation Framework to Handle Heterogeneous User Profiles in Wireless
Networks. In MobiHoc ’15. ACM, 297-306.

Zhimeng Yin, Wenchao Jiang, Song Min Kim, and Tian He. [n. d.]. C-Morse: Cross-
technology Communication with Transparent Morse Coding. In Proceedings of
INFOCOM 2017.

Sangki Yun and Lili Qiu. 2015. Supporting WiFi and LTE co-existence. In Computer
Communications (INFOCOM), 2015 IEEE Conference on. IEEE, 810-818.

Xinyu Zhang and Kang G Shin. 2011. Enabling coexistence of heterogeneous
wireless systems: Case for ZigBee and WiFi. In MobiHoc '11. ACM, 6.

Xinyu Zhang and Kang G. Shin. 2013. Cooperative Carrier Signaling: Harmoniz-
ing Coexisting WPAN and WLAN Devices. IEEE/ACM Trans. Netw. 21, 2 (April
2013).

Xinyu Zhang and Kang G Shin. 2013. Cooperative carrier signaling: Harmonizing
coexisting WPAN and WLAN devices. Networking, IEEE/ACM Transactions on 21,
2 (2013), 426-439.

Xinyu Zhang and Kang G Shin. 2013. Gap sense: Lightweight coordination
of heterogeneous wireless devices. In INFOCOM, 2013 Proceedings IEEE. IEEE,
3094-3101.

Yifan Zhang and Qun Li. 2013. HoWiES: A holistic approach to ZigBee assisted
WiFi energy savings in mobile devices. In INFOCOM, 2013 Proceedings IEEE. IEEE,
1366-1374.

Ruogu Zhou, Yongping Xiong, Guoliang Xing, Limin Sun, and Jian Ma. 2010. ZiFi:
wireless LAN disc overy via ZigBee interference signatures. In Proceedings of the
sixteenth annual international conference on Mobile computing and networking.
ACM, 49-60.

Wenjie Zhou, Tarun Bansal, Prasun Sinha, and Kannan Srinivasan. 2014. Bbn:
throughput scaling in dense enterprise wlans with bind beamforming and nulling.
In MobiCom ’14. ACM, 165-176.

Wenjie Zhou, Tanmoy Das, Lu Chen, Kannan Srinivasan, and Prasun Sinha. 2016.
BASIC: backbone-assisted successive interference cancellation. In MobiCom ’16.
ACM, 149-161.

http:

http://www.ti.com/tool/cc2540dk/
https://github.com/BastilleResearch/scapy-radio
http://www.bluetooth.com/
http://www.bluetooth.com/

	Abstract
	1 Introduction
	2 Motivation
	3 BlueBee in a Nutshell
	4 BlueBee Design
	4.1 Background
	4.2 Opportunities and Challenges of Emulation
	4.3 OQPSK Emulation
	4.4 Optimal DSSS Emulation
	4.5 Dealing with the BLE Data Whitening

	5 Concurrent Communication
	5.1 BLE Frequency Hopping
	5.2 BlueBee Channel Scheduling

	6 Link Layer Protection
	6.1 Frame Retransmission
	6.2 Repeated Preamble

	7 Discussion
	7.1 Compatibility with Bluetooth Classic
	7.2 Feasibility of Reverse Communication

	8 Evaluation
	8.1 Platform Setting
	8.2 CTC Throughput
	8.3 Emulation Reliability
	8.4 BlueBee Channel Scheduling
	8.5 Low Duty Cycle Support
	8.6 Mobility Support
	8.7 Application

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

