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ABSTRACT

The cytoplasmic membrane represents an essential barrier between the cytoplasm and the environment
external to cells. Interaction with nanomaterials can alter the integrity of the cytoplasmic membrane
through the formation of holes and membrane thinning, which can ultimately lead to adverse biological
impacts. Here we use supported lipid bilayers as experimental models for the cytoplasmic membrane to

investigate the impact of quantum dots functionalized with the cationic polymer
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poly(diallyldimethylammonium chloride) (PDDA) on membrane structure. Using quartz crystal
microbalance with dissipation monitoring we show that the positively charged quantum dots attach to
and induce structural rearrangement to zwitterionic bilayers in solely the liquid-disordered phase and in
those containing phase-segregated liquid-ordered domains. Real-time atomic force microscopy imaging
revealed that PDDA-coated quantum dots, and to a lesser extent PDDA itself, induced disappearance of
liquid-ordered domains. We hypothesize this effect is due to an increase in energy per unit area caused
by collisions between PDDA-coated quantum dots at the membrane surface. This increase in free energy
per area exceeds the approximate free energy change associated with membrane mixing between the

liquid-ordered and liquid-disordered phases and results in the destabilization of membrane domains.

INTRODUCTION

Increasing deployment of nanomaterials in consumer products and commercial processes raises
concerns that engineered nanomaterials released into the environment may interact adversely with
organisms.”® However, understanding the impact of nanomaterials on organisms at a mechanistic level
is difficult and requires a systematic approach using complementary analytical tools.> Prior studies
have indicated a number of different possible modes of interaction occurring at the nano-bio interface,
including endocytic uptake,®” passive diffusion, membrane permeabilization,®® lipid extraction,™ and
indirect interactions such as ROS generation®! or ion dissolution. The potential interactions between
nanoparticles and cell surfaces are complex, may occur through a number of different mechanisms, and

ultimately depend on the type of nanomaterial and cell surface structure.

For eukaryotic organisms, the initial interaction with nanomaterials frequently involves contact with
the cytoplasmic membrane, which can result in internalization and be a first step toward inducing toxic

responses.”>™ Supported lipid bilayers (SLBs) are frequently used as model systems to gain fundamental
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118 \While SLBs do not recapitulate the full complexity

insights into nanoparticle-membrane interactions.
of cell membranes, they provide a higher degree of control than can be achieved in vivo because their
composition can be systematically varied to investigate the influence of biomolecules that are important

15, 19-20

in the structure and function of cell membranes. Prior studies have shown that nanomaterials can

18, 21-22

induce a number of changes in SLBs including hole formation, membrane thinning,'® and

morphological changes.?

Cell membranes contain many components that phase segregate into domains exhibiting different
degrees of structural order. Laterally organized domains (frequently referred to as membrane rafts or
nanodomains) are important features of eukaryotic and prokaryotic membranes® and play roles in
signal transduction and membrane trafficking.”” In eukaryotes, sphingolipids and cholesterol often
mediate the domain structures in cellular membranes.’® In lipid bilayers, segregation into liquid-ordered
(Lo) and liquid-disordered (Lq) can be induced to study aspects of the phase segregation that occurs in
cytoplasmic membranes. Prior work using phase-segregated bilayers showed that the interaction with
amphiphilic dendrimers varied depending on the bilayer phase.”’ Partial solubilization occurred with
fluid-phase bilayers, while local depressions and flexible lipid patches occurred with gel-phase bilayers,
and a ribbon-like network with spherical aggregates occurred with bilayers having both fluid and gel
phases.”” Other studies showed that hydrophilic quantum dots? and polycationic dendrimers®**°
interact preferentially with L, domains, and that anionic diamond nanoparticles alter the domain shape
and packing.®" In recent work, we showed that 4-nm mercaptopropylamine-capped gold nanoparticles
interacted to a larger extent with SLBs containing phase-segregated L, and Ly domains than with SLBs
comprised solely of the Ly phase.” These studies suggest that liquid-ordered regions or their boundaries

may play an important role in controlling nanoparticle interactions, but a real-time, molecular-level

understanding of the interactions remains elusive.
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The objective of this study was to use complementary real-time, in situ characterization methods to
directly observe the impacts of cationic nanoparticles on liquid-ordered domains in supported lipid
bilayers. We chose CdSe/ZnS core/shell quantum dots wrapped with a cationic, amphiphilic polymer,
poly(diallyldimethylammonium chloride) (PDDA), as a model nanoparticle system. PDDA was chosen
because prior studies have shown that cationic nanoparticles interact more strongly with lipid bilayers

15,18, 32-33

compared with uncharged or anionic nanoparticles and because wrapping with PDDA yielded

colloidally stable nanoparticles under the conditions of our experiments. We chose CdSe/ZnS quantum

3435 and thus the concern of environmental release® and

dots because of their technological relevance,
toxicity.”” As model bilayers, we studied one composition forming a Ly phase and a second composition
containing both Ly and L, phases through the inclusion of sphingomyelin and cholesterol, two
biomolecules enriched in the phase-segregated “rafts” found in eukaryotic cell membranes,® into the
SLBs. We use real-time, in situ atomic force microscopy (AFM) time-lapse imaging to directly observe the
influence of the nanoparticles on the size and shape of the phase-segregated regions over time, and
quartz crystal microbalance with dissipation monitoring (QCM-D) to assess net changes in mass
associated with the interaction. AFM results show that the introduction of PDDA-QDs to phase-
segregated bilayers leads to the shrinking of the liquid-ordered regions, eventually leading to complete
loss of the L, regions. Our results suggest that increased energy per area induced by nanoparticle-

nanoparticle collisions may alter membrane structure by reducing the molecular driving forces for phase

segregation.

EXPERIMENTAL

Quantum Dot Characterization. Cadmium selenide core quantum dots with a zinc sulfide shell and a
positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer wrapping (average

molecular mass of 200,000 Da) were procured from OceanNanotech (QSQ-620, manufacturer reported

4
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core size 3.3 nm, shell thickness 2.5 nm, and PDDA thickness 2 nm). The polymer wrapping ensured
colloidal stability in water and allowed us to probe the impact of a positively charged particle on the
lipid bilayers. We measured the diffusivities and electrophoretic mobilities of the PDDA-QDs by dynamic
light scattering and laser Doppler microelectrophoresis (Malvern Zetasizer Nano ZS) at a 1 nM number
concentration of QDs in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES. The diffusivity and
electrophoretic mobility measurements were the average of five measurements. An intensity
correlation function was used to determine the diffusion coefficient of the particles. From the diffusion
coefficient we determined the hydrodynamic diameter using the Stokes-Einstein equation and from
these values estimated number-averaged hydrodynamic diameter (d}) using Mie theory.* Transmission
electron microscopy was conducted on a Tecnai T12 microscope to determine the core size of the

particles. Additional sample preparation details can be found in the Supporting Information.

Lipid Vesicle Preparation and Characterization. We prepared small unilamellar vesicles composed
solely of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 850375C, Avanti Polar Lipids) or DOPC with
plant-derived cholesterol (Chol, 700100P, Avanti Polar Lipids) and sphingomyelin from chicken egg yolk
(SM, S0756, Sigma Aldrich) as previously described." The gel-to-liquid crystalline phase transition
temperatures for DOPC and 16:0 SM (the bulk component of the egg yolk SM) are =21 °C*° and 41 °c*,
respectively. Briefly, stock solutions of Chol and SM were dissolved in chloroform (1 mg/mL) and
sonicated for 30 min. The three components were mixed to the desired ratio (100% DOPC or 60/20/20
mol% DOPC/SM/Chol), the chloroform was removed under a stream of nitrogen gas, and any residual
chloroform was removed under vacuum overnight. The dried film was rehydrated in 0.001 M NaCl
buffered to pH 7.4 with 0.01 M HEPES and vortexed briefly followed by sonication for 30 min to leave a
cloudy solution. Following three cycles of freezing with liquid nitrogen and thawing by sonication, the

solution was extruded 11 times (Avanti 610000 extruder kit) through a 50 nm polycarbonate membrane

ACS Paragon Plus Environment



oNOYTULT D WN =

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Langmuir Page 6 of 35

filter (Whatman) to give small unilamellar vesicles. Vesicles were stored at 4 °C and used within one

week of extrusion.

Quartz Crystal Microbalance with Dissipation Monitoring.  Quartz crystal microbalance with
dissipation monitoring measures changes in resonance frequency (Af) and changes in dissipation (AD)
due to the interaction of an analyte (PDDA-QDs in our case) with the surface of an AT-cut quartz crystal
oscillating in shear mode parallel to the bilayer. Changes in frequency are related to the mass of the
surface-bound analyte and any hydrodynamically coupled water present at the sensor surface. For
laterally homogeneous adlayers, changes in the energy dissipation or damping are related to the
resulting film’s viscoelasticity, whereas for films of discrete nanosized objects, AD is related to the
stiffness of the particle-surface contacts.* For rigidly adsorbed films, defined as —AD,/(Af./v) << 2/(f,)
(equal to 4 x 107 Hz* for the 4.96 MHz crystals used here)*, where v is the harmonic number, the
adsorbed surface mass density (Alqcnmop) is linearly proportional to the change in frequency, as described

by the Sauerbrey equation:®

C
=——Af
QCM-D v
v (1)

Al

where Cis the mass sensitivity constant (equal to 18.0 ng-Hz-cm™ for a 4.96 MHz crystal). In all
experiments presented, —AD,/(Af,/v) < 4 x 107 Hz™* and the Sauerbrey equation was applied to estimate

the surface mass density when noted.

Prior to use, SiO,-coated QCM-D crystals (QSX303, Biolin Scientific, Gothenburg, Sweden) were
soaked in a 2% sodium dodecyl sulfate solution for 10 min, rinsed three times alternatively with
ultrapure water and ethanol, dried with N, gas, and exposed to UV/ozone from a low-pressure mercury

lamp for 20 min (Bioforce Nanosciences UV/Ozone Procleaner, 185 and 254 nm). The crystals were then
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loaded into temperature-controlled, liquid flow cells (QFM 401, Biolin Scientific) on a Q-Sense E4

instrument (Biolin Scientific).

We formed supported lipid bilayers on the SiO, sensor from small unilamellar vesicles composed
of purely DOPC or 60/20/20 mol% DOPC/SM/Chol using the vesicle fusion method." ** The sensors were
equilibrated in 0.150 M NaCl buffered to pH 7.4 with 0.010 M HEPES (pH and buffer concentration used
throughout) and flowed until a stable baseline was reached. A solution of vesicles (0.03125 mg-mL™) in
the same solution was flowed (0.100 mL-min™) over the surface until the critical surface vesicle
concentration® was attained, at which point, the vesicles fused and ruptured to spontaneously form a
supported lipid bilayer. Any loosely adsorbed vesicles were rinsed away and a stable baseline was
established by rinsing with vesicle-free solution. The ionic strength of the solution was lowered to 0.010

M NaCl until the frequency and dissipation values stabilized.

Suspensions of 1 nM PDDA-QDs in 0.010 M NaCl were vortexed and immediately flowed over
the bilayers. Attachment was monitored for 20 min followed by rinsing with nanoparticle-free solution,
until stable frequency and dissipation values were observed, to examine the reversibility of the
interaction and any other changes induced by rinsing. Control experiments examined the interaction of
PDDA-QDs with the underlying SiO, sensor. All attachment experiments were carried out at 25.0 £ 0.5 °C

in at least triplicate.

Atomic Force Microscopy. We acquired AFM images of supported lipid bilayers before and after
exposure to PDDA-QDs. Supported lipid bilayers were formed on atomically flat surfaces of mica. Mica
substrates (Highest Grade V1, Ted Pella) were adhered to glass bottom dishes (P60G-1.5-30-F, MatTek
Corporation) using 5-minute epoxy (ITW Polymer Adhesives) and then cleaved using double-sided tape

to produce clean, atomically flat surfaces. We equilibrated the mica with 3 mL of 0.150 M NaCl and
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0.005 M CaCl, buffered to pH 7.4 with 0.010 M HEPES for at least 20 min. Calcium was used to facilitate
the adsorption of the negatively charged vesicles on the negatively charged mica.* The mica remained
completely submerged during initial equilibration, formation of supported lipid bilayers, exposure to
PDDA-QDs, and AFM imaging. Supported lipid bilayers were formed following a previously published
protocol*’ adapted to our solution conditions. Briefly, small unilamellar vesicles (0.0625 mg-mL™) in the
same solution were added to the dish to cover the bottom of the dish and the mica surface and heated
for 1 h to 45 °C (above the transition temperature of all lipids used). Samples were allowed to cool to
room temperature, and the liquid was exchanged with 12 mL (three 4 mL aliquots) of vesicle-free
solution to remove loosely adhered vesicles, then with 12 mL (three 4 mL aliquots ) of 0.150 M NaCl to
remove excess calcium, and finally with 12 mL (three 4 mL aliquots ) of 0.010 M NaCl solution to reduce

ionic strength.

All images were collected in PeakForce Tapping™ mode using a Dimension Icon (Bruker) atomic

force microscope. Gold-coated silicon nitride probes (Bruker, NPG) with a nominal force constant of 0.24
N-m™ were employed. The gold coating reduced electrostatic interactions with the positively charged
PDDA-QDs relative to more commonly used silicon nitride probes. Prior to imaging, the deflection
sensitivity of the cantilever in air was determined using a fused silica reference sample. The force
constant was also calibrated in air using the thermal tune method and fitting the power spectral density
plot to a Lorentzian function.* Imaging was conducted in 0.010 M NaCl buffered to pH 7.4 with 0.010 M
HEPES. The deflection sensitivity of the tip in liquid was re-calibrated using the previously determined

force constant.”®>*

Following calibration, the AFM head was raised, the calibration sample was removed, the bilayer

sample in the dish was then placed onto the vacuum line of the AFM stage, and magnets were placed on
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three sides of the dish to prevent movement of the dish during imaging. The AFM head was replaced

and slowly lowered until the drop of buffer on the tip reached the submerged sample.

Images were collected at room temperature (24.5 °C). Supported lipid bilayers sometimes contain ~4
nm deep holes, extending to the underlying mica substrate. All experiments reported here used high
quality bilayers that contained no holes or other defects over at least three regions scanned microns
away from one another. We placed a registration marker on the bottom of the glass-bottom dish to
ensure that same region could be found using the optical microscope on the AFM and that the same
defect-free region was examined before and after exposure to nanomaterials. To minimize the effect of
the mica substrate and electrostatic attractive forces that could occur between the positively charged

1821 3ny bilayers found to

guantum dots and the negatively charged mica due to holes in the bilayer,
contain holes or defects prior to PDDA-QD exposure were discarded. At least three images were

collected for at least three different samples for each bilayer type studied prior to introduction of PDDA-

QDs.

To examine the time scale of structural changes induced by exposure to PDDA-QDs, we initiated
imaging immediately after introducing 1 nM QD suspensions in 0.010 M NaCl buffered to pH 7.4 with
0.010 M HEPES to the bilayers. Initial images took ~8 min to optimize and collect, and subsequent
images were collected every ~4-5 min. We acquired images of the same region for up to 1 h. We also
conducted experiments designed to match the sequence of solution changes used for QCM-D studies. In
these experiments suspensions of 1 nM QDs in 0.010 M NacCl buffered to pH 7.4 with 0.010 M HEPES
were added to the supported lipid bilayer and allowed to interact for 20 min. After 20 min, bilayers were
rinsed with 12 mL (three 4 mL aliquots) of nanoparticle-free solution to remove any loosely adhered
QDs, and imaging was immediately conducted at various spots on the bilayers. Resulting images were

similar to those observed in the images collected over time. Control experiments were conducted to

9
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investigate any topographic changes resulting from exposure of bilayers to free PDDA polymer. These
control experiments employed poly(diallyldimethylammonium chloride) (Sigma, molecular mass
200,000-350,000 Da, 25 pg-mL™) in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES .
Determination of free polymer concentration in these solutions of quantum dots is difficult; the
concentration used here was based on the concentration of polymer used in the functionalization and is
therefore an overestimate. We chose to overestimate the polymer concentration to increase confidence
that any effects observed were due to the quantum dots rather than to polymer free in solution. Control
experiments were also conducted in which background solution was added instead of PDDA-QDs and
imaging was immediately began to ensure that no changes in bilayer structure were observed due to

sample preparation or changes over time.

RESULTS AND DISCUSSION

Characterization of PDDA-QDs. The PDDA-QDs were positively charged and had an electrophoretic
mobility of a (+2.6 + 0.3) x 10* m? V! s in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES, the
solution used in investigating interaction with supported lipid bilayers. The hydrodynamic diameter of
these particles in this solution was 17 £ 1 nm, suggesting the particles were slightly aggregated in

solution. The diameter determined by TEM was 6.1 £ 1.2 nm (Figure S3).

Formation of Zwitterionic Lipid Bilayers on SiO,. We constructed supported bilayers composed of
DOPC or 60/20/20 mol% DOPC/SM/Chol on SiO,-coated QCM-D sensor crystals. We chose to work with
DOPC because phosphatidylcholine is a majority component in the outer leaflet of eukaryotic
cytoplasmic membranes.® The cholesterol- and sphingomyelin-containing bilayers were used to probe
the importance of phase-segregated domains in the interaction of PDDA-QDs with bilayers. Both DOPC

and SM possess zwitterionic phosphatidylcholine headgroups. Phosphatidylcholine bilayers formed on a

10
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16, 52-53

SiO, surface carry net negative potentials. The high affinity of SM for Chol promotes dense packing

and formation of L, domains.>*>*

Figure S1 shows example QCM-D frequency and dissipation traces for the formation of DOPC and
60/20/20 mol% DOPC/SM/Chol bilayers. The traces exhibit the characteristic minimum in frequency and
maximum in dissipation corresponding to the attainment of a critical surface vesicle concentration at
which point the vesicles fuse and rupture, releasing the water contained within them and spontaneously
form supported lipid bilayers.*® Table S1 presents the frequency and dissipation values obtained for the
bilayers after rinsing with vesicle-free solution to remove adhering vesicles. The DOPC bilayers exhibited
final frequency changes of 24.8 + 0.3 Hz, which corresponds to a mass of 446 + 5 ng-cm™ as
approximated with the Sauerbrey equation,* and dissipation changes of 0.2 (+ 0.1) x 10°® (Table S1).
These values are consistent with previous reports of well-formed DOPC bilayers under similar solution
conditions.™ ***® The 60/20/20 mol% DOPC/SM/Chol bilayers had a final frequency changes of 27.0 +
0.5 Hz, which corresponds to masses of 486 + 9 ng-cm™ and dissipation changes of 0.4 (+ 0.1) x 10°®
(Table S1). These values are consistent with those previously reported for supported lipid bilayers

containing L, domains.”™

Interaction of PDDA-QDs with DOPC and L, Domain-containing Bilayers as Probed by QCM-D. We
characterized the interaction of quantum dots with supported lipid bilayers described above by
monitoring changes in frequency and dissipation upon introduction of PDDA-QDs to the flow chamber.
Figure 1a shows the QCM-D frequency change as a function of time as quantum dots interact with a
DOPC bilayer. Table 1 summarizes the observed changes in frequency and energy dissipation. At the
longest exposures indicated prior to rinsing ( A f20 min), the QCM-D resonance frequency decreased by
22.8 + 1.2 Hz, which corresponds to a Sauerbrey mass of 410 + 22 ng-cm’. The large frequency decrease

demonstrates attachment of the positively charged nanoparticles to the bilayer, consistent with

11
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favorable electrostatic interactions. Figure 1b shows the corresponding shift in dissipation factor
associated with PDDA-QD attachment. The maximum change in dissipation before initiation of the rinse
step was 1.8 (+ 0.1) x 10°®. Upon rinse, a small increase in frequency (3.8 + 0.7 Hz) and drop in
dissipation (0.8 (+ 0.1) x 10°®) were observed, corresponding to a slight reduction in both surface-
associated mass and energy dissipation. We attribute these changes to removal of loosely adsorbed
guantum dots. Interestingly, approximately 10 min after the rinse began, the frequency rises sharply and
dissipation increases dramatically. Ultimately, the frequency and dissipation values reach constant
values corresponding to a net increase in dissipation (1.5 (+ 0.2) x 10°) and no net change in frequency

relative to the values immediately prior to the commencement of rinsing.

We next investigated the interaction of PDDA-QDs with phase-segregated SLBs using 60/20/20 mol%
DOPC/SM/Chol bilayers. Figure 1c,d shows frequency and dissipation traces for the interaction of PDDA-
QDs with a 60/20/20 mol% DOPC/SM/Chol bilayer. The attachment of PDDA-QDs to these phase-
segregated bilayers produced maximum changes in frequency and dissipation (Afag min and A Dyg min) Of —
18.2 + 0.8 Hz (corresponding to a Sauerbrey mass of 328 + 14 ng-cm™) and 1.3 (+ 0.1) x 10 (Table 1).
Figure 1c, d shows that upon rinsing, a small increase in frequency (2.2 + 0.2 Hz) and decrease in
dissipation (0.6 (+ 0.1) x 10°®) were produced, followed closely by a sharp increase in dissipation and
drop in frequency until plateau values are reached, similar to that observed for pure DOPC. The net
effect of rinsing is an average increase in dissipation (2.0 (+ 0.2) x 10®) and no mass change compared to

the maximum values prior to rinse.

The extent of attachment to the DOPC and phase-segregated bilayers did not differ (p = 0.063 and
0.900, respectively, for A foomin and A Dygmin), similar to a prior study15 comparing the interaction of gold
nanoparticles (AuNPs) functionalized with cationic mercaptopropylamine (MPNH,) with the same

bilayers under the same solution conditions as used here. In that study, the presence of phase-
12
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segregated domains promoted attachment of MPNH,-AuNPs at 0.1 M NaCl, an ionic strength higher
than we employed in the present study. The results from our study differ from that on MPNH,-AuNP in
one important way: the changes in frequency and dissipation observed during rinsing in the present
study did not occur in the study employing MPNH,-AuNPs. This difference is presumably due primarily
to the cationic molecules used to coat the nanoparticle surfaces. The nanoparticles used in the previous
study were functionalized with short molecular ligands terminating in a primary amine." In the present
study, the QD were wrapped with PDDA polymer (average molecular mass of 200,000 Da) which has

cyclic quaternary amine pendant groups.

To determine whether changes in frequency and energy dissipation observed during rinsing for the
systems containing PDDA-QDs required the presence of a phospholipid bilayer, we conducted analogous
experiments using SiO,-coated QCM-D sensors lacking supported lipid bilayers. Figure S2 shows an
example QCM-D trace from such a control experiment and demonstrates the attachment of PDDA-QDs
to the SiO, substrate followed by stabilization of the frequency and dissipation values (Table 1). Rinsing
the PDDA-QDs adhered to the silica substrate was not accompanied by the shifts in frequency (Figure
S2a) or dissipation (Figure S2b) observed for these particles on DOPC bilayers. This result suggests that
the presence of the bilayer is necessary for the frequency and dissipation changes observed upon rinsing

attached PDDA-QDs (Figure 1a,b).

We hypothesize that the changes in frequency and dissipation occurring after removal of PDDA-QDs
from the overlying solution during rinsing correspond to restructuring of the bilayer-QD system. We
tested this hypothesis in the AFM experiments described below. We note that a previous study on the
formation of negatively charged SLBs on QCM-D sensor surfaces reported similar trends in frequency
and dissipation and attributed them to the restructuring of adsorbed phospholipids on the silica

surface.”*

13
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Interaction with PDDA-QDs Induces Structural Changes to DOPC Bilayers. The results of the QCM-D
experiments described above suggested that interaction of PDDA-QDs with both DOPC and 60/20/20
mol% DOPC/SM/Chol bilayers led to structural rearrangements. We monitored the interaction of the
PDDA-QDs with both bilayer types using time-resolved AFM. Figure 2 (and the movie found in the
Supporting Information) shows a time-lapse sequence for PDDA-QDs interacting with a DOPC bilayer.
Prior to introduction of PDDA-QDs (Fig. 2a), the supported lipid bilayer had a uniformly smooth surface
with RMS height variations < 110 pm, consistent with the DOPC bilayer following the topography of the
underlying mica substrate. This uniformity is consistent with the fact that prior studies™ have shown
that under conditions similar to those of this experiment, DOPC is present in an entirely liquid-
disordered phase. To confirm that the DOPC bilayer was present we conducted force-breakthrough
curves (Figure S4) and observed that the layers exhibited a rupture event characteristic of SLBs. The
breakthrough force observed for DOPC bilayers was ~3 nN and the discontinuity was ~4-5 nm in length
corresponding to the height of the bilayer. These values were consistent with previous reports for DOPC
SLBs®” with exact values being dependent on the environmental conditions of the particular study (i.e.,
pH, temperature, rate of indentation).”® After this confirmation we added quantum dots and

immediately began imaging.

Figure 2b shows that the QDs caused structural changes immediately upon interaction with the DOPC
bilayer. Starting with the first time point imaged after exposure of the bilayer to PDDA-QDs (at t = 8
min), the AFM data showed small regions 1.1 + 0.2 nm in height, some of which contained taller features
with heights of 8.6 + 2.3 nm (Figure 3a, Table 2). We refer to the former as “microdomains” to
distinguish them from the phase-segregated domains. The taller features appeared solely within the
microdomains. The height of the taller features is consistent with the nanoparticle diameter determined

from TEM images (6.1 £ 1.2 nm, Figure S3). In a control experiment we examined the impact of 25

14

ACS Paragon Plus Environment



Page 15 of 35

oNOYTULT D WN =

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

Langmuir

ug-mLPDDA polymer on bilayer structure in the absence of QDs (Figure 3b). This PDDA concentration is
an overestimation of free polymer in solution and was based on the concentration of polymer used in
the functionalization according to the manufacturer. We observed the formation of ~1 nm tall
microdomains that lacked the taller features present in the some of the microdomains induced in DOPC
bilayers exposed to PDDA-QDs. The ~1 nm high features are induced by interaction of the bilayer with
PDDA or PDDA-QDs as the structure of the DOPC bilayer did not change over time after addition of
PDDA-QD-free buffer (Figure S5a,b). We therefore conclude that the microdomains observed in Fig. 3b
arise only after the bilayers are exposed to the PDDA polymer or the PDDA-QDs and that the tallest
features likely correspond to PDDA-QDs. Similar structures have been reported previously, where the
interaction of amphiphilic peptides with a DOPC bilayer produced locally high regions (~10 nm relative
to the underlying DOPC bilayer) formed within microdomains (~1.4 nm taller than the underlying
bilayer).” The authors of that study hypothesized that the tallest features were either large aggregates
of peptides or partially solubilized/“budding” regions of the bilayer.>® While we hypothesize in our study
that the tallest features are quantum dots, we cannot rule out that the PDDA-QDs caused budding

regions of the bilayers, whereas the polymer alone did not.

Exposure of bilayers to either PDDA-QDs or PDDA resulted in microdomain formation. We hypothesize
that the microdomains arise from the interaction with the PDDA polymer — either wrapping the QDs or
free in solution. The high local density of PDDA on the QDs and the comparatively large size of PDDA-
QDs appears to lead to more pronounced structural perturbations relative to the polymer alone.
Previous research on amine-terminated poly(amidoamine) dendrimers has shown that the degree of
disruption to liquid crystalline supported phospholipid bilayers increases with dendritic generation and
therefore dendrimer size.” The polymer alone induces formation of microdomains occupying 2.0 + 1.9%

of the total area over ~30 min, whereas exposure to PDDA-QDs resulted in a fractional coverage of 23.0
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+ 2.2% microdomains over this same time frame. Initial attachment likely occurs due to favorable
electrostatic attraction between the positively charged quaternary amine pendant groups of the PDDA
and the negative surface potential of the bilayer as has been reported previously with primary amines.*®
>* Following initial attachment, we hypothesize that the hydrophobic backbone of the polymer likely
extends into the hydrophobic core of the bilayer. The resulting mechanical stresses induce a height
change in the surrounding bilayer. Such a height change can arise from changes in the tilt angle of the
lipids with respect to the surface normal. The observed height change (1.1 £ 0.2 nm) is also consistent
with the quantum dots inducing an increase in lipid ordering, due to more efficient packing of the
hydrophobic tail groups, within the membrane.®* However, an increase in lipid ordering and packing
would be expected to lead to the formation of holes or a decrease in bilayer coverage,® neither of
which are observed in Fig. 2. In Fig. 2b-h, the data show that over time more microdomains form,
consistent with penetration of more particles into the bilayer over time. The formation of more
microdomains over time is also consistent with the decrease in frequency and increase in dissipation
observed by QCM-D. More quantum dots may penetrate the bilayer over time causing an increase in

mass at the surface and a more dissipative final structure.

Interaction of PDDA-QDs with Phase-segregated Bilayers Cause L, domains to Disappear. We next
used in situ AFM imaging to examine the interaction of the quantum dots with a 60/20/20 mol%
DOPC/SM/Chol bilayer over time. Figure 4a shows that this bilayer composition forms phase-segregated
L, domains, strongly enriched in sphingomyelin and cholesterol, that are ~1 nm higher in height than the
Ly phase containing predominantly DOPC. This finding is consistent with previous work showing that
cholesterol induces ordering of the unsaturated acyl chains of sphingomyelin, making the L, regions ~1

15,61

nm taller than the Ly regions. The shape and lateral sizes of the L, domains are also consistent with

previous reports of similar bilayers on mica substrates.*”® Commencing with the first time point collected
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after addition of the QDs, structural changes occurred similar to those observed with pure DOPC
bilayers. Figure 4b shows the formation of microdomains in the Ly phases of the bilayer, encompassing
taller features, consistent with our observations on liquid crystalline DOPC bilayers. We further found
that the restructured lipids around the quantum dots were slightly taller (1.8 £ 0.2 nm, p < 0.001) than
analogous structures in the DOPC bilayer (Figure 5b, Table 2). This increased height relative to the
surrounding Ly phase is consistent with the positive amine groups of the PDDA-QDs binding to the
phosphocholine headgroup of the lipid bilayers and the resulting mechanical stresses inducing a height
change in the surrounding bilayer, much like our observations in the case of PDDA-QDs interacting with
the DOPC bilayer. The larger thickness of the microdomains in phase-segregated SLBs relative to those
formed in pure DOPC may be due to the presence of cholesterol in the Ly domains of the phase-
segregated bilayers. A previous study showed that the presence of 30% cholesterol in a POPC bilayer
increased its height by ~0.4 nm.% Therefore, the presence of cholesterol in the membranes used in our

work, may account for the increase in height of the microdomains as compared to pure DOPC.

Upon addition of the QDs, the liquid-ordered domains of the DOPC/SM/Chol bilayer decrease in
size and ultimately disappear within 15 min as clearly shown in Fig. 4d and 4e. Control experiments
scanning the bilayer over the same length of time without exposure to PDDA-QDs showed no formation
of microdomains or bright regions over the length scales of these studies (Figure S5c,d). Figure S5c, d
shows that small L, domains (< 0.06 pm?) disappear over time without the addition of PDDA-QDs;
however, Figure S6 shows that the addition of PDDA-QDs to the same bilayer in Figure S5 results in the
complete disappearance of the phase-segregated domains within 20 min. This confirms that diffusion of
the phase-segregated domains within the bilayer alone cannot account for the observed disappearance
of the domains and that this effect is due to interaction with the PDDA-QDs. Figure S7 shows time-lapse

images of free PDDA polymer (molecular mass 200,000 — 350,000, 25 pg-mL™) interacting with a
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60/20/20 mol% DOPC/SM/Chol bilayer. The interaction of free polymer with the bilayer also resulted in
a decrease in the number and size of domain structures, but the effects of the free polymer were much

less pronounced (domains still visible after 30 min of interaction) than those of the PDDA-QDs.

Prior studies of phase segregation in two-dimensional bilayer systems have highlighted the delicate

63-64
d.

balances of free energies involve In cases where the driving forces for phase segregation are small,

subtle changes in composition may be sufficient to significantly alter the thermodynamic driving forces

63,6566 The destabilization of liquid-ordered domains has recently been

and thereby induce mixing.
reported for membrane proteins interacting with a model membrane containing L, domains.®® The
lateral steric pressure, or energy per unit area, caused by protein-protein crowding on the surface of the
membranes exceeded the approximate enthalpy of membrane mixing between the L, and Ly phases,
which resulted in the collapse of L, domains.®® Our results with amphiphilic positively charged quantum
dots suggest similar phenomena are possible for nanomaterials. The increase in energy per area due to
collisions between the bulky nanomaterials on the surface of the membrane may be enough to exceed

the free energy of membrane mixing between the L, and Ly phases, thus resulting in the destabilization

of the L, domains.

Overall, we propose that the forces between PDDA-QDs and SLBs (both DOPC and 60/20/20 mol%
DOPC/SM/Chol) are driven by electrostatic attraction and the hydrophobic effect. We hypothesize that

the initial interaction occurs between the positive charge on the quaternary amine and the negatively

16,53

charged phosphate group of the phopholipids. Following this initial “anchoring,” the hydrophobic

backbone of the polymer inserts into the hydrophobic akyl chains of the lipid bilayer and causes
restructuring around this site of contact. The QDs can then penetrate through the membrane or remain

67-68

on top of the surface. Previous molecular dynamics and experimental® studies have shown that

hydrophobic ligands are able to anchor within the membrane. In the presence of L,domains, the
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additional energy per area induced by the addition of the PDDA-QDs to these systems, exceeds the
enthalpy of membrane mixing and results in the mixing of the L, and Ly phases. While this phenomenon
has been shown previously following interactions with proteins®® and polymers®® in similar systems, we
believe this to be the first evidence of positively charged quantum dots inducing the collapse of L,

domains.

SUMMARY AND CONCLUSIONS

Our results show that PDDA-QDs induce complex structural rearrangements of supported lipid
bilayers consisting of 100% DOPC or 60/20/20 mol% DOPC/SM/Chol. The use of complementary, in situ
analytical methods provided unprecedented insights into these structural changes. Namely, QCM-D
shows that the interaction of QDs with the lipid bilayers induces structural rearrangements of the
bilayers. Real-time in situ AFM imaging shows the formation of microdomains with higher features in the
center of some microdomains that are consistent with quantum dots attached to the bilayer.
Interestingly, the interaction of the positively charged amphiphilic quantum dots led to selective
shrinkage of the liquid-ordered domains, with complete disappearance occurring after ~15 min of
interaction. We hypothesize that the positive charge on the PDDA polymer interacts favorably with the
negatively charged bilayers. Following this favorable interaction, the hydrophobic backbone of the
polymer ligand can insert into the hydrophobic akyl chains of the bilayer and cause restructuring around
this point of contact. Ultimately, when the additional energy per area caused by polymer-polymer,
nanoparticle-nanoparticle, and/or nanoparticle-polymer collisions at the membrane surface exceeds the

free energy of membrane mixing, the collapse of L, domains was observed.

The present study represents an initial demonstration of the complex interactions that can occur

between quantum dots wrapped with a positively charged, amphiphilic polymer, and supported lipid
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bilayers. While more studies are necessary to generalize these results, other studies with amphiphilic
and positively charged, hydrophobic ligands have shown similar features®® and similar mechanisms of
interaction were proposed.® Thus, we expect the results presented here will be most transferable to

nanomaterials with positively charged hydrophobic or amphiphilic ligands.
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Table 1. Summary of frequency shifts (Af) and dissipation changes (AD) upon interaction between PDDA-QDs and the indicated supported lipid
bilayer or silica surface as measured by quartz crystal microbalance with dissipation monitoring.’

Bilayer AfZO min ADZO min Afrinsed ADrinsed

Type (Hz) (x10°) (H2) (x10°)
DOPC -228+1.2 1.8+0.1 -21.7+1.8 3.3+0.3
DOPC/SM/Chol -18.2+0.8 1.3+0.1 -18.7+2.4 3.3+£0.2
SiO, -155+04 0.6 +0.01 -155+0.3 0.5+0.04

@ Attachment experiments were conducted in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES at 25 °C. All data are for the 3" harmonic.
Data for the frequency and dissipation shifts are after 20 min of attachment or for the final equilibrated values following rinse with buffer.
Values are means * standard deviations of at least triplicate experiments. Abbreviations: DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; SM,
sphingomyelin; Chol, cholesterol.
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Table 2. Line scan analysis of features observed by AFM.?

oNOYTULT D WN =

Bilayer Type Microdomain Height” (nm) Particle Height within Microdomains® (nm)
10 DOPC 1.1+£0.2 8.6%23

12 (N=26) (N=31)

16 DOPC/SM/Chol 1.8+0.2 7.7+2.6

18 (N =25) (N =31)

? AFM experiments were conducted in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES at 24.5 °C. Values are averages and standard
24 deviations of N line scans. Abbreviations: DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; SM, sphingomyelin; Chol, cholesterol.

26 ® Referenced to underlying bilayer.
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Figure 1. Representative changes in a, c) frequency and b, d) dissipation upon introduction of 1 nM

PDDA-QDs to a a,b) DOPC or c,d) 60/20/20 mol% DOPC/SM/Chol bilayer in 0.01 M NaCl buffered to pH
7.4 with 0.01 M HEPES. The bilayer has already been formed and interaction between the QDs and the
bilayer begins where noted. The dashed line represents the point where buffer without QDs reach the
sensor surface and some mass loss and decrease in dissipation is initially observed. All data are for the

3" harmonic.

30

ACS Paragon Plus Environment

Page 30 of 35



Page 31 of 35 Langmuir

oNOYTULT D WN =

Figure 2. Time-lapse topographical AFM images showing the impact of PDDA-QDs on a DOPC bilayer

24 immediately after injection of particles. a) DOPC bilayer prior to the introduction of PDDA-QDs, b-h)

26 subsequent images taken after interaction with the PDDA-QDs. All images were collected in 0.01 M NaCl
28 buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C. Black arrows represent the scan direction for the given
image. Scale bars on all images are 2 um. Z-height color scale corresponds to all images. The time on

33 each image indicates how much time the bilayer had been in contact with PDDA-QDs. Each image took
35 between 4-6 min to capture depending on optimization of scan parameters. A video of this sequence

37 can be found in the supporting information.
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Figure 3. a) Line profile across the microdomains observed after interaction of PDDA-QDs with the

DOPC bilayer from Figure 2a and b) PDDA polymer (molecular mass 200,000-350,000 Da, 0.0025 wt.
%) interaction with a DOPC bilayer with corresponding line scan. All images were collected in 0.01 M
NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C. Line scans were taken across the dashed blue

line in each image. Scale bars on all images are 2 um. Z-height color scale corresponds to both images.
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Figure 4. Time-lapse topographical AFM images showing the effect of PDDA-QDs on a bilayer initially

2% containing phase-segregated domains. Bilayer composition was 60/20/20 mol% DOPC/SM/Chol. a)

28 Bilayer prior to the introduction of PDDA-QDs, b-h) subsequent images taken after interaction with the
30 PDDA-QDs. All images were collected in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C.
Black arrows represent the scan direction for the given image. Scale bars on all images are 2 um. The red
35 arrows are intended to direct the reader’s eye to the disappearance of the liquid-ordered domains. Z-

37 height color scale corresponds to all images. The time on each image indicates how much time the

39 bilayer had been in contact with PDDA-QDs. Each image took between 3-6 min to capture depending on

optimization of scan parameters. A video of this sequence can be found in the supporting information.
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Figure 5. Representative line traces observed for height across features observed in a 60/20/20 mol%
DOPC/SM/Chol bilayer (note: same bilayer as presented in Figure 4) a) prior to and b) after interaction
with 1 nM PDDA-QDs. The blue trace traces in both images show the height over a liquid-ordered
domain, whereas the red trace in b) shows the height across the microdomain structure induced by the
PDDA-QDs. All images were collected in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C.

Scale bars are 2 um. Z-height color scale corresponds to both images.
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