

Quaternary Amine-Terminated Quantum Dots Induce Structural Changes to Supported Lipid Bilayers

Arielle C Mensch, Joseph T. Buchman, Christy L. Haynes, Joel A. Pedersen, and Robert J Hamers

Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.8b02047 • Publication Date (Web): 05 Sep 2018

Downloaded from <http://pubs.acs.org> on September 6, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

is published by the American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Quaternary Amine-Terminated Quantum Dots

Induce Structural Changes to Supported Lipid Bilayers

Arielle C. Mensch,^{t,✉} Joseph T. Buchman,[✉] Christy L. Haynes,[✉] Joel A. Pedersen,^{*†‡§} and Robert J. Hamers^{*†}

^tDepartment of Chemistry, University of Wisconsin, Madison, WI 53706, United States

[✉]Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States

[†]Department of Soil Science, University of Wisconsin, Madison, WI 53706, United States

[‡]Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706,

United States

ABSTRACT

The cytoplasmic membrane represents an essential barrier between the cytoplasm and the environment external to cells. Interaction with nanomaterials can alter the integrity of the cytoplasmic membrane through the formation of holes and membrane thinning, which can ultimately lead to adverse biological impacts. Here we use supported lipid bilayers as experimental models for the cytoplasmic membrane to investigate the impact of quantum dots functionalized with the cationic polymer

1
2
3 16 poly(diallyldimethylammonium chloride) (PDDA) on membrane structure. Using quartz crystal
4 17 microbalance with dissipation monitoring we show that the positively charged quantum dots attach to
5 18 and induce structural rearrangement to zwitterionic bilayers in solely the liquid-disordered phase and in
6 19 those containing phase-segregated liquid-ordered domains. Real-time atomic force microscopy imaging
7 20 revealed that PDDA-coated quantum dots, and to a lesser extent PDDA itself, induced disappearance of
8 21 liquid-ordered domains. We hypothesize this effect is due to an increase in energy per unit area caused
9 22 by collisions between PDDA-coated quantum dots at the membrane surface. This increase in free energy
10 23 per area exceeds the approximate free energy change associated with membrane mixing between the
11 24 liquid-ordered and liquid-disordered phases and results in the destabilization of membrane domains.
12
13
14
15
16
17
18
19
20
21
22
23
24
25 **INTRODUCTION**
26
27
28 26 Increasing deployment of nanomaterials in consumer products and commercial processes raises
29 27 concerns that engineered nanomaterials released into the environment may interact adversely with
30 28 organisms.¹⁻³ However, understanding the impact of nanomaterials on organisms at a mechanistic level
31 29 is difficult and requires a systematic approach using complementary analytical tools.³⁻⁵ Prior studies
32 30 have indicated a number of different possible modes of interaction occurring at the nano-bio interface,
33 31 including endocytic uptake,⁶⁻⁷ passive diffusion, membrane permeabilization,⁸⁻⁹ lipid extraction,¹⁰ and
34 32 indirect interactions such as ROS generation¹¹ or ion dissolution.¹² The potential interactions between
35 33 nanoparticles and cell surfaces are complex, may occur through a number of different mechanisms, and
36 34 ultimately depend on the type of nanomaterial and cell surface structure.
37
38
39 35 For eukaryotic organisms, the initial interaction with nanomaterials frequently involves contact with
40 36 the cytoplasmic membrane, which can result in internalization and be a first step toward inducing toxic
41 37 responses.¹³⁻¹⁴ Supported lipid bilayers (SLBs) are frequently used as model systems to gain fundamental
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 38 insights into nanoparticle-membrane interactions.¹⁵⁻¹⁸ While SLBs do not recapitulate the full complexity
4
5 39 of cell membranes, they provide a higher degree of control than can be achieved *in vivo* because their
6
7 40 composition can be systematically varied to investigate the influence of biomolecules that are important
8
9 41 in the structure and function of cell membranes.^{15, 19-20} Prior studies have shown that nanomaterials can
10
11 42 induce a number of changes in SLBs including hole formation,^{18, 21-22} membrane thinning,¹⁸ and
12
13 43 morphological changes.²³

14
15
16
17 44 Cell membranes contain many components that phase segregate into domains exhibiting different
18
19 45 degrees of structural order. Laterally organized domains (frequently referred to as membrane rafts or
20
21 46 nanodomains) are important features of eukaryotic and prokaryotic membranes²⁴ and play roles in
22
23 47 signal transduction and membrane trafficking.²⁵ In eukaryotes, sphingolipids and cholesterol often
24
25 48 mediate the domain structures in cellular membranes.²⁶ In lipid bilayers, segregation into liquid-ordered
26
27 49 (L_o) and liquid-disordered (L_d) can be induced to study aspects of the phase segregation that occurs in
28
29 50 cytoplasmic membranes. Prior work using phase-segregated bilayers showed that the interaction with
30
31 51 amphiphilic dendrimers varied depending on the bilayer phase.²⁷ Partial solubilization occurred with
32
33 52 fluid-phase bilayers, while local depressions and flexible lipid patches occurred with gel-phase bilayers,
34
35 53 and a ribbon-like network with spherical aggregates occurred with bilayers having both fluid and gel
36
37 54 phases.²⁷ Other studies showed that hydrophilic quantum dots²⁸ and polycationic dendrimers²⁹⁻³⁰
38
39 55 interact preferentially with L_o domains, and that anionic diamond nanoparticles alter the domain shape
40
41 56 and packing.³¹ In recent work, we showed that 4-nm mercaptopropylamine-capped gold nanoparticles
42
43 57 interacted to a larger extent with SLBs containing phase-segregated L_o and L_d domains than with SLBs
44
45 58 comprised solely of the L_d phase.¹⁵ These studies suggest that liquid-ordered regions or their boundaries
46
47 59 may play an important role in controlling nanoparticle interactions, but a real-time, molecular-level
48
49 60 understanding of the interactions remains elusive.

1
2
3 61 The objective of this study was to use complementary real-time, *in situ* characterization methods to
4
5 62 directly observe the impacts of cationic nanoparticles on liquid-ordered domains in supported lipid
6
7 63 bilayers. We chose CdSe/ZnS core/shell quantum dots wrapped with a cationic, amphiphilic polymer,
8
9 64 poly(diallyldimethylammonium chloride) (PDDA), as a model nanoparticle system. PDDA was chosen
10
11 65 because prior studies have shown that cationic nanoparticles interact more strongly with lipid bilayers
12
13 66 compared with uncharged or anionic nanoparticles^{15, 18, 32-33} and because wrapping with PDDA yielded
14
15 67 colloidally stable nanoparticles under the conditions of our experiments. We chose CdSe/ZnS quantum
16
17 68 dots because of their technological relevance,³⁴⁻³⁵ and thus the concern of environmental release³⁶ and
18
19 69 toxicity.³⁷ As model bilayers, we studied one composition forming a L_d phase and a second composition
20
21 70 containing both L_d and L_o phases through the inclusion of sphingomyelin and cholesterol, two
22
23 71 biomolecules enriched in the phase-segregated “rafts” found in eukaryotic cell membranes,³⁸ into the
24
25 72 SLBs. We use real-time, *in situ* atomic force microscopy (AFM) time-lapse imaging to directly observe the
26
27 73 influence of the nanoparticles on the size and shape of the phase-segregated regions over time, and
28
29 74 quartz crystal microbalance with dissipation monitoring (QCM-D) to assess net changes in mass
30
31 75 associated with the interaction. AFM results show that the introduction of PDDA-QDs to phase-
32
33 76 segregated bilayers leads to the shrinking of the liquid-ordered regions, eventually leading to complete
34
35 77 loss of the L_o regions. Our results suggest that increased energy per area induced by nanoparticle-
36
37 78 nanoparticle collisions may alter membrane structure by reducing the molecular driving forces for phase
38
39 79 segregation.

45
46 80 **EXPERIMENTAL**
47
48
49 81 **Quantum Dot Characterization.** Cadmium selenide core quantum dots with a zinc sulfide shell and a
50
51 82 positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer wrapping (average
52
53 83 molecular mass of 200,000 Da) were procured from OceanNanotech (SQS-620, manufacturer reported
54
55

1
2
3 84 core size 3.3 nm, shell thickness 2.5 nm, and PDDA thickness 2 nm). The polymer wrapping ensured
4
5 85 colloidal stability in water and allowed us to probe the impact of a positively charged particle on the
6
7 86 lipid bilayers. We measured the diffusivities and electrophoretic mobilities of the PDDA-QDs by dynamic
8
9 87 light scattering and laser Doppler microelectrophoresis (Malvern Zetasizer Nano ZS) at a 1 nM number
10
11 88 concentration of QDs in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES. The diffusivity and
12
13 89 electrophoretic mobility measurements were the average of five measurements. An intensity
14
15 90 correlation function was used to determine the diffusion coefficient of the particles. From the diffusion
16
17 91 coefficient we determined the hydrodynamic diameter using the Stokes-Einstein equation and from
18
19 92 these values estimated number-averaged hydrodynamic diameter (d_h) using Mie theory.³⁹ Transmission
20
21 93 electron microscopy was conducted on a Tecnai T12 microscope to determine the core size of the
22
23 94 particles. Additional sample preparation details can be found in the Supporting Information.

24
25
26
27
28 95 **Lipid Vesicle Preparation and Characterization.** We prepared small unilamellar vesicles composed

29
30 96 solely of 1,2-dioleoyl-*sn*-glycero-3-phosphocholine (DOPC, 850375C, Avanti Polar Lipids) or DOPC with
31
32 97 plant-derived cholesterol (Chol, 700100P, Avanti Polar Lipids) and sphingomyelin from chicken egg yolk
33
34 98 (SM, S0756, Sigma Aldrich) as previously described.¹⁵ The gel-to-liquid crystalline phase transition

35
36 99 temperatures for DOPC and 16:0 SM (the bulk component of the egg yolk SM) are $-21\text{ }^\circ\text{C}$ ⁴⁰ and $41\text{ }^\circ\text{C}$ ⁴¹,

40
41 100 respectively. Briefly, stock solutions of Chol and SM were dissolved in chloroform (1 mg/mL) and

42
43 101 sonicated for 30 min. The three components were mixed to the desired ratio (100% DOPC or 60/20/20

44
45 102 mol% DOPC/SM/Chol), the chloroform was removed under a stream of nitrogen gas, and any residual

46
47 103 chloroform was removed under vacuum overnight. The dried film was rehydrated in 0.001 M NaCl

48
49 104 buffered to pH 7.4 with 0.01 M HEPES and vortexed briefly followed by sonication for 30 min to leave a

51
52 105 cloudy solution. Following three cycles of freezing with liquid nitrogen and thawing by sonication, the

53
54 106 solution was extruded 11 times (Avanti 610000 extruder kit) through a 50 nm polycarbonate membrane

1
2
3 107 filter (Whatman) to give small unilamellar vesicles. Vesicles were stored at 4 °C and used within one
4
5 108 week of extrusion.
6
7
8

9 109 **Quartz Crystal Microbalance with Dissipation Monitoring.** Quartz crystal microbalance with
10 110 dissipation monitoring measures changes in resonance frequency (Δf) and changes in dissipation (ΔD)
11
12 111 due to the interaction of an analyte (PDDA-QDs in our case) with the surface of an AT-cut quartz crystal
13
14 112 oscillating in shear mode parallel to the bilayer. Changes in frequency are related to the mass of the
15
16 113 surface-bound analyte and any hydrodynamically coupled water present at the sensor surface. For
17
18 114 laterally homogeneous adlayers, changes in the energy dissipation or damping are related to the
19
20 115 resulting film's viscoelasticity, whereas for films of discrete nanosized objects, ΔD is related to the
21
22 116 stiffness of the particle-surface contacts.⁴² For rigidly adsorbed films, defined as $-\Delta D_v/(\Delta f_v/v) \ll 2/(f_v)$
23
24 117 (equal to 4×10^{-7} Hz⁻¹ for the 4.96 MHz crystals used here)⁴², where v is the harmonic number, the
25
26 118 adsorbed surface mass density ($\Delta \Gamma_{QCM-D}$) is linearly proportional to the change in frequency, as described
27
28 119 by the Sauerbrey equation:⁴³
29
30
31
32
33

$$\Delta \Gamma_{QCM-D} = -\frac{C}{v} \Delta f_v \quad (1)$$

34
35 120 where C is the mass sensitivity constant (equal to 18.0 ng·Hz⁻¹·cm⁻² for a 4.96 MHz crystal). In all
36
37 121 experiments presented, $-\Delta D_v/(\Delta f_v/v) < 4 \times 10^{-7}$ Hz⁻¹ and the Sauerbrey equation was applied to estimate
38
39 122 the surface mass density when noted.
40
41
42
43
44
45

46 124 Prior to use, SiO₂-coated QCM-D crystals (QSX303, Biolin Scientific, Gothenburg, Sweden) were
47
48 125 soaked in a 2% sodium dodecyl sulfate solution for 10 min, rinsed three times alternatively with
49
50 126 ultrapure water and ethanol, dried with N₂ gas, and exposed to UV/ozone from a low-pressure mercury
51
52 127 lamp for 20 min (Bioforce Nanosciences UV/Ozone Procleaner, 185 and 254 nm). The crystals were then
53
54
55
56
57
58
59
60

1
2
3 128 loaded into temperature-controlled, liquid flow cells (QFM 401, Biolin Scientific) on a Q-Sense E4
4
5 129 instrument (Biolin Scientific).

6
7
8 130 We formed supported lipid bilayers on the SiO_2 sensor from small unilamellar vesicles composed
9
10 131 of purely DOPC or 60/20/20 mol% DOPC/SM/Chol using the vesicle fusion method.^{15, 44} The sensors were
11
12 132 equilibrated in 0.150 M NaCl buffered to pH 7.4 with 0.010 M HEPES (pH and buffer concentration used
13
14 133 throughout) and flowed until a stable baseline was reached. A solution of vesicles (0.03125 mg·mL⁻¹) in
15
16 134 the same solution was flowed (0.100 mL·min⁻¹) over the surface until the critical surface vesicle
17
18 135 concentration⁴⁵ was attained, at which point, the vesicles fused and ruptured to spontaneously form a
19
20 136 supported lipid bilayer. Any loosely adsorbed vesicles were rinsed away and a stable baseline was
21
22 137 established by rinsing with vesicle-free solution. The ionic strength of the solution was lowered to 0.010
23
24 138 M NaCl until the frequency and dissipation values stabilized.

25
26
27
28
29 139 Suspensions of 1 nM PDDA-QDs in 0.010 M NaCl were vortexed and immediately flowed over
30
31 140 the bilayers. Attachment was monitored for 20 min followed by rinsing with nanoparticle-free solution,
32
33 141 until stable frequency and dissipation values were observed, to examine the reversibility of the
34
35 142 interaction and any other changes induced by rinsing. Control experiments examined the interaction of
36
37 143 PDDA-QDs with the underlying SiO_2 sensor. All attachment experiments were carried out at 25.0 \pm 0.5 °C
38
39 144 in at least triplicate.

40
41
42
43
44 145 **Atomic Force Microscopy.** We acquired AFM images of supported lipid bilayers before and after
45
46 146 exposure to PDDA-QDs. Supported lipid bilayers were formed on atomically flat surfaces of mica. Mica
47
48 147 substrates (Highest Grade V1, Ted Pella) were adhered to glass bottom dishes (P60G-1.5-30-F, MatTek
49
50 148 Corporation) using 5-minute epoxy (ITW Polymer Adhesives) and then cleaved using double-sided tape
51
52 149 to produce clean, atomically flat surfaces. We equilibrated the mica with 3 mL of 0.150 M NaCl and

1
2
3 150 0.005 M CaCl_2 buffered to pH 7.4 with 0.010 M HEPES for at least 20 min. Calcium was used to facilitate
4
5 151 the adsorption of the negatively charged vesicles on the negatively charged mica.⁴⁶ The mica remained
6
7 152 completely submerged during initial equilibration, formation of supported lipid bilayers, exposure to
8
9 153 PDDA-QDs, and AFM imaging. Supported lipid bilayers were formed following a previously published
10
11 154 protocol⁴⁷ adapted to our solution conditions. Briefly, small unilamellar vesicles ($0.0625 \text{ mg}\cdot\text{mL}^{-1}$) in the
12
13 155 same solution were added to the dish to cover the bottom of the dish and the mica surface and heated
14
15 156 for 1 h to 45 °C (above the transition temperature of all lipids used). Samples were allowed to cool to
16
17 157 room temperature, and the liquid was exchanged with 12 mL (three 4 mL aliquots) of vesicle-free
18
19 158 solution to remove loosely adhered vesicles, then with 12 mL (three 4 mL aliquots) of 0.150 M NaCl to
20
21 159 remove excess calcium, and finally with 12 mL (three 4 mL aliquots) of 0.010 M NaCl solution to reduce
22
23 160 ionic strength.

27
28
29 161 All images were collected in PeakForce Tapping™ mode using a Dimension Icon (Bruker) atomic
30
31 162 force microscope. Gold-coated silicon nitride probes (Bruker, NPG) with a nominal force constant of 0.24
32
33 163 $\text{N}\cdot\text{m}^{-1}$ were employed. The gold coating reduced electrostatic interactions with the positively charged
34
35 164 PDDA-QDs relative to more commonly used silicon nitride probes. Prior to imaging, the deflection
36
37 165 sensitivity of the cantilever in air was determined using a fused silica reference sample. The force
38
39 166 constant was also calibrated in air using the thermal tune method and fitting the power spectral density
40
41 167 plot to a Lorentzian function.⁴⁹ Imaging was conducted in 0.010 M NaCl buffered to pH 7.4 with 0.010 M
42
43 168 HEPES. The deflection sensitivity of the tip in liquid was re-calibrated using the previously determined
44
45 169 force constant.⁵⁰⁻⁵¹

48
49
50 170 Following calibration, the AFM head was raised, the calibration sample was removed, the bilayer
51
52 171 sample in the dish was then placed onto the vacuum line of the AFM stage, and magnets were placed on
53
54
55
56
57
58
59
60

1
2
3 172 three sides of the dish to prevent movement of the dish during imaging. The AFM head was replaced
4
5 173 and slowly lowered until the drop of buffer on the tip reached the submerged sample.
6
7
8 174 Images were collected at room temperature (24.5 °C). Supported lipid bilayers sometimes contain ~4
9
10 175 nm deep holes, extending to the underlying mica substrate. All experiments reported here used high
11
12 176 quality bilayers that contained no holes or other defects over at least three regions scanned microns
13
14 177 away from one another. We placed a registration marker on the bottom of the glass-bottom dish to
15
16 178 ensure that same region could be found using the optical microscope on the AFM and that the same
17
18 179 defect-free region was examined before and after exposure to nanomaterials. To minimize the effect of
19
20 180 the mica substrate and electrostatic attractive forces that could occur between the positively charged
21
22 181 quantum dots and the negatively charged mica due to holes in the bilayer,^{18, 21} any bilayers found to
23
24 182 contain holes or defects prior to PDDA-QD exposure were discarded. At least three images were
25
26
27 183 collected for at least three different samples for each bilayer type studied prior to introduction of PDDA-
28
29 184 QDs.
30
31
32
33
34 185 To examine the time scale of structural changes induced by exposure to PDDA-QDs, we initiated
35
36 186 imaging immediately after introducing 1 nM QD suspensions in 0.010 M NaCl buffered to pH 7.4 with
37
38 187 0.010 M HEPES to the bilayers. Initial images took ~8 min to optimize and collect, and subsequent
39
40 188 images were collected every ~4-5 min. We acquired images of the same region for up to 1 h. We also
41
42 189 conducted experiments designed to match the sequence of solution changes used for QCM-D studies. In
43
44 190 these experiments suspensions of 1 nM QDs in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES
45
46 191 were added to the supported lipid bilayer and allowed to interact for 20 min. After 20 min, bilayers were
47
48 192 rinsed with 12 mL (three 4 mL aliquots) of nanoparticle-free solution to remove any loosely adhered
49
50 193 QDs, and imaging was immediately conducted at various spots on the bilayers. Resulting images were
51
52 194 similar to those observed in the images collected over time. Control experiments were conducted to
53
54
55

1
2
3 195 investigate any topographic changes resulting from exposure of bilayers to free PDDA polymer. These
4
5 196 control experiments employed poly(diallyldimethylammonium chloride) (Sigma, molecular mass
6
7 197 200,000-350,000 Da, 25 $\mu\text{g}\cdot\text{mL}^{-1}$) in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES .
8
9 198 Determination of free polymer concentration in these solutions of quantum dots is difficult; the
10
11 199 concentration used here was based on the concentration of polymer used in the functionalization and is
12
13 200 therefore an overestimate. We chose to overestimate the polymer concentration to increase confidence
14
15 201 that any effects observed were due to the quantum dots rather than to polymer free in solution. Control
16
17 202 experiments were also conducted in which background solution was added instead of PDDA-QDs and
18
19 203 imaging was immediately began to ensure that no changes in bilayer structure were observed due to
20
21 204 sample preparation or changes over time.
22
23
24

25
26 205 **RESULTS AND DISCUSSION**
27
28

29
30 206 **Characterization of PDDA-QDs.** The PDDA-QDs were positively charged and had an electrophoretic
31
32 207 mobility of a $(+2.6 \pm 0.3) \times 10^8 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES, the
33
34 208 solution used in investigating interaction with supported lipid bilayers. The hydrodynamic diameter of
35
36 209 these particles in this solution was $17 \pm 1 \text{ nm}$, suggesting the particles were slightly aggregated in
37
38 210 solution. The diameter determined by TEM was $6.1 \pm 1.2 \text{ nm}$ (Figure S3).
39
40

41
42 211 **Formation of Zwitterionic Lipid Bilayers on SiO_2 .** We constructed supported bilayers composed of
43
44 212 DOPC or 60/20/20 mol% DOPC/SM/Chol on SiO_2 -coated QCM-D sensor crystals. We chose to work with
45
46 213 DOPC because phosphatidylcholine is a majority component in the outer leaflet of eukaryotic
47
48 214 cytoplasmic membranes.³⁸ The cholesterol- and sphingomyelin-containing bilayers were used to probe
49
50 215 the importance of phase-segregated domains in the interaction of PDDA-QDs with bilayers. Both DOPC
51
52 216 and SM possess zwitterionic phosphatidylcholine headgroups. Phosphatidylcholine bilayers formed on a
53
54

1
2
3 217 SiO₂ surface carry net negative potentials.^{16, 52-53} The high affinity of SM for Chol promotes dense packing
4
5 218 and formation of L_o domains.⁵⁴⁻⁵⁵
6
7
8 219 Figure S1 shows example QCM-D frequency and dissipation traces for the formation of DOPC and
9
10 220 60/20/20 mol% DOPC/SM/Chol bilayers. The traces exhibit the characteristic minimum in frequency and
11
12 221 maximum in dissipation corresponding to the attainment of a critical surface vesicle concentration at
13
14 222 which point the vesicles fuse and rupture, releasing the water contained within them and spontaneously
15
16 223 form supported lipid bilayers.⁵⁶ Table S1 presents the frequency and dissipation values obtained for the
17
18 224 bilayers after rinsing with vesicle-free solution to remove adhering vesicles. The DOPC bilayers exhibited
19
20 225 final frequency changes of 24.8 ± 0.3 Hz, which corresponds to a mass of 446 ± 5 ng·cm⁻² as
21
22 226 approximated with the Sauerbrey equation,⁴³ and dissipation changes of 0.2 (± 0.1) × 10⁻⁶ (Table S1).
23
24 227 These values are consistent with previous reports of well-formed DOPC bilayers under similar solution
25
26 228 conditions.^{15, 45, 56} The 60/20/20 mol% DOPC/SM/Chol bilayers had a final frequency changes of 27.0 ±
27
28 229 0.5 Hz, which corresponds to masses of 486 ± 9 ng·cm⁻² and dissipation changes of 0.4 (± 0.1) × 10⁻⁶
29
30 230 (Table S1). These values are consistent with those previously reported for supported lipid bilayers
31
32 231 containing L_o domains.¹⁵
33
34
35
36
37
38 232 **Interaction of PDDA-QDs with DOPC and L_o Domain-containing Bilayers as Probed by QCM-D.** We
39
40 233 characterized the interaction of quantum dots with supported lipid bilayers described above by
41
42 234 monitoring changes in frequency and dissipation upon introduction of PDDA-QDs to the flow chamber.
43
44 235 Figure 1a shows the QCM-D frequency change as a function of time as quantum dots interact with a
45
46 236 DOPC bilayer. Table 1 summarizes the observed changes in frequency and energy dissipation. At the
47
48 237 longest exposures indicated prior to rinsing ($\Delta f_{20\text{ min}}$), the QCM-D resonance frequency decreased by
49
50 238 22.8 ± 1.2 Hz, which corresponds to a Sauerbrey mass of 410 ± 22 ng·cm⁻². The large frequency decrease
51
52 239 demonstrates attachment of the positively charged nanoparticles to the bilayer, consistent with
53
54
55
56
57
58
59
60

1
2
3 240 favorable electrostatic interactions. Figure 1b shows the corresponding shift in dissipation factor
4
5 241 associated with PDDA-QD attachment. The maximum change in dissipation before initiation of the rinse
6
7 242 step was $1.8 (\pm 0.1) \times 10^{-6}$. Upon rinse, a small increase in frequency (3.8 ± 0.7 Hz) and drop in
8
9 243 dissipation ($-0.8 (\pm 0.1) \times 10^{-6}$) were observed, corresponding to a slight reduction in both surface-
10
11 244 associated mass and energy dissipation. We attribute these changes to removal of loosely adsorbed
12
13 245 quantum dots. Interestingly, approximately 10 min after the rinse began, the frequency rises sharply and
14
15 246 dissipation increases dramatically. Ultimately, the frequency and dissipation values reach constant
16
17 247 values corresponding to a net increase in dissipation ($1.5 (\pm 0.2) \times 10^{-6}$) and no net change in frequency
18
19 248 relative to the values immediately prior to the commencement of rinsing.
20
21
22
23
24 249 We next investigated the interaction of PDDA-QDs with phase-segregated SLBs using 60/20/20 mol%
25
26 250 DOPC/SM/Chol bilayers. Figure 1c,d shows frequency and dissipation traces for the interaction of PDDA-
27
28 251 QDs with a 60/20/20 mol% DOPC/SM/Chol bilayer. The attachment of PDDA-QDs to these phase-
29
30 252 segregated bilayers produced maximum changes in frequency and dissipation ($\Delta f_{20 \text{ min}}$ and $\Delta D_{20 \text{ min}}$) of $-$
31
32 253 18.2 ± 0.8 Hz (corresponding to a Sauerbrey mass of $328 \pm 14 \text{ ng}\cdot\text{cm}^{-2}$) and $1.3 (\pm 0.1) \times 10^{-6}$ (Table 1).
33
34
35 254 Figure 1c, d shows that upon rinsing, a small increase in frequency (2.2 ± 0.2 Hz) and decrease in
36
37 255 dissipation ($-0.6 (\pm 0.1) \times 10^{-6}$) were produced, followed closely by a sharp increase in dissipation and
38
39 256 drop in frequency until plateau values are reached, similar to that observed for pure DOPC. The net
40
41 257 effect of rinsing is an average increase in dissipation ($2.0 (\pm 0.2) \times 10^{-6}$) and no mass change compared to
42
43 258 the maximum values prior to rinse.
44
45
46
47
48 259 The extent of attachment to the DOPC and phase-segregated bilayers did not differ ($p = 0.063$ and
49
50 260 0.900, respectively, for $\Delta f_{20 \text{ min}}$ and $\Delta D_{20 \text{ min}}$), similar to a prior study¹⁵ comparing the interaction of gold
51
52 261 nanoparticles (AuNPs) functionalized with cationic mercaptopropylamine (MPNH₂) with the same
53
54 262 bilayers under the same solution conditions as used here. In that study, the presence of phase-

1
2
3 263 segregated domains promoted attachment of MPNH₂-AuNPs at 0.1 M NaCl, an ionic strength higher
4
5 264 than we employed in the present study. The results from our study differ from that on MPNH₂-AuNP in
6
7 265 one important way: the changes in frequency and dissipation observed during rinsing in the present
8
9 266 study did not occur in the study employing MPNH₂-AuNPs. This difference is presumably due primarily
10
11 267 to the cationic molecules used to coat the nanoparticle surfaces. The nanoparticles used in the previous
12
13 268 study were functionalized with short molecular ligands terminating in a primary amine.¹⁵ In the present
14
15 269 study, the QD were wrapped with PDDA polymer (average molecular mass of 200,000 Da) which has
16
17 270 cyclic quaternary amine pendant groups.
18
19
20
21

22 271 To determine whether changes in frequency and energy dissipation observed during rinsing for the
23
24 272 systems containing PDDA-QDs required the presence of a phospholipid bilayer, we conducted analogous
25
26 273 experiments using SiO₂-coated QCM-D sensors lacking supported lipid bilayers. Figure S2 shows an
27
28 274 example QCM-D trace from such a control experiment and demonstrates the attachment of PDDA-QDs
29
30 275 to the SiO₂ substrate followed by stabilization of the frequency and dissipation values (Table 1). Rinsing
31
32 276 the PDDA-QDs adhered to the silica substrate was not accompanied by the shifts in frequency (Figure
33
34 277 S2a) or dissipation (Figure S2b) observed for these particles on DOPC bilayers. This result suggests that
35
36 278 the presence of the bilayer is necessary for the frequency and dissipation changes observed upon rinsing
37
38 279 attached PDDA-QDs (Figure 1a,b).
39
40
41
42

43 280 We hypothesize that the changes in frequency and dissipation occurring after removal of PDDA-QDs
44
45 281 from the overlying solution during rinsing correspond to restructuring of the bilayer-QD system. We
46
47 282 tested this hypothesis in the AFM experiments described below. We note that a previous study on the
48
49 283 formation of negatively charged SLBs on QCM-D sensor surfaces reported similar trends in frequency
50
51 284 and dissipation and attributed them to the restructuring of adsorbed phospholipids on the silica
52
53 285 surface.⁴⁴
54
55

1
2
3 286 **Interaction with PDDA-QDs Induces Structural Changes to DOPC Bilayers.** The results of the QCM-D
4
5 287 experiments described above suggested that interaction of PDDA-QDs with both DOPC and 60/20/20
6
7 288 mol% DOPC/SM/Chol bilayers led to structural rearrangements. We monitored the interaction of the
8
9 289 PDDA-QDs with both bilayer types using time-resolved AFM. Figure 2 (and the movie found in the
10
11 290 Supporting Information) shows a time-lapse sequence for PDDA-QDs interacting with a DOPC bilayer.
12
13 291 Prior to introduction of PDDA-QDs (Fig. 2a), the supported lipid bilayer had a uniformly smooth surface
14
15 292 with RMS height variations < 110 pm, consistent with the DOPC bilayer following the topography of the
16
17 293 underlying mica substrate. This uniformity is consistent with the fact that prior studies¹⁵ have shown
18
19 294 that under conditions similar to those of this experiment, DOPC is present in an entirely liquid-
20
21 295 disordered phase. To confirm that the DOPC bilayer was present we conducted force-breakthrough
22
23 296 curves (Figure S4) and observed that the layers exhibited a rupture event characteristic of SLBs. The
24
25 297 breakthrough force observed for DOPC bilayers was ~3 nN and the discontinuity was ~4-5 nm in length
26
27 298 corresponding to the height of the bilayer. These values were consistent with previous reports for DOPC
28
29 299 SLBs⁵⁷ with exact values being dependent on the environmental conditions of the particular study (i.e.,
30
31 300 pH, temperature, rate of indentation).⁵⁸ After this confirmation we added quantum dots and
32
33 301 immediately began imaging.

38
39
40 302 Figure 2b shows that the QDs caused structural changes immediately upon interaction with the DOPC
41
42 303 bilayer. Starting with the first time point imaged after exposure of the bilayer to PDDA-QDs (at $t = 8$
43
44 304 min), the AFM data showed small regions 1.1 ± 0.2 nm in height, some of which contained taller features
45
46 305 with heights of 8.6 ± 2.3 nm (Figure 3a, Table 2). We refer to the former as “microdomains” to
47
48 306 distinguish them from the phase-segregated domains. The taller features appeared solely within the
49
50 307 microdomains. The height of the taller features is consistent with the nanoparticle diameter determined
51
52 308 from TEM images (6.1 ± 1.2 nm, Figure S3). In a control experiment we examined the impact of 25

1
2
3 309 $\mu\text{g}\cdot\text{mL}^{-1}$ PDDA polymer on bilayer structure in the absence of QDs (Figure 3b). This PDDA concentration is
4 an overestimation of free polymer in solution and was based on the concentration of polymer used in
5 the functionalization according to the manufacturer. We observed the formation of ~1 nm tall
6 microdomains that lacked the taller features present in the some of the microdomains induced in DOPC
7 bilayers exposed to PDDA-QDs. The ~1 nm high features are induced by interaction of the bilayer with
8 PDDA or PDDA-QDs as the structure of the DOPC bilayer did not change over time after addition of
9 PDDA-QD-free buffer (Figure S5a,b). We therefore conclude that the microdomains observed in Fig. 3b
10 arise only after the bilayers are exposed to the PDDA polymer or the PDDA-QDs and that the tallest
11 features likely correspond to PDDA-QDs. Similar structures have been reported previously, where the
12 interaction of amphiphilic peptides with a DOPC bilayer produced locally high regions (~10 nm relative
13 to the underlying DOPC bilayer) formed within microdomains (~1.4 nm taller than the underlying
14 bilayer).⁵⁹ The authors of that study hypothesized that the tallest features were either large aggregates
15 of peptides or partially solubilized/“budding” regions of the bilayer.⁵⁹ While we hypothesize in our study
16 that the tallest features are quantum dots, we cannot rule out that the PDDA-QDs caused budding
17 regions of the bilayers, whereas the polymer alone did not.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 324 Exposure of bilayers to either PDDA-QDs or PDDA resulted in microdomain formation. We hypothesize
39 that the microdomains arise from the interaction with the PDDA polymer – either wrapping the QDs or
40 free in solution. The high local density of PDDA on the QDs and the comparatively large size of PDDA-
41 QDs appears to lead to more pronounced structural perturbations relative to the polymer alone.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 328 Previous research on amine-terminated poly(amidoamine) dendrimers has shown that the degree of
disruption to liquid crystalline supported phospholipid bilayers increases with dendritic generation and
therefore dendrimer size.⁶⁰ The polymer alone induces formation of microdomains occupying $2.0 \pm 1.9\%$
of the total area over ~30 min, whereas exposure to PDDA-QDs resulted in a fractional coverage of 23.0

1
2
3 332 $\pm 2.2\%$ microdomains over this same time frame. Initial attachment likely occurs due to favorable
4
5 333 electrostatic attraction between the positively charged quaternary amine pendant groups of the PDDA
6
7 334 and the negative surface potential of the bilayer as has been reported previously with primary amines.¹⁶
8
9 335 ⁵³ Following initial attachment, we hypothesize that the hydrophobic backbone of the polymer likely
10
11 336 extends into the hydrophobic core of the bilayer. The resulting mechanical stresses induce a height
12
13 337 change in the surrounding bilayer. Such a height change can arise from changes in the tilt angle of the
14
15 338 lipids with respect to the surface normal. The observed height change (1.1 ± 0.2 nm) is also consistent
16
17 339 with the quantum dots inducing an increase in lipid ordering, due to more efficient packing of the
18
19 340 hydrophobic tail groups, within the membrane.⁶¹ However, an increase in lipid ordering and packing
20
21 341 would be expected to lead to the formation of holes or a decrease in bilayer coverage,⁵⁹ neither of
22
23 342 which are observed in Fig. 2. In Fig. 2b-h, the data show that over time more microdomains form,
24
25 343 consistent with penetration of more particles into the bilayer over time. The formation of more
26
27 344 microdomains over time is also consistent with the decrease in frequency and increase in dissipation
28
29 345 observed by QCM-D. More quantum dots may penetrate the bilayer over time causing an increase in
30
31 346 mass at the surface and a more dissipative final structure.

36
37
38 347 **Interaction of PDDA-QDs with Phase-segregated Bilayers Cause L_o domains to Disappear.** We next
39
40 348 used *in situ* AFM imaging to examine the interaction of the quantum dots with a 60/20/20 mol%
41
42 349 DOPC/SM/Chol bilayer over time. Figure 4a shows that this bilayer composition forms phase-segregated
43
44 350 L_o domains, strongly enriched in sphingomyelin and cholesterol, that are ~ 1 nm higher in height than the
45
46 351 L_d phase containing predominantly DOPC. This finding is consistent with previous work showing that
47
48 352 cholesterol induces ordering of the unsaturated acyl chains of sphingomyelin, making the L_o regions ~ 1
49
50 353 nm taller than the L_d regions.^{15, 61} The shape and lateral sizes of the L_o domains are also consistent with
51
52 354 previous reports of similar bilayers on mica substrates.⁴⁸ Commencing with the first time point collected

1
2
3 355 after addition of the QDs, structural changes occurred similar to those observed with pure DOPC
4
5 356 bilayers. Figure 4b shows the formation of microdomains in the L_d phases of the bilayer, encompassing
6
7 357 taller features, consistent with our observations on liquid crystalline DOPC bilayers. We further found
8
9 358 that the restructured lipids around the quantum dots were slightly taller (1.8 ± 0.2 nm, $p < 0.001$) than
10
11 359 analogous structures in the DOPC bilayer (Figure 5b, Table 2). This increased height relative to the
12
13 360 surrounding L_d phase is consistent with the positive amine groups of the PDDA-QDs binding to the
14
15 361 phosphocholine headgroup of the lipid bilayers and the resulting mechanical stresses inducing a height
16
17 362 change in the surrounding bilayer, much like our observations in the case of PDDA-QDs interacting with
18
19 363 the DOPC bilayer. The larger thickness of the microdomains in phase-segregated SLBs relative to those
20
21 364 formed in pure DOPC may be due to the presence of cholesterol in the L_d domains of the phase-
22
23 365 segregated bilayers. A previous study showed that the presence of 30% cholesterol in a POPC bilayer
24
25 366 increased its height by ~ 0.4 nm.⁶² Therefore, the presence of cholesterol in the membranes used in our
26
27 367 work, may account for the increase in height of the microdomains as compared to pure DOPC.
28
29
30
31
32
33 368 Upon addition of the QDs, the liquid-ordered domains of the DOPC/SM/Chol bilayer decrease in
34
35 369 size and ultimately disappear within 15 min as clearly shown in Fig. 4d and 4e. Control experiments
36
37 370 scanning the bilayer over the same length of time without exposure to PDDA-QDs showed no formation
38
39 371 of microdomains or bright regions over the length scales of these studies (Figure S5c,d). Figure S5c, d
40
41 372 shows that small L_o domains ($< 0.06 \mu\text{m}^2$) disappear over time without the addition of PDDA-QDs;
42
43 373 however, Figure S6 shows that the addition of PDDA-QDs to the same bilayer in Figure S5 results in the
44
45 374 complete disappearance of the phase-segregated domains within 20 min. This confirms that diffusion of
46
47 375 the phase-segregated domains within the bilayer alone cannot account for the observed disappearance
48
49 376 of the domains and that this effect is due to interaction with the PDDA-QDs. Figure S7 shows time-lapse
50
51 377 images of free PDDA polymer (molecular mass 200,000 – 350,000, 25 $\mu\text{g}\cdot\text{mL}^{-1}$) interacting with a

1
2
3 378 60/20/20 mol% DOPC/SM/Chol bilayer. The interaction of free polymer with the bilayer also resulted in
4
5 379 a decrease in the number and size of domain structures, but the effects of the free polymer were much
6
7 380 less pronounced (domains still visible after 30 min of interaction) than those of the PDDA-QDs.
8
9

10
11 381 Prior studies of phase segregation in two-dimensional bilayer systems have highlighted the delicate
12
13 382 balances of free energies involved.⁶³⁻⁶⁴ In cases where the driving forces for phase segregation are small,
14
15 383 subtle changes in composition may be sufficient to significantly alter the thermodynamic driving forces
16
17 384 and thereby induce mixing.^{63, 65-66} The destabilization of liquid-ordered domains has recently been
18
19 385 reported for membrane proteins interacting with a model membrane containing L_o domains.⁶⁵ The
20
21 386 lateral steric pressure, or energy per unit area, caused by protein-protein crowding on the surface of the
22
23 387 membranes exceeded the approximate enthalpy of membrane mixing between the L_o and L_d phases,
24
25 388 which resulted in the collapse of L_o domains.⁶⁵ Our results with amphiphilic positively charged quantum
26
27 389 dots suggest similar phenomena are possible for nanomaterials. The increase in energy per area due to
28
29 390 collisions between the bulky nanomaterials on the surface of the membrane may be enough to exceed
30
31 391 the free energy of membrane mixing between the L_o and L_d phases, thus resulting in the destabilization
32
33 392 of the L_o domains.
34
35
36

37
38 393 Overall, we propose that the forces between PDDA-QDs and SLBs (both DOPC and 60/20/20 mol%
39
40 394 DOPC/SM/Chol) are driven by electrostatic attraction and the hydrophobic effect. We hypothesize that
41
42 395 the initial interaction occurs between the positive charge on the quaternary amine and the negatively
43
44 396 charged phosphate group of the phospholipids.^{16, 53} Following this initial “anchoring,” the hydrophobic
45
46 397 backbone of the polymer inserts into the hydrophobic alkyl chains of the lipid bilayer and causes
47
48 398 restructuring around this site of contact. The QDs can then penetrate through the membrane or remain
49
50 399 on top of the surface. Previous molecular dynamics⁶⁷⁻⁶⁸ and experimental⁶⁹ studies have shown that
51
52 400 hydrophobic ligands are able to anchor within the membrane. In the presence of L_o domains, the
53
54
55

1
2
3 401 additional energy per area induced by the addition of the PDDA-QDs to these systems, exceeds the
4
5 402 enthalpy of membrane mixing and results in the mixing of the L_o and L_d phases. While this phenomenon
6
7 403 has been shown previously following interactions with proteins⁶⁵ and polymers⁶⁶ in similar systems, we
8
9 404 believe this to be the first evidence of positively charged quantum dots inducing the collapse of L_o ,
10
11 405 domains.
12
13
14

15 406 **SUMMARY AND CONCLUSIONS**
16
17

18 407 Our results show that PDDA-QDs induce complex structural rearrangements of supported lipid
19
20 408 bilayers consisting of 100% DOPC or 60/20/20 mol% DOPC/SM/Chol. The use of complementary, *in situ*
21
22 409 analytical methods provided unprecedented insights into these structural changes. Namely, QCM-D
23
24 410 shows that the interaction of QDs with the lipid bilayers induces structural rearrangements of the
25
26 411 bilayers. Real-time *in situ* AFM imaging shows the formation of microdomains with higher features in the
27
28 412 center of some microdomains that are consistent with quantum dots attached to the bilayer.
29
30
31 413 Interestingly, the interaction of the positively charged amphiphilic quantum dots led to selective
32
33 414 shrinkage of the liquid-ordered domains, with complete disappearance occurring after \sim 15 min of
34
35 415 interaction. We hypothesize that the positive charge on the PDDA polymer interacts favorably with the
36
37 416 negatively charged bilayers. Following this favorable interaction, the hydrophobic backbone of the
38
39 417 polymer ligand can insert into the hydrophobic alkyl chains of the bilayer and cause restructuring around
40
41 418 this point of contact. Ultimately, when the additional energy per area caused by polymer-polymer,
42
43 419 nanoparticle-nanoparticle, and/or nanoparticle-polymer collisions at the membrane surface exceeds the
44
45 420 free energy of membrane mixing, the collapse of L_o domains was observed.
46
47
48
49
50
51 421 The present study represents an initial demonstration of the complex interactions that can occur
52
53 422 between quantum dots wrapped with a positively charged, amphiphilic polymer, and supported lipid
54
55
56
57
58
59
60

1
2
3 423 bilayers. While more studies are necessary to generalize these results, other studies with amphiphilic
4
5 424 and positively charged, hydrophobic ligands have shown similar features⁵⁹ and similar mechanisms of
6
7 425 interaction were proposed.⁶⁸ Thus, we expect the results presented here will be most transferable to
8
9 426 nanomaterials with positively charged hydrophobic or amphiphilic ligands.

10
11
12 427 **ASSOCIATED CONTENT**

13
14
15 428 **Supporting Information.** The Supporting Information is available free of charge on the ACS Publications
16
17 429 website.

18
19
20 430 Frequency and dissipation QCM-D traces for DOPC and 60/20/20 mol% DOPC/SM/Chol bilayer
21
22 431 formation and interaction with PDDA-QDs; Summary of frequency and dissipation shifts observed for
23
24 432 DOPC and 60/20/20 mol% DOPC/SM/Chol bilayer formation; Changes in frequency and dissipation as a
25
26 433 function of time as PDDA-QDs interact with the underlying SiO₂ substrate; TEM of the quantum dots;
27
28 434 representative F_B curve on DOPC; time-lapse AFM of DOPC and 60/20/20 mol% DOPC/SM/Chol in the
29
30 435 absence of PDDA-QDs; additional time-lapse AFM of PDDA-QDs interacting with a 60/20/20 mol%
31
32 436 DOPC/SM/Chol bilayer; time lapse AFM of 60/20/20 mol% DOPC/SM/Chol exposed to 25 µg·mL⁻¹PDDA
33
34 437 polymer.

35
36
37 438 **AUTHOR INFORMATION**

38
39 439 **Corresponding Author**

40
41 440 *Phone: 608-262-6371; e-mail: rjhamers@wisc.edu.

42
43 441 *Phone: 608-263-4971; e-mail: joelpedersen@wisc.edu.

1
2
3 442 **ORCID ID**
4
56 443 Joseph T. Buchman: 0000-0001-5827-8513
7
89 444 Robert J. Hamers: 0000-0003-3821-9625
10
1112 445 Christy L. Haynes: 0000-0002-5420-5867
13
1415 446 Arielle C. Mensch: 0000-0002-4063-5882
16
1718 447 Joel A. Pedersen: 0000-0002-3918-1860
19
2021 448 **Present Address**
22
2324 449 ¹ Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA
25
2627 450 99354 United States.
28
2930 451 **Notes**
31
3233 452 The authors declare no competing financial interest.
34
3536 453 **ACKNOWLEDGMENTS**
37
3839 454 This work was supported by the National Science Foundation under the Center for Sustainable
40
4142 455 Nanotechnology, CHE-1503408. The CSN is part of the Centers for Chemical Innovation Program. J.T.B.
43
4445 456 was supported by the National Science Foundation Graduate Research Fellowship under Grant No.
46
4748 457 00039202.
49
50458 **REFERENCES**
51459 1. Nel, A.; Xia, T.; Mädler, L.; Li, N., Toxic potential of materials at the nanolevel. *Science*, **2006**,
52 311, 622-627.
53
54

1
2
3 461 2. Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, T., Nanoparticles: Structure,
4 462 properties, preparation and behaviour in environmental media. *Ecotoxicology*, **2008**, *17*, 326-43.
5
6 463 3. Maurer-Jones, M. A.; Gunsolus, I. L.; Murphy, C. J.; Haynes, C. L., Toxicity of engineered
7 464 nanoparticles in the environment. *Anal. Chem.*, **2013**, *85*, 3036-49.
8
9 465 4. Hamers, R. J., Nanomaterials and global sustainability. *Acc. Chem. Res.*, **2017**, *50*, 633-637.
10
11 466 5. Louie, S. M.; Dale, A. L.; Casman, E. A.; Lowry, G. V., Challenges facing the environmental
12 467 nanotechnology research enterprise. In *Engineered nanoparticles and the environment:*
13 468 *Biophysicochemical processes and toxicity*, Xing, B.; Vectis, C. D.; Senesi, N., Eds. 2016; Vol. 4, pp 3-19.
14
15 469 6. Felix, L. C.; Ortega, V. A.; Goss, G. G., Cellular uptake and intracellular localization of poly (acrylic
16 470 acid) nanoparticles in a rainbow trout (*Oncorhynchus mykiss*) gill epithelial cell line, RTgill-W1. *Aquat.*
17 471 *Toxicol.*, **2017**, *192*, 58-68.
18
19 472 7. Ding, B.; Tian, Y.; Pan, Y.; Shan, Y.; Cai, M.; Xu, H.; Sun, Y.; Wang, H., Recording the dynamic
20 473 endocytosis of single gold nanoparticles by AFM-based force tracing. *Nanoscale*, **2015**, *7*, 7545-9.
21
22 474 8. Chen, J.; Hessler, J. A.; Putchakayala, K.; Panama, B. K.; Khan, D. P.; Hong, S.; Mullen, D. G.;
23 475 DiMaggio, S. C.; Som, A.; Tew, G. N.; Lopatin, A. N.; James R. Baker, J.; Holl, M. M. B.; Orr, B. G., Cationic
24 476 nanoparticles induce nanoscale disruption in living cell plasma membranes. *J. Phys. Chem. B*, **2009**, *113*,
25 477 11179-11185.
26
27 478 9. Leroueil, P. R.; Hong, S.; Mecke, A.; Jr., J. R. B.; Orr, B. G.; Holl, M. M. B., Nanoparticle interaction
28 479 with biological membranes: Does nanotechnology present a Janus face? *Acc. Chem. Res.*, **2007**, *40*, 335-
29 480 342.
30
31 481 10. Zhu, W.; von dem Bussche, A.; Yi, X.; Qiu, Y.; Wang, Z.; Weston, P.; Hurt, R. H.; Kane, A. B.; Gao,
32 482 H., Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in
33 483 intracellular vesicles. *Proc. Natl. Acad. Sci. U.S.A.*, **2016**, *113*, 12374-12379.
34
35 484 11. Kim, M. S.; Louis, K. M.; Pedersen, J. A.; Hamers, R. J.; Peterson, R. E.; Heideman, W., Using
36 485 citrate-functionalized TiO₂ nanoparticles to study the effect of particle size on zebrafish embryo toxicity.
37 486 *Analyst*, **2014**, *139*, 964-72.
38
39 487 12. Hang, M. N.; Gunsolus, I. L.; Wayland, H.; Melby, E. S.; Mensch, A. C.; Hurley, K. R.; Pedersen, J.
40 488 A.; Haynes, C. L.; Hamers, R. J., Impact of nanoscale lithium nickel manganese cobalt oxide (NMC) on the
41 489 bacterium *Shewanella oneidensis* MR-1. *Chem. Mater.*, **2016**, *28*, 1092-1100.
42
43 490 13. Lesniak, A.; Salvati, A.; Santos-Martinez, M. J.; Radomski, M. W.; Dawson, K. A.; Åberg, C.,
44 491 Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. *J. Am.*
45 492 *Chem. Soc.*, **2013**, *135*, 1438-44.

1
2
3 493 14. Goodman, C. M.; McCusker, C. D.; Yilmaz, T.; Rotello, V. M., Toxicity of gold nanoparticles
4 494 functionalized with cationic and anionic side chains. *Bioconjugate Chem.*, **2004**, *15*, 897-900.
5
6 495 15. Melby, E. S.; Mensch, A. C.; Lohse, S. E.; Hu, D.; Orr, G.; Murphy, C. J.; Hamers, R. J.; Pedersen, J.
7 496 A., Formation of supported lipid bilayers containing phase-segregated domains and their interaction
8 497 with gold nanoparticles. *Environ. Sci.: Nano*, **2016**, *3*, 45-55.
9
10 498 16. Troiano, J. M.; Olenick, L. L.; Kuech, T. R.; Melby, E. S.; Hu, D.; Lohse, S. E.; Mensch, A. C.;
11 499 Dogangun, M.; Vartanian, A. M.; Torelli, M. D.; Ehimiaghe, E.; Walter, S. R.; Fu, L.; Anderton, C. R.; Zhu,
12 500 Z.; Wang, H.; Orr, G.; Murphy, C. J.; Hamers, R. J.; Pedersen, J. A.; Geiger, F. M., Direct probes of 4 nm
13 501 diameter gold nanoparticles interacting with supported lipid bilayers. *J. Phys. Chem. C*, **2015**, *119*, 534-
14 502 546.
15
16 503 17. Chen, K. L.; Bothun, G. D., Nanoparticles meet cell membranes: Probing nonspecific interactions
17 504 using model membranes. *Environ. Sci. Technol.*, **2014**, *48*, 873-80.
18
19 505 18. Leroueil, P. R.; Berry, S. A.; Duthie, K.; Han, G.; Rotello, V. M.; McNerny, D. Q.; Jr., J. R. B.; Orr, B.
20 506 G.; Holl, M. M. B., Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers.
21 507 *Nano Letters*, **2008**, *8*, 420-424.
22
23 508 19. Jacobson, K. H.; Gunsolus, I. L.; Kuech, T. R.; Troiano, J. M.; Melby, E. S.; Lohse, S. E.; Hu, D.;
24 509 Chrisler, W. B.; Murphy, C. J.; Orr, G.; Geiger, F. M.; Haynes, C. L.; Pedersen, J. A., Lipopolysaccharide
25 510 density and structure govern the extent and distance of nanoparticle interaction with actual and model
26 511 bacterial outer membranes. *Environ. Sci. Technol.*, **2015**, *49*, 10642-50.
27
28 512 20. Melby, E. S.; Allen, C. R.; Foreman-Ortiz, I. U.; Caudill, E. R.; Kuech, T. R.; Vartanian, A. M.; Zhang,
29 513 X.; Murphy, C. J.; Hernandez, R. T.; Pedersen, J. A., Peripheral membrane proteins dramatically alter
30 514 nanoparticle interaction at lipid bilayer interfaces. *Langmuir*, (in review).
31
32 515 21. Hong, S.; Bielinska, A. U.; Mecke, A.; Keszler, B.; Beals, J. L.; Shi, X.; Balogh, L.; Orr, B. G.; James R.
33 516 Baker, J.; Holl, M. M. B., Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and
34 517 cells: Hole formation and the relation to transport. *Bioconjugate Chem.*, **2004**, *15*, 774-782.
35
36 518 22. Lee, K.; Zhang, L.; Yi, Y.; Wang, X.; Yu, Y., Rupture of lipid membranes induced by amphiphilic
37 519 Janus nanoparticles. *ACS Nano*, **2018**, *12*, 3646-3657.
38
39 520 23. Jing, B.; Abot, R. C.; Zhu, Y., Semihydrophobic nanoparticle-induced disruption of supported lipid
40 521 bilayers: Specific ion effect. *J. Phys. Chem. B*, **2014**, *118*, 13175-82.
41
42 522 24. Bramkamp, M.; Lopez, D., Exploring the existence of lipid rafts in bacteria. *Microbiol. Mol. Biol.*
43 523 *Rev.*, **2015**, *79*, 81-100.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 524 25. Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C., The mystery of membrane organization:
4 525 Composition, regulation and roles of lipid rafts. *Nat. Rev. Mol. Cell Biol.*, **2017**, *18*, 361-374.
5
6 526 26. Simons, K.; Ikonen, E., Functional rafts in cell membranes. *Nature*, **1997**, *387*, 569-572.
7
8 527 27. Lind, T. K.; Zielińska, P.; Wacklin, H. P.; Urbańczyk-Lipkowska, Z.; Cárdenas, M., Continuous flow
9 528 atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial
10 529 dendrimer with model lipid membranes. *ACS Nano*, **2014**, *8*, 396-408.
11
12 13 530 28. Chelladurai, R.; Debnath, K.; Jana, N. R.; Basu, J. K., Nanoscale heterogeneities drive enhanced
14 531 binding and anomalous diffusion of nanoparticles in model biomembranes. *Langmuir*, **2018**, *34*, 1691-
15 532 1699.
16
17 18 533 29. Mecke, A.; Lee, D.-K.; Ramamoorthy, A.; Orr, B. G.; Holl, M. M. B., Synthetic and natural
19 534 polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers.
20 535 *Langmuir*, **2005**, *21*, 8588-8590.
21
22 23 536 30. Erickson, B.; DiMaggio, S. C.; Mullen, D. G.; Kelly, C. V.; Leroueil, P. R.; Berry, S. A.; Baker, J. R.,
24 537 Jr.; Orr, B. G.; Banaszak Holl, M. M., Interactions of poly(amidoamine) dendrimers with Survanta lung
25 538 surfactant: The importance of lipid domains. *Langmuir*, **2008**, *24*, 11003-8.
26
27 28 539 31. Chakraborty, A.; Mucci, N. J.; Tan, M. L.; Steckley, A.; Zhang, T.; Forrest, M. L.; Dhar, P.,
29 540 Phospholipid composition modulates carbon nanodiamond-induced alterations in phospholipid domain
30 541 formation. *Langmuir*, **2015**, *31*, 5093-104.
31
32 33 542 32. Moghadam, B. Y.; Hou, W. C.; Corredor, C.; Westerhoff, P.; Posner, J. D., Role of nanoparticle
34 543 surface functionality in the disruption of model cell membranes. *Langmuir*, **2012**, *28*, 16318-26.
35
36 37 544 33. Mensch, A. C.; Tapia Hernandez, R.; Kuether, J. E.; Torelli, M. D.; Feng, Z. V.; Hamers, R. J.;
38 545 Pedersen, J. A., Natural organic matter concentration impacts the interaction of functionalized diamond
39 546 nanoparticles with model and actual bacterial membranes. *Environ. Sci. Technol.*, **2017**, *51*, 11075-
40 547 11084.
41
42 43 548 34. Martynenko, I. V.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K.,
44 549 Application of semiconductor quantum dots in bioimaging and biosensing. *J. Mater. Chem. B*, **2017**, *5*,
45 550 6701-6727.
46
47 48 551 35. Rühle, S.; Shalom, M.; Zaban, A., Quantum-dot-sensitized solar cells. *ChemPhysChem*, **2010**, *11*,
49 552 2290-304.
50
51 553 36. Hardman, R., A toxicologic review of quantum dots: Toxicity depends on physicochemical and
52 554 environmental factors. *Environ. Health Perspect.*, **2006**, *114*, 165-172.
53
54
55
56
57
58
59
60

1
2
3 555 37. King-Heiden, T. C.; Wiecinski, P. N.; Mangham, A. N.; Metz, K. M.; Nesbit, D.; Pedersen, J. A.;
4 556 Hamers, R. J.; Heideman, W.; Peterson, R. E., Quantum dot nanotoxicity assessment using the zebrafish
5 557 embryo. *Environ. Sci. Technol.*, **2009**, *43*, 1605-1611.
6
7 558 38. Brown, D. A.; London, E., Functions of lipid rafts in biological membranes. *Annu. Rev. Cell Dev.*
8 559 *Biol.*, **1998**, *14*, 111-136.
9
10 560 39. Malvern Instruments, *Intensity-volume-number: What size is correct?*; Technical Note MRK1357-
11 561 01; Malvern Instruments: Malvern, United Kingdom; 2009.
12
13 562 40. Barton, P. G.; Gunstone, F. D., Hydrocarbon chain packing and molecular motion in phospholipid
14 563 bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of
15 564 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. *J. Biol. Chem.*, **1975**, *250*, 4470-4476.
16
17 565 41. Estep, T. N.; Mountcastle, D. B.; Barenholz, Y.; Biltonen, R. L.; Thompson, T. E., Thermal behavior
18 566 of synthetic sphingomyelin-cholesterol dispersions. *Biochem.*, **1979**, *18*, 2112-2117.
19
20
21 567 42. Reviakine, I.; Johannsmann, D.; Richter, R. P., Hearing what you cannot see and visualizing what
22 568 you hear: Interpreting quartz crystal microbalance data from solvated interfaces. *Anal. Chem.*, **2011**, *83*,
23 569 8838-48.
24
25 570 43. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur
26 571 Mikrowägung. *Zeitschrift für Physik*, **1959**, *155*, 206-222.
27
28
29 572 44. Richter, R.; Mukhopadhyay, A.; Brisson, A., Pathways of lipid vesicle deposition on solid surfaces:
30 573 A combined QCM-D and AFM study. *Biophys. J.*, **2003**, *85*, 3035-3047.
31
32
33 574 45. Keller, C. A.; Kasemo, B., Surface specific kinetics of lipid vesicle adsorption measured with a
34 575 quartz crystal microbalance. *Biophys. J.*, **1998**, *75*, 1397-1402.
35
36
37 576 46. Richter, R. P.; Brisson, A. R., Following the formation of supported lipid bilayers on mica: A study
38 577 combining AFM, QCM-D, and ellipsometry. *Biophys. J.*, **2005**, *88*, 3422-33.
39
40
41 578 47. Sullan, R. M.; Li, J. K.; Zou, S., Direct correlation of structures and nanomechanical properties of
42 579 multicomponent lipid bilayers. *Langmuir*, **2009**, *25*, 7471-7.
43
44
45 580 48. Sullan, R. M.; Li, J. K.; Hao, C.; Walker, G. C.; Zou, S., Cholesterol-dependent nanomechanical
46 581 stability of phase-segregated multicomponent lipid bilayers. *Biophys. J.*, **2010**, *99*, 507-16.
47
48
49
50 582 49. Hutter, J. L.; Bechhoefer, J., Calibration of atomic-force microscope tips. *Rev. Sci. Instrum.*, **1993**,
51 583 *64*, 1868-1873.
52
53
54 584 50. Ohler, B., *Practical advice on determination of cantilever spring constants*; Veeco: 2007.
55
56
57
58
59
60

1
2
3 585 51. Butt, H. J.; Jaschke, M., Calculation of thermal noise in atomic force microscopy.
4 586 *Nanotechnology*, **1995**, *6*, 1-7.
5
6 587 52. Zimmermann, R.; Küttner, D.; Renner, L.; Kaufmann, M.; Zitzmann, J.; Müller, M.; Werner, C.,
7 588 Charging and structure of zwitterionic supported bilayer lipid membranes studied by streaming current
8 589 measurements, fluorescence microscopy, and attenuated total reflection Fourier transform infrared
9 590 spectroscopy. *Biointerphases*, **2009**, *4*, 1-6.
10
11
12 591 53. Kuech, T. R. Biological interactions and environmental transformations of nanomaterials. Ph. D.
13 592 Dissertation, University of Wisconsin-Madison, 2015.
14
15
16 593 54. Slotte, J. P., Biological functions of sphingomyelins. *Prog. Lipid Res.*, **2013**, *52*, 424-37.
17
18 594 55. Quinn, P. J., Structure of sphingomyelin bilayers and complexes with cholesterol forming
19 595 membrane rafts. *Langmuir*, **2013**, *29*, 9447-56.
20
21
22 596 56. Cho, N. J.; Frank, C. W.; Kasemo, B.; Hook, F., Quartz crystal microbalance with dissipation
23 597 monitoring of supported lipid bilayers on various substrates. *Nat Protoc*, **2010**, *5*, 1096-106.
24
25
26 598 57. Attwood, S. J.; Choi, Y.; Leonenko, Z., Preparation of DOPC and DPPC supported planar lipid
27 599 bilayers for atomic force microscopy and atomic force spectroscopy. *Int. J. Mol. Sci.*, **2013**, *14*, 3514-39.
28
29
30 600 58. Alessandrini, A.; Seeger, H. M.; Di Cerbo, A.; Caramaschi, T.; Facci, P., What do we really
31 601 measure in AFM punch-through experiments on supported lipid bilayers? *Soft Matter*, **2011**, *7*, 7054.
32
33
34 602 59. Rigby-Singleton, S. M.; Davies, M. C.; Harris, H.; O'Shea, P.; Allen, S., Visualizing the solubilization
35 603 of supported lipid bilayers by an amphiphilic peptide. *Langmuir*, **2006**, *22*, 6273-6279.
36
37
38 604 60. Mecke, A.; Majoros, I. J.; Patri, A. K.; James R. Baker, J.; Holl, M. M. B.; Orr, B. G., Lipid bilayer
39 605 disruption by polycationic polymers: The roles of size and chemical functional group. *Langmuir*, **2005**,
40 606 *21*, 10348-10354.
41
42
43 607 61. Chiantia, S.; Kahya, N.; Ries, J.; Schwille, P., Effects of ceramide on liquid-ordered domains
44 608 investigated by simultaneous AFM and FCS. *Biophys. J.*, **2006**, *90*, 4500-8.
45
46
47 609 62. Nezil, F. A.; Bloom, M., Combined influence of cholesterol and synthetic amphiphilic peptides
48 610 upon bilayer thickness in model membranes. *Biophys. J.*, **1992**, *61*, 1176-1183.
49
50
51 611 63. Honerkamp-Smith, A. R.; Cicuta, P.; Collins, M. D.; Veatch, S. L.; den Nijs, M.; Schick, M.; Keller, S.
52 612 L., Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points.
53 613 *Biophys. J.*, **2008**, *95*, 236-46.
54
55
56
57
58
59
60

1
2
3 614 64. Honerkamp-Smith, A. R.; Veatch, S. L.; Keller, S. L., An introduction to critical points for
4 biophysicists; observations of compositional heterogeneity in lipid membranes. *Biochim. Biophys. Acta*,
5 615 2009, 1788, 53-63.
6
7 617 65. Scheve, C. S.; Gonzales, P. A.; Momin, N.; Stachowiak, J. C., Steric pressure between membrane-
8 bound proteins opposes lipid phase separation. *J. Am. Chem. Soc.*, 2013, 135, 1185-8.
9
10 619 66. Imam, Z. I.; Kenyon, L. E.; Carrillo, A.; Espinoza, I.; Nagib, F.; Stachowiak, J. C., Steric pressure
11 among membrane-bound polymers opposes lipid phase separation. *Langmuir*, 2016, 32, 3774-84.
12
13 621 67. Gkekka, P.; Angelikopoulos, P.; Sarkisov, L.; Cournia, Z., Membrane partitioning of anionic, ligand-
14 coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
15 *PLoS Comput. Biol.*, 2014, 10, e1003917.
16
17 624 68. Van Lehn, R. C.; Alexander-Katz, A., Pathway for insertion of amphiphilic nanoparticles into
18 defect-free lipid bilayers from atomistic molecular dynamics simulations. *Soft Matter*, 2015, 11, 3165-75.
19
20 626 69. Smith, P. E. S.; Brender, J. R.; Dürr, U. H. N.; Xu, J.; Mullen, D. G.; Holl, M. M. B.; Ramamoorthy,
21 A., Solid state NMR reveals the hydrophobic-core location of poly(amidoamine) dendrimers in
22 biomembranes. *J. Am. Chem. Soc.*, 2010, 132, 8087-8097.
23
24 629 70. Grennan, A. K., Lipid rafts in plants. *Plant Physiol.*, 2007, 143, 1083-5.
25
26 630 71. Alvarez, F. J.; Douglas, L. M.; Konopka, J. B., Sterol-rich plasma membrane domains in fungi.
27 *Eukaryot. Cell*, 2007, 6, 755-63.
28
29 632
30
31 633
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
Table 1. Summary of frequency shifts (Δf) and dissipation changes (ΔD) upon interaction between PDDA-QDs and the indicated supported lipid
5 bilayer or silica surface as measured by quartz crystal microbalance with dissipation monitoring.^a
6

Bilayer	$\Delta f_{20\text{ min}}$	$\Delta D_{20\text{ min}}$	Δf_{rinsed}	ΔD_{rinsed}
Type	(Hz)	($\times 10^{-6}$)	(Hz)	($\times 10^{-6}$)
DOPC	-22.8 ± 1.2	1.8 ± 0.1	-21.7 ± 1.8	3.3 ± 0.3
DOPC/SM/Chol	-18.2 ± 0.8	1.3 ± 0.1	-18.7 ± 2.4	3.3 ± 0.2
SiO_2	-15.5 ± 0.4	0.6 ± 0.01	-15.5 ± 0.3	0.5 ± 0.04

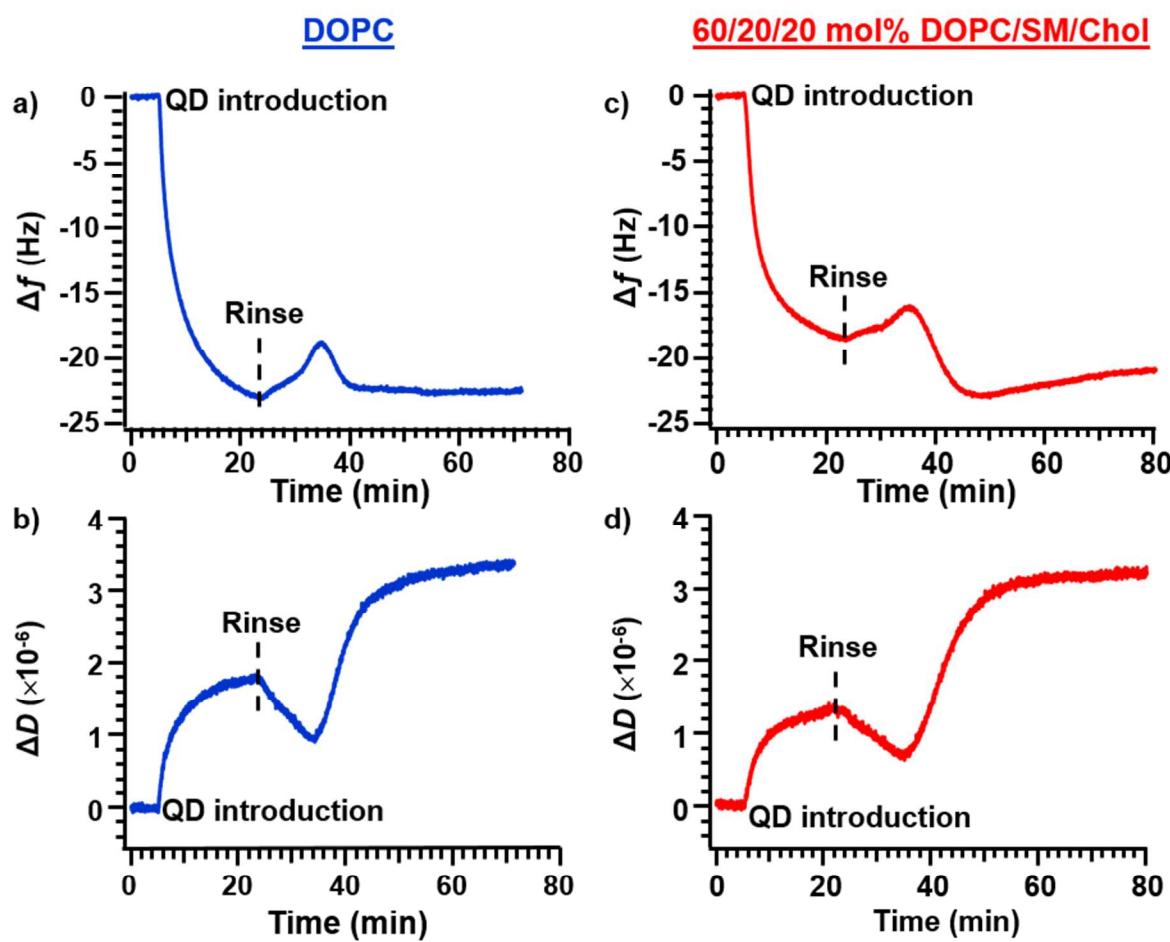
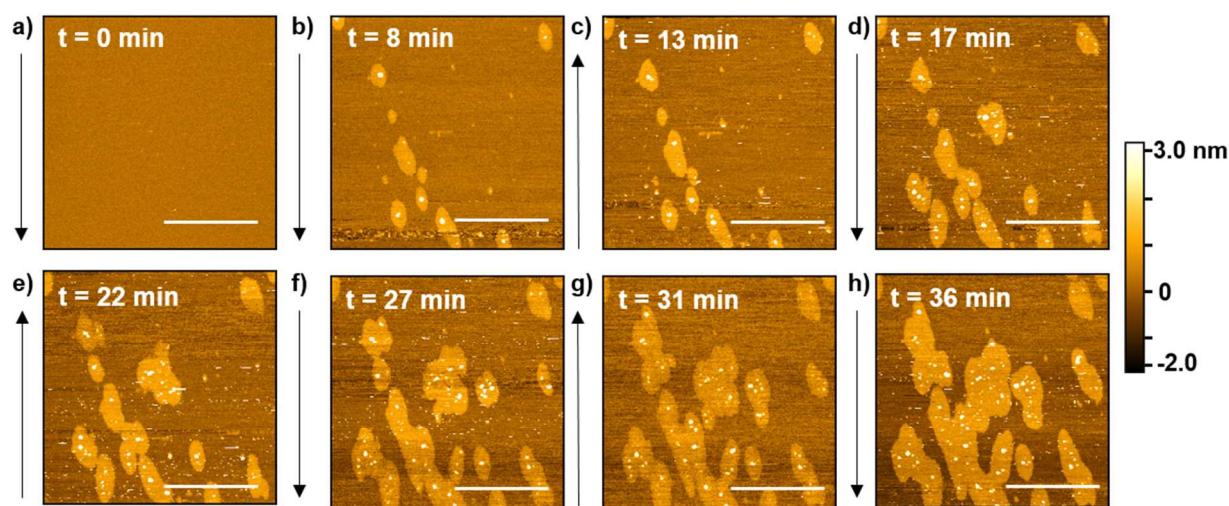

22
23 ^a Attachment experiments were conducted in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES at 25 °C. All data are for the 3rd harmonic.
24 Data for the frequency and dissipation shifts are after 20 min of attachment or for the final equilibrated values following rinse with buffer.
25 Values are means \pm standard deviations of at least triplicate experiments. Abbreviations: DOPC, 1,2-dioleoyl-*sn*-glycero-3-phosphocholine; SM,
26 sphingomyelin; Chol, cholesterol.
27

Table 2. Line scan analysis of features observed by AFM.^a


Bilayer Type	Microdomain Height ^b (nm)	Particle Height within Microdomains ^b (nm)
DOPC	1.1 ± 0.2 (<i>N</i> = 26)	8.6 ± 2.3 (<i>N</i> = 31)
DOPC/SM/Chol	1.8 ± 0.2 (<i>N</i> = 25)	7.7 ± 2.6 (<i>N</i> = 31)

^a AFM experiments were conducted in 0.010 M NaCl buffered to pH 7.4 with 0.010 M HEPES at 24.5 °C. Values are averages and standard deviations of *N* line scans. Abbreviations: DOPC, 1,2-dioleoyl-*sn*-glycero-3-phosphocholine; SM, sphingomyelin; Chol, cholesterol.

^b Referenced to underlying bilayer.

Figure 1. Representative changes in a, c) frequency and b, d) dissipation upon introduction of 1 nM PDDA-QDs to a a,b) DOPC or c,d) 60/20/20 mol% DOPC/SM/Chol bilayer in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES. The bilayer has already been formed and interaction between the QDs and the bilayer begins where noted. The dashed line represents the point where buffer without QDs reach the sensor surface and some mass loss and decrease in dissipation is initially observed. All data are for the 3rd harmonic.

Figure 2. Time-lapse topographical AFM images showing the impact of PDDA-QDs on a DOPC bilayer immediately after injection of particles. a) DOPC bilayer prior to the introduction of PDDA-QDs, b-h) subsequent images taken after interaction with the PDDA-QDs. All images were collected in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C. Black arrows represent the scan direction for the given image. Scale bars on all images are 2 μ m. Z-height color scale corresponds to all images. The time on each image indicates how much time the bilayer had been in contact with PDDA-QDs. Each image took between 4-6 min to capture depending on optimization of scan parameters. A video of this sequence can be found in the supporting information.

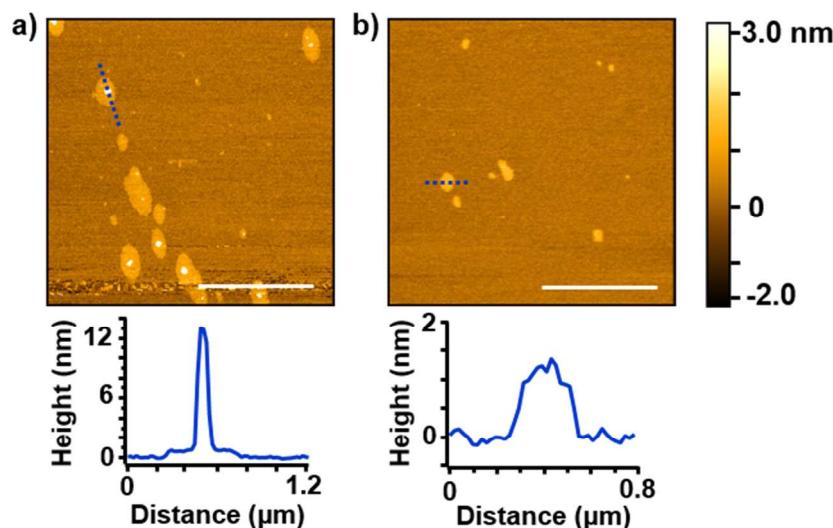
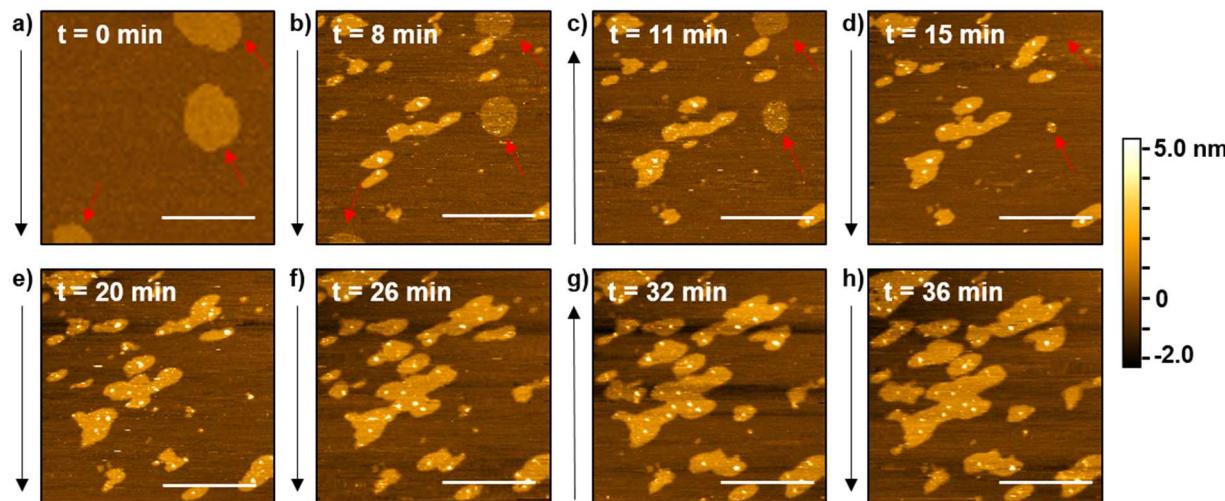



Figure 3. a) Line profile across the microdomains observed after interaction of PDDA-QDs with the DOPC bilayer from Figure 2a and b) PDDA polymer (molecular mass 200,000-350,000 Da, 0.0025 wt. %) interaction with a DOPC bilayer with corresponding line scan. All images were collected in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C. Line scans were taken across the dashed blue line in each image. Scale bars on all images are 2 μm. Z-height color scale corresponds to both images.

Figure 4. Time-lapse topographical AFM images showing the effect of PDDA-QDs on a bilayer initially containing phase-segregated domains. Bilayer composition was 60/20/20 mol% DOPC/SM/Chol. a) Bilayer prior to the introduction of PDDA-QDs, b-h) subsequent images taken after interaction with the PDDA-QDs. All images were collected in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C. Black arrows represent the scan direction for the given image. Scale bars on all images are 2 μ m. The red arrows are intended to direct the reader's eye to the disappearance of the liquid-ordered domains. Z-height color scale corresponds to all images. The time on each image indicates how much time the bilayer had been in contact with PDDA-QDs. Each image took between 3-6 min to capture depending on optimization of scan parameters. A video of this sequence can be found in the supporting information.

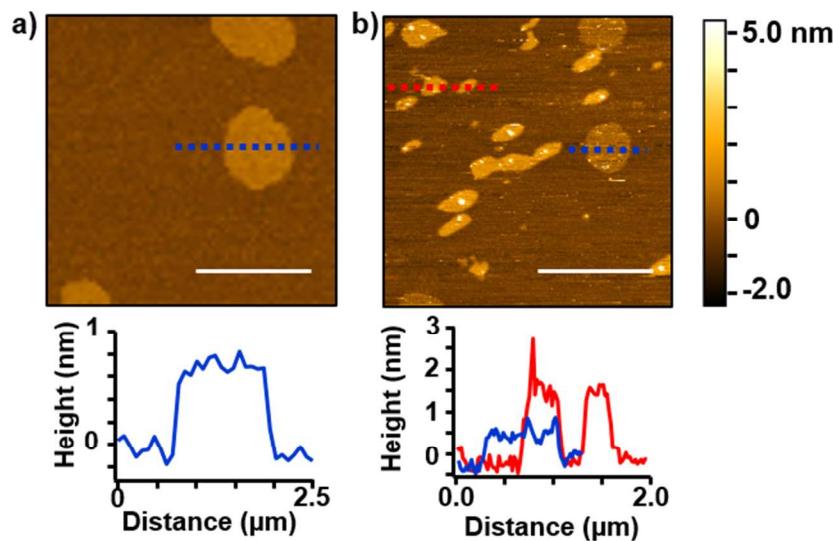
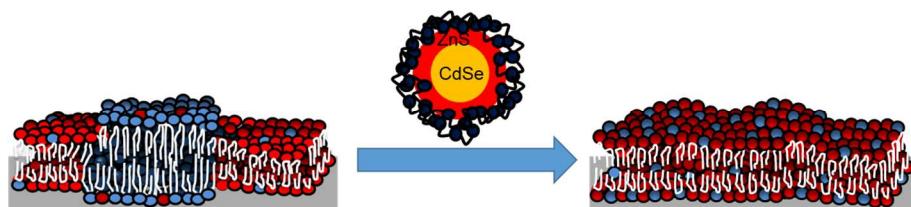



Figure 5. Representative line traces observed for height across features observed in a 60/20/20 mol% DOPC/SM/Chol bilayer (note: same bilayer as presented in Figure 4) a) prior to and b) after interaction with 1 nM PDDA-QDs. The blue trace traces in both images show the height over a liquid-ordered domain, whereas the red trace in b) shows the height across the microdomain structure induced by the PDDA-QDs. All images were collected in 0.01 M NaCl buffered to pH 7.4 with 0.01 M HEPES at 24.5 °C. Scale bars are 2 μm. Z-height color scale corresponds to both images.

TOC Image

