
Appears in ACM FPGA ’18

FASTCF: FPGA-based Accelerator for
STochastic-Gradient-Descent-based Collaborative Filtering

Shijie Zhou
University of Southern California

Los Angeles, CA 90089
shijiezh@usc.edu

Rajgopal Kannan
US Army Research Lab
Los Angeles, CA 90094

Rajgopal.kannan.civ@mail.mil

Yu Min
University of Southern California

Los Angeles, CA 90089
yumin@usc.edu

Viktor K. Prasanna
University of Southern California

Los Angeles, CA 90089
prasanna@usc.edu

ABSTRACT

Sparsematrix factorization using Stochastic Gradient Descent (SGD)

is a popular technique for deriving latent features from observa-

tions. SGD is widely used for Collaborative Filtering (CF), itself a

well-known machine learning technique for recommender systems.

In this paper, we develop an FPGA-based accelerator, FASTCF, to

accelerate the SGD-based CF algorithm. FASTCF consists of parallel,

pipelined processing units which concurrently process distinct user

ratings by accessing a shared on-chip buffer. We design FASTCF

through a holistic analysis of the specific design challenges for the

acceleration of SGD-based CF on FPGA. Based on our analysis of

these design challenges, we develop a bipartite graph processing

approach with a novel 3-level hierarchical partitioning scheme that

enables conflict-minimizing scheduling and processing of on-chip

feature vector data to significantly accelerate the processing of

this bipartite graph. First, we develop a fast heuristic to partition

the input graph into induced subgraphs; this enables FASTCF to

efficiently buffer vertex data for reuse and completely hide com-

munication overhead. Second, we partition all the edges of each

subgraph into matchings to extract the maximum parallelism. Third,

we schedule the execution of the edges inside each matching to

reduce concurrent memory access conflicts to the shared on-chip

buffer. Compared with non-optimized baseline designs, the hierar-

chical partitioning approach results in up to 60× data dependency

reduction, 4.2× bank conflict reduction, and 15.4× speedup. We

implement FASTCF based on state-of-the-art FPGA and evaluate

its performance using three large real-life datasets. Experimental

results show that FASTCF sustains a high throughput of up to 217

billion floating-point operations per second (GFLOPS). Compared

with state-of-the-art multi-core and GPU implementations, FASTCF

demonstrates 13.3× and 12.7× speedup, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA ’18, February 25–27, 2018, Monterey, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5614-5/18/02. . . $15.00
https://doi.org/10.1145/3174243.3174252

KEYWORDS

Sparse matrix factorization; Training process; Bipartite graph rep-

resentation

1 INTRODUCTION

Web-based services such as online shopping and social media have

become extremely popular Internet services but also difficult to

use effectively due to the surfeit of information available on the

web. In order to provide accurate recommendations and enhance

user satisfaction, many online companies such as Amazon, Netflix,

and Facebook develop recommender systems [1, 2]. These systems

analyze the patterns of user’s interest in products and provide

personalized recommendations that suit a user’s taste. Collaborative

Filtering (CF) is a widely used machine learning technique to design

such recommender systems [1].

Sparse matrix factorization is an unsupervised machine learn-

ing technique to extract latent information from observations [1].

Stochastic Gradient Descent (SGD) is widely used to train the ma-

trix factorization model for many applications, for which CF is

a representative example. This approach has achieved the high-

est prediction accuracy in the Netflix challenge [2], which gives

a partially observed rating matrix and asks to predict the missing

ratings. In addition, SGD-based CF is adopted in many commer-

cial recommender systems [1ś4]. However, the training process

of SGD-based CF algorithms is computation-intensive because the

model needs to be iteratively updated for thousands of iterations

[5]. When the volume of training data is huge, training time can

become excessively long. Therefore, it becomes essential to develop

hardware-based accelerators to reduce the training time.

Recently, there has been a growing interest in employing FPGA

to accelerate machine learning techniques [6ś10]. In this paper,

we propose FASTCF, a high-throughput accelerator based on state-

of-the-art FPGA to accelerate the training process of a popular

SGD-based CF algorithm. FASTCF consists of parallel processing

units concurrently working on distinct input data to sustain high

throughput. On-chip buffers that store the feature data (vectors)

of users and items feed the pipleines and are exploited for data

reuse. The proposed design is also applicable to accelerating other

applications that use matrix factorization to derive hidden features

from observations (e.g., text mining [11]).

Our design of FASTCF is holistic and generalized: It is motivated

by a careful analysis of the challenges involved in accelerating SGD-

based CF on FPGA. We identify three principal design challenges

1) limited on-chip memory which can limit throughput if the long

latencies of external memory accesses are not managed 2) data

dependencies among feature vectors which can prevent concurrent

processing within the FPGA pipeline and 3) pipeline stalls due to

access conflicts between different pipelines when accessing single

R/W ported on-chip memory banks. (Note that multi-ported mem-

ory banks [25, 26] can solve the access conflict problem but we

must pay a significant memory capacity penalty to do so. Multi-

port banks require significantly larger on-chip memory capacity for

solving a similar sized problem due to quadratic factor duplication

(Sec 5.3)).

Based on our analysis of these design challenges, we develop a

bipartite graph processing approach in which the input training

data is first transformed into a bipartite graph representation. This

is followed by a novel 3-level hierarchical partitioning scheme that

enables conflict-minimizing scheduling and processing of on-chip

feature vector data to significantly accelerate the processing of this

bipartite graph. We handle the specific design challenges listed

above through the following techniques:

• To overcome the first challenge, FASTCF first partitions the

input graph into induced subgraphs. In lieu of more sophis-

ticated partitioning algorithms with higher preprocessing

costs, we develop a simple and fast partitioning heuristic that

satisfies a necessary condition for storing feature vectors of

vertices in the on-chip buffer. By overlapping the communi-

cation overhead with computation, FASTCF can absorb the

long latencies of external memory accesses.

• To overcome the data dependency challenge, we maximize

the available parallelism by partitioning the edges of each

induced subgraph into matchings. This reduces the data de-

pendencies among the edges by up to 60×, and thus enables

FASTCF to efficiently process distinct edges in parallel.

• To overcome the bank-conflict challenge, we develop a greedy

algorithm to partition each matching into batches and sched-

ule the execution of the batches to reduce conflicts due to

concurrent accesses to the shared on-chip buffer (i.e., bank

conflicts). This optimization results in up to 4.2× bank con-

flict reduction.

Experimental results show that FASTCF sustains high through-

put of up to 217 GFLOPS for training. Compared with a state-of-

the-art multi-core implementation running on a 24-core Intel Xeon

processor, FASTCF achieves 13.3× speedup. Compared with a state-

of-the-art GPU implementation running on a 2880-core Tesla K40C,

FASTCF attains 12.7× speedup.

The rest of the paper is organized as follows. Section 2 covers

the background; Section 3 introduces the SGD-based CF algorithm

and the challenges in accelerating it; Section 4 presents our 3-level

hierarchical partitioning approach; Section 5 describes the architec-

ture of FASTCF; Section 6 reports the experimental results; Section

7 discusses the related work; Section 8 concludes the paper.

2 BACKGROUND

CF relies on existing user ratings to predict the ratings that have not

been given [5]. By collecting and analyzing past rating information

frommany users (collaborating), CF identifies new user-item associ-

ations and makes predictions (filtering). Most of the CF algorithms

fall into two categories, namely memory-based and model-based

algorithms [1, 5].

Memory-based CF algorithms use user ratings to compute the

similarity between users or alternatively, between items. Several

similarity metrics, such as Pearson correlation and Cosine simi-

larity [6], can be used to compute the similarity. Once a matrix of

similarities is formed, the prediction of a particular user’s rating of

an item is made based on similar users (i.e., users that have high

similarity with this user) or similar items. Although memory-based

CF algorithms are simple and fast, they cannot efficiently handle

sparse datasets [5]. In addition, their prediction performance is not

as accurate as model-based CF algorithms [5].

Model-based CF algorithms aim to develop a model of user rat-

ings usingmachine learning techniques. After themodel is obtained,

model-based CF algorithms produce the prediction of a user’s rating

by computing the expected value of the rating in the model. Matrix

factorization model, which is also called latent factor model [3], has

shown great success to achieve high prediction accuracy for CF,

and is widely adopted in recommender systems [1, 5, 14]. Stochastic

Gradient Descent (SGD) and Alternate Least Square (ALS) are two

primary methods to perform matrix factorization for CF [1, 13, 14].

ALS can converge in fewer iterations than SGD, but ALS is hardly

scalable to large-scale datasets due to its cubic time complexity

in each iteration [14]. In this paper, we focus on accelerating the

SGD-based CF algorithm.

There are also hybrid approaches to combine CF technique

with other recommendation techniques (e.g., content-based recom-

mender [5]). Such hybrid CF algorithms can overcome the problems

of native CF such as loss of information. However, the complexity

and expense for the implementation are significantly increased as

well [5].

3 ALGORITHM AND CHALLENGES

In this section, we briefly introduce the SGD-based CF algorithm

and discuss the challenges in accelerating it.

3.1 SGD-based CF

Let U and V denote a set of users and items, |U | and |V | denote

the number of users and items, respectively. The input training

dataset is a partially filled rating matrix R = {ri j } |U |× |V | , in which

ri j represents the rating of item vj given by user ui (0 ≤ i < |U |,

0 ≤ j < |V |).

Assuming each user and item is associated with H latent fea-

tures1, the output model of the training process contains two ma-

trices, P (a |U | ×H matrix) andQ (a |V | ×H matrix), such that their

product approximates R (i.e., R ≈ P ×QT). P and Q are called user

feature matrix and item feature matrix, respectively. The i-th row

of P (denoted as pi) constitutes a feature vector of user ui and the

j-th row ofQ (denoted as qj) constitutes a feature vector of item vj .

1A typical value of H is 32 [15ś17].

The prediction of the rating of item vj by user ui is the dot product

of pi and qj :

r̂i j = pi l · lqj =

H−1∑

h=0

pih · qjh (1)

Given a known rating ri j , the prediction error is computed as erri j =

ri j − r̂i j . The objective of the training process is to obtain such P

and Q that minimize the overall regularized squared error based

on all the known ratings:

min
P,Q

∑

ui ∈U ,vj ∈V

err2i j + λ · (| |pi | |
2
+ | |qj | |

2) (2)

In the objective function, λ is a constant used to introduce regular-

ization to prevent overfitting. To minimize the objective function,

SGD is used to update the feature vectors [1]. SGD randomly ini-

tializes all the feature vectors and then updates them by iteratively

traversing all the known ratings until the overall squared error

(i.e.,
∑
err2i j) converges. By taking a known rating ri j , pi and qj are

updated by a magnitude proportional to a constant α (learning rate)

in the opposite direction of the gradient, yielding the following

updating rules:

pnewi = β · pi + erri j · α · qj (3)

qnewj = β · qj + erri j · α · pi (4)

In Eq. (3) and (4), β is a constant whose value is equal to (1 − αλ).

The algorithm requires to incrementally update the feature vectors

once per rating; therefore, the ratings of the same item or given

by the same user cannot be concurrently processed because they

will result in the updates for the same qj or pi . Additional details

of this algorithm can be found in [1, 4].

3.2 Challenges

There are three challenges in accelerating the SGD-based CF algo-

rithm using FPGA.

First, since the feature vectors of users and items are repeatedly

accessed and updated during the processing of ratings, it is desirable

to store them in the on-chip memory of FPGA. However, for large

training dataset that involves a large number of users and items, the

feature vectors cannot fit in the on-chip memory. In this scenario,

external memory such as DRAM is required to store them. However,

accessing feature vectors from external memory can incur long

access latency, which results in accelerator pipeline stalls and even

no speedup [19].

Second, data dependencies exist among ratings, making it chal-

lenging to efficiently exploit the massive parallelism of FPGA for

concurrent processing. More specifically, the ratings of the same

item or given by the same user cannot be processed concurrently.

This is because SGD requires to incrementally update feature vec-

tors once per rating; concurrent processing of such ratings can lead

to read-after-write data hazard. We define such data dependency

among ratings as feature vector dependency.

Third, FPGA accelerators usually employ parallel processing

units to increase processing throughput [8, 19, 20]. However, the

on-chip RAMs (e.g., block RAM and UltraRAM) of FPGA support

only dual-port accesses (one read port and/or one write port) [25ś

27]. When multiple processing units need concurrent accesses to

the same RAM based on distinct memory addresses, these memory

accesses have to be serially served. This leads to additional latency

to resolve the access conflicts and thus performance deterioration.

In order to overcome these challenges, we use a bipartite graph

representation of CF (Section 4.1) and propose a 3-level hierarchical

partitioning approach (Section 4.2).

4 GRAPH REPRESENTATION AND

HIERARCHICAL PARTITIONING

4.1 Graph Representation

We transform SGD-based CF into a bipartite graph-processing prob-

lem so that graph theories can be leveraged to optimize the per-

formance. The input rating matrix is converted into a bipartite

graph G, whose vertices can be divided into two disjoint sets, U

(user vertices) and V (item vertices). Each known rating in R is

represented as an edge connecting a user vertex and an item vertex

in G. We store G in the coordinate (COO) format [22], which is a

commonly used graph representation [16ś18, 22ś24]. This format

stores the graph as an edge list E; each edge is represented as a

< ui ,vj , ri j > tuple, in which ui and vj refer to the user and item

vertices, and ri j corresponds to the rating value of vj given by ui .

Algorithm 1 illustrates the SGD-based CF using bipartite graph

representation. Each vertex maintains a feature vector of length H .

All the edges in E are iteratively processed to update the feature

vectors of vertices until the overall squared error converges. When

the training process terminates, the feature vectors of all the user

vertices and item vertices constitute the output feature matrices P

and Q , respectively.

Algorithm 1 SGD-based CF using graph representation

Let pi denote the feature vector of user vertex ui (0 ≤ i < |U |)

Let qj denote the feature vector of item vertex vj (0 ≤ j < |V |)

Let edдei j denote the edge connecting ui and vj
CF_Train (G(U ,V ,E))

1: for each user/item vertex do

2: Randomly initialize its feature vector

3: end for

4: while Overall_squared_error_converages = false do

5: Overall_squared_error= 0

6: for each edдei j ∈ E do

7: Read feature vectors pi and qj
8: Compute r̂i j based on Eq. (1)

9: Compute erri j based on ri j and r̂i j
10: Update pi and qj based on Eq. (3) and (4)

11: Overall_squared_error+ = err2i j
12: end for

13: end while

14: Return all the feature vectors of vertices

4.2 3-Level Hierarchical Partitioning

4.2.1 First-Level Partitioning: On-chip Buffering and Commu-

nication Hiding. In order to address the first challenge described

in Section 3.2, we partition G into induced subgraphs to achieve

two goals: (1) the feature vectors of the vertices in each induced

subgraph can fit in the on-chip buffer; (2) the computation for

batch; in the worst case, when all the edges in a batch have conflict

with each other, the BCR takes M clock cycles to output all the

edges in the batch.

5.4 Hazard Detection Unit

When the edges from the Bank Conflict Resolver and the edges

being processed in the PE belong to different matchings, read-after-

write data hazards due to feature vector dependencies may occur.

The Hazard Detection Unit (HDU) is constructed by BRAMs and re-

sponsible for detecting feature vector dependencies and preventing

read-after-write data hazards. We design the HDU using a fine-

grained locking mechanism. For each vertex, we assign a 1-bit flag.

A flag with value 1 means the feature vector of the corresponding

vertex is being computed by the PE, and thus cannot be accessed.

For each input edge, the HDU checks the flags of its user and item

vertices; if both the flags are 0, the edge is fed into the PE and

the flags are set to 1; otherwise, the pipeline stalls until both the

flags become 0. When the PE writes any updated feature vector

into the FVB, it also sends signals to the HDU to set the flag of the

corresponding vertex back to 0. Therefore, deadlock will not occur.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

Our FPGA designs are implemented on a state-of-the-art Virtex

UltraScale+ xcvu9pflgb2104 FPGA [37]. The target FPGA device

has 1,182,240 slice LUTs, 2,364,480 slice registers, 6,840 DSPs, and

up to 43.3 MB of on-chip RAM. The FPGA uses two DDR4 chips

as the external memory. Each DRAM has 16 GB capacity and a

peak bandwidth of 19.2 GB/s. The host CPU is an 8-core Intel Xeon

E5-2686 processor. Each core of the host CPU runs at 2.3 GHz and

has a 32 KB L1 cache and a 256 KB L2 cache. All the cores share a 45

MB L3 cache. The host CPU and the FPGA are connected through

PCIe 3.0×16 bus.

We use large real-life datasets (Table 1) to evaluate our designs.

These datasets have been widely used in related works [12, 16, 22,

35]. In our experiments, the length of each feature vector is 32

(i.e., H = 32) with each element represented using IEEE 754 single

precision format. We adopt a standard learning rate α = 0.0001

and regularization parameter λ = 0.02 [4]. We use execution time

and throughput (sustained floating point operations per second

(GFLOPS)) as our performance metrics.

Table 1: Large real-life datasets used for experiments

Dataset
users # items # ratings

Description
|U | |V | |E |

Libimseti [23] 135 K 168 K 17,359 K Dating ratings

Netflix [4] 480 K 17 K 100,480 K Movie ratings

Yahoo [24] 1,200 K 136 K 460,380 K Music ratings

6.2 Resource Utilization, Clock Rate, and

Power Consumption

Table 2 shows the resource utilization, clock rate, and power con-

sumption of FASTCF forM = 8 (i.e., the number of processing units

= 8). The reported results are post-place-and-route results evaluated

by Xilinx Vivado Design Suite 2017.2. ForM = 8, FASTCF uses up to

58.9% slice LUTs and 63.0% DSPs in the FPGA device. Therefore, we

could not increaseM further to 16 due to the resource limitations.

The feature vector buffer (FVB) is organized in 32 banks and the

capacity of the FVB is empirically set to 64K feature vectors (32K

for user vertices and 32K for item vertices). We did not increase the

capacity of the FVB to 128K because we observed that the clock

rate degraded to 85 MHz when 75% UltraRAMs of the FPGA device

were used.

Table 2: Resource utilization, clock rate, and power con-

sumption of FASTCF

Slice LUT (%) . Register (%)
.

DSP (%)
On-chip RAM (%)

Block RAM UltraRAM

58.9 27.1 63.0 1.2 37.5

Clock rate (MHz) Power (Watt)

150 13.8

6.3 Pre-processing Time and Training Time

Table 3 and Table 4 report the pre-processing time and training

time, respectively. The pre-processing is performed by the host CPU

based on our proposed 3-level partitioning approach; the training

is performed by FASTCF. Note that the pre-processing is performed

only once, while the training is an iterative process; thus, the pre-

processing time can be amortized and is negligible compared with

the total training time. In Table 4, we also report the total training

time and the average execution time for each iteration.

Table 3: Pre-processing time

Dataset 1st-level 2nd-level 3rd-level Total

Libimseti 0.4 sec 4.4 sec 2.7 sec 7.5 sec

Netflix 1.0 sec 10.7 sec 7.0 sec 18.7 sec

Yahoo 5.5 sec 42.3 sec 23.0 sec 70.8 sec

Table 4: Training time

Dataset
Total train- # iterations Avg. Texec

ing time to converge per iteration

Libimseti 360.8 sec 11,568 0.03 sec

Netflix 876.4 sec 5,766 0.15 sec

Yahoo 2536.5 sec 3,714 0.68 sec

6.4 Performance vs. Parallelism

To explore the impact of parallelism on the performance, we vary

the number of processing units (M) from 1 to 8. Figure 5 shows

the throughput performance for various M . We observe that the

throughput performance significantly improves asM increases for

all the three datasets. For M = 8, FASTCF sustains 165 GFLOPS

scheduling schemes are not able to efficiently exploit the thousands

of cores on the GPU, and the dynamic scheduling schemes require

memory locks to handle feature vector dependencies and thus have

significant synchronization overhead. As a result, the achieved

speedup by the GPU acceleration is quite limited.

Table 8 compares the performance of FASTCF with [22, 35] for

training the same dataset (Netflix). Our design achieves 13.3× and

12.7× speedup compared with [35] and [22], respectively. Note that

the feature vector length (H) used in FASTCF is larger than [22, 35].

Therefore, from throughput perspective, FASTCF achieves 21.3×

and 25.4× improvement compared with [35] and [22], respectively.

Moreover, the power consumption of FASTCF (13.8 W) is far less

than the multi-core (130 W) and GPU (235 W) platforms.

Table 8: Comparison with state-of-the-art multicore and

GPU implementations based on Netflix dataset

Approach Platform H
Texec per

Speedup
iteration

[35] 24-core Intel E5-2697 20 2.00 sec 1.0×

[22] 2880-core Tesla K40C 16 1.90 sec 1.1×

FASTCF Virtex UltraScale+ 32 0.15 sec 13.3×

7 RELATED WORK

7.1 Graph-processing Frameworks

There are several graph-processing frameworks that support CF.

Representative examples include GraphMat [16], Graphicionado

[17], and GraphLab [15]. However, most of these frameworks imple-

ment Gradient-Descend-based CF [15ś17] because it can be easily

expressed as a vertex-centric program. GD-based CF accumulates

the intermediate updates for each feature vector and performs the

update after all the ratings have been traversed in an iteration.

Therefore, it updates each feature vector only once per iteration

and thus requires more iterations to converge and more training

time than SGD-based CF (e.g., 40× more iterations to train Netflix

[35]). Native [35] implements SGD-based CF on multi-core plat-

form. It pre-processes the input training matrix by partitioning

it into submatrices, and concurrently processes the submatrices

that do not have feature vector dependencies using distinct CPU

cores. However, the design only exploits submatrix-level parallelism

(i.e, each submatrix is serially processed by a CPU core) and the

submatrices can vary significantly in size. This can result in load

imbalance among the CPU cores and thus increase the synchro-

nization overhead.

7.2 GPU-based CF Accelerators

GPUs are widely used to accelerate machine learning applications

[38]. GPU-based accelerators for memory-based CF [39] and ALS-

based CF [13] have been developed. However, it has been shown that

GPUs are not suitable for accelerating SGD-based CF [22, 38, 40].

The main reasons include (1) the fine-grained synchronization of

updated feature vectors is expensive on GPU platforms [38], and

(2) the SIMD execution of GPU further inflates the cost of thread

divergence when synchronization conflicts occur [22]. Siede et. al

[40] investigate the theoretical efficiency of SGD on GPUs, and

conclude that fundamental changes in the algorithm are necessary

to attain significant speedup. In [22], SGD-based CF is implemented

on a Tesla K40C GPU. The design develops and compares several

scheduling schemes for parallel execution of SGD on GPU, includ-

ing dynamic scheduling schemes using locks and lock-free static

scheduling schemes. However, none of the schemes is able to ef-

ficiently exploit the GPU acceleration and the achieved speedup

compared with a CPU implementation is small (< 1.1×).

7.3 FPGA-based CF Accelerators

There have not yet been many efforts to exploit FPGA to accelerate

CF. In [6], an FPGA-based accelerator for memory-based CF algo-

rithms is proposed. The design accelerates three memory-based CF

algorithms and achieves up to 16× speedup compared with multi-

core implementations. However, the training dataset of the design

is very small (4K users, 1K items, and 1M ratings), which can fit in

the on-chip memory of state-of-the-art FPGAs. To the best of our

knowledge, FASTCF is the first design to exploit FPGA to accelerate

model-based CF algorithm for large training datasets.

8 CONCLUSION AND FUTUREWORK

In this paper, we presented FASTCF, an FPGA-based accelerator

for SGD-based CF. FASTCF consisted of parallel processing units

sharing an on-chip feature vector buffer. To optimize the perfor-

mance of FASTCF, we proposed a novel 3-level hierarchical par-

titioning approach by using a bipartite graph representation of

CF. Our focus was to obtain simple and fast heuristics based on

identifying sufficient conditions for significant acceleration of the

SGD-based CF algorithm on FPGA. By holistically considering the

architectural characteristics of the FPGA platform, the proposed

partitioning approach resulted in a complete overlap of communi-

cation and computation, up to 60× data dependency reduction, and

4.2× bank conflict reduction. As a result, our accelerator sustained

a high throughput of up to 217 GFLOPS for training large real-life

datasets. Compared with the state-of-the-art multi-core implemen-

tation and GPU implementation, FASTCF demonstrated 13.3× and

12.7× speedup, respectively.

In the future, we will explore multi-FPGA architectures, in which

each FPGA device employs FASTCF, to further reduce the train-

ing time. We also plan to generalize our partitioning approach to

support other SGD-based algorithms.

ACKNOWLEDGMENTS

This work is supported by the U.S. National Science Foundation

grants ACI-1339756 and CNS-1643351. This work is also supported

in part by Intel Strategic Research Alliance funding.

REFERENCES
[1] Y. Koren, R. Bell, and C. Volinsky, łMatrix Factorization Techniques for

Recommender Systems," in IEEE Computer, vol. 42, iss. 8, 2009.

[2] C. A. Gomez-Uribe and N. Hunt, łThe Netflix Recommender System:

Algorithms, Business Value, and Innovation," ACM Transactions on

Management Information Systems (TMIS), vol. 6, iss. 4, 2016.

[3] B. Chen, D. Agarwal, P. Elango, and R. Ramakrishnan, łLatent Factor

Models for Web Recommender Systems," http://www.ideal.ece.utexas.

edu/seminar/LatentFactorModels.pdf

[4] łNetflix Update: Try This at Home," http://sifter.org/~simon/journal/

20061211.html

[5] X. Su and T. M. Khoshgoftaar, łA Survey of Collaborative Filtering

Techniques," Advances in Artificial Intelligence, 2009.

[6] X. Ma, C. Wang, Q. Yu, X. Li, and X. Zhou, łAn FPGA-based Accelerator

for Neighborhood-based Collaborative Filtering Recommendation Al-

gorithms," in Proc. of International Conference on Cluster Computing

(CLUSTER), pp. 494-495, 2015.

[7] J. Zhang and J. Li, łImproving the Performance of OpenCL-based

FPGA Accelerator for Convolutional Neural Network," in Proc. of In-

ternational Symposium on Field-Programmable Gate Arrays February

(FPGA), pp. 25-34, 2017.

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, łOptimizing FPGA-

based Accelerator Design for Deep Convolutional Neural Networks," in

Proc. of International Symposium on Field-Programmable Gate Arrays

February (FPGA), pp. 161-170, 2015.

[9] G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre, łCaffePresso: An

Optimized Library for Deep Learning on Embedded Accelerator-based

Platforms," in Proc. of International Conference on Compliers, Archi-

tectures, and Sythesis of Embedded Systems (CASES), 2016.

[10] R. Zhao, W. Song, W. Zhang, T. Xing, J. Lin, M. B. Srivastava, R. Gupta,

and Z. Zhang, łAccelerating Binarized Convolutional Neural Networks

with Software-Programmable FPGAs," in Proc. of International Sympo-

sium on Field-Programmable Gate Arrays February (FPGA), pp. 15-24,

2017.

[11] J. Pennington, R. Socher, and C. D. Manning, łGlove: Global Vectors for

Word Representation," In Proc. of Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp. 1532-1543, 2014.

[12] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and W. Zheng, łExplor-

ing the Hidden Dimension in Graph Processing,ž in Proc. of USENIX

Symposium on Operating Systems Design and Implementation (OSDI),

2016.

[13] W. Tan, L. Cao, and L. Fong, łFaster and Cheaper: Parallelizing Large-

Scale Matrix Factorization on GPUs," in Proc. of International Sym-

posium on High-Performance Parallel and Distributed Computing

(HPDC), pp. 219-230, 2016.

[14] H. Yu, C. Hsieh, S. Si, and I. Dhillon. łParallel Matrix Factorization

for Recommender Systems," in Journal of Knowledge and Information

Systems (KAIS), pp. 793-819, 2014.

[15] łGraphLab Collaborative Filtering Library," http://select.cs.cmu.edu/

code/graphlab/pmf.html

[16] N. Sundaram, N. Satish, M. A. Patwary, S. R. Dulloor, M. J. Anderson,

S. G. Vadlamudi, D. Das, and P. Dubey, łGraphMat: High Performance

Graph Analytics Made Productive," in Proc. of VLDB Endowment, vol.

8, no. 11, pp. 1214-1225, 2015.

[17] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, łGraphi-

cionado: A High-performance and Energy-efficient Accelerator for

Graph Analytics," in Proc. of International Symposium on Microarchi-

tecture (MICRO), 2016.

[18] S. Zhou, C. Chelmis, and V. K. Prasanna, łAccelerating Large-scale

Single-source Shortest Path on FPGA," in Proc. of International Parallel

and Distributed Processing Symposium Workshop (IPDPSW), 2015

[19] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, łA Reconfigurable

Computing Approach for Efficient and Scalable Parallel Graph Explo-

ration," in Proc. of International Conference on Application-specific

Systems, Architectures and Processors (ASAP), pp. 8-15, 2012.

[20] S. Zhou, C. Chelmis, and V. K. Prasanna, łHigh-throughput and Energy-

efficient Graph Processing on FPGA," in Proc of International Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM),

pp. 103-110, 2016.

[21] S. Zhou, C. Chelmis, and V. K. Prasanna, łOptimizing memory perfor-

mance for FPGA implementation of pagerank," in Proc. of International

Conference on ReConFigurable Computing and FPGAs (ReConFig),

2015.

[22] R. Kaleem, S. Pai, and K. Pingali, łStochastic Gradient Descent on

GPUs," in Proc. of Workshop on General Purpose Processing using

GPUs (GPGPU), pp. 81-89, 2015.

[23] L. Brozovsky and V. Petricek, łRecommender System for On-

line Dating Service," 2007, https://pdfs.semanticscholar.org/1a42/

f06f368cf9b2ba8565e81d8e048caa5c2c9e.pdf.

[24] łRatings and Classification Data," https://webscope.sandbox.yahoo.

com/catalog.php?datatype=r

[25] C. E. Laforest, M. G. Liu, E. R. Rapati, and J. G. Steffan, łMulti-ported

Memories for FPGAs via XOR," in Proc. of International Symposium

on Field-Programmable Gate Arrays February (FPGA), pp. 209-218.

[26] S. N. Shahrouzi and D. G. Perera, łAn Efficient Embedded Multiport

Memory Architecture for Next-Generation FPGAs," in Proc. of Interna-

tional Conference on Application-specific Systems, Architectures and

Processors (ASAP), pp. 83-90, 2017.

[27] łUltraRAM: Breakthrough Embedded Memory Integration on Ul-

traScale+ Devices," https://www.xilinx.com/support/documentation/

white_papers/wp477-ultraram.pdf

[28] R. J. Wilson, łIntroduction to Graph Theory," ISBN 0-582-24993-7, 1996.

[29] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F.

Martnez, and C. Guestrin, łGraphGen: An FPGA Framework for Vertex-

Centric Graph Computation," in Proc of International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 25-28,

2014.

[30] R. Pearce, M. Gokhale, and N. M. Amato, łFaster Parallel Traversal of

Scale Free Graphs at Extreme Scale with Vertex Delegates," in Proc. of

International Conference for High Performance Computing, Network-

ing, Storage and Analysis (SC), pp. 549-559, 2014.

[31] R. Chen, J. Shi, B. Zang, and H. Guan, łBipartite-oriented Distributed

Graph Partitioning for Big Learning," in Proc. of Asia-Pacific Workshop

on Systems Article (APSys), 2014.

[32] G. R. Morris, V. K. Prasanna, and R. D. Anderson, łA Hybrid Approach

for Mapping Conjugate Gradient onto an FPGA-Augmented Recon-

figurable Supercomputer," in Proc. of International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 3-12,

2006.

[33] H. E. Yantir, S. Bayar, A. Yurdakul, łEfficient Implementations of Multi-

pumped Multi-port Register Files in FPGAs," in Proc. of Euromicro

Conference on Digital System Design (DSD), pp. 185-192, 2013.

[34] J. Wawrzynek, K. Asanovic, J. Lazzaro, and Y. Lee, łBanked Multiport

Memory," https://inst.eecs.berkeley.edu/~cs250/fa10/lectures/lec08.pdf.

[35] N. Satish, N. Sundaram, M. Patwary, J. Seo, J. Park, M. A. Hassaan,

S. Sengupta, Z. Yin, and P. Dubey, łNavigating the Maze of Graph

Analytics Frameworks using Massive Graph Datasets," in Proc. of ACM

SIGMOD, pp. 979-990, 2014.

[36] A. Lenharth, łParallel Programming with the Galois System," http://iss.

ices.utexas.edu/projects/galois/downloads/europar2014-tutorial.pdf

[37] łVirtex UltraScale+ FPGA Data Sheet," https://www.xilinx.com/

support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf

[38] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,

M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng, łLarge Scale

Distributed Deep Networks," in Proc. of Neural Information Processing

Systems Conference (NIPS), pp. 1232-1240, 2012.

[39] Z. Wang, Y. Liu, and S. Chiu, łAn Efficient Parallel Collaborative Filter-

ing Algorithm on Multi-GPU Platform," in Journal of Supercomputing,

vol. 72, iss. 6, pp. 2080-2094, 2016.

[40] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, łOn Parallelizability of

Stochastic Gradient Descent for Speech DNNs," In Proc. of International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

235-239, 2014.

