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ABSTRACT

Sparse matrix factorization using Stochastic Gradient Descent (SGD)
is a popular technique for deriving latent features from observa-
tions. SGD is widely used for Collaborative Filtering (CF), itself a
well-known machine learning technique for recommender systems.
In this paper, we develop an FPGA-based accelerator, FASTCF, to
accelerate the SGD-based CF algorithm. FASTCF consists of parallel,
pipelined processing units which concurrently process distinct user
ratings by accessing a shared on-chip buffer. We design FASTCF
through a holistic analysis of the specific design challenges for the
acceleration of SGD-based CF on FPGA. Based on our analysis of
these design challenges, we develop a bipartite graph processing
approach with a novel 3-level hierarchical partitioning scheme that
enables conflict-minimizing scheduling and processing of on-chip
feature vector data to significantly accelerate the processing of
this bipartite graph. First, we develop a fast heuristic to partition
the input graph into induced subgraphs; this enables FASTCF to
efficiently buffer vertex data for reuse and completely hide com-
munication overhead. Second, we partition all the edges of each
subgraph into matchings to extract the maximum parallelism. Third,
we schedule the execution of the edges inside each matching to
reduce concurrent memory access conflicts to the shared on-chip
buffer. Compared with non-optimized baseline designs, the hierar-
chical partitioning approach results in up to 60x data dependency
reduction, 4.2X bank conflict reduction, and 15.4X speedup. We
implement FASTCF based on state-of-the-art FPGA and evaluate
its performance using three large real-life datasets. Experimental
results show that FASTCF sustains a high throughput of up to 217
billion floating-point operations per second (GFLOPS). Compared
with state-of-the-art multi-core and GPU implementations, FASTCF
demonstrates 13.3X and 12.7X speedup, respectively.
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1 INTRODUCTION

Web-based services such as online shopping and social media have
become extremely popular Internet services but also difficult to
use effectively due to the surfeit of information available on the
web. In order to provide accurate recommendations and enhance
user satisfaction, many online companies such as Amazon, Netflix,
and Facebook develop recommender systems [1, 2]. These systems
analyze the patterns of user’s interest in products and provide
personalized recommendations that suit a user’s taste. Collaborative
Filtering (CF) is a widely used machine learning technique to design
such recommender systems [1].

Sparse matrix factorization is an unsupervised machine learn-
ing technique to extract latent information from observations [1].
Stochastic Gradient Descent (SGD) is widely used to train the ma-
trix factorization model for many applications, for which CF is
a representative example. This approach has achieved the high-
est prediction accuracy in the Netflix challenge [2], which gives
a partially observed rating matrix and asks to predict the missing
ratings. In addition, SGD-based CF is adopted in many commer-
cial recommender systems [1-4]. However, the training process
of SGD-based CF algorithms is computation-intensive because the
model needs to be iteratively updated for thousands of iterations
[5]. When the volume of training data is huge, training time can
become excessively long. Therefore, it becomes essential to develop
hardware-based accelerators to reduce the training time.

Recently, there has been a growing interest in employing FPGA
to accelerate machine learning techniques [6-10]. In this paper,
we propose FASTCF, a high-throughput accelerator based on state-
of-the-art FPGA to accelerate the training process of a popular
SGD-based CF algorithm. FASTCF consists of parallel processing
units concurrently working on distinct input data to sustain high
throughput. On-chip buffers that store the feature data (vectors)
of users and items feed the pipleines and are exploited for data
reuse. The proposed design is also applicable to accelerating other
applications that use matrix factorization to derive hidden features
from observations (e.g., text mining [11]).



Our design of FASTCEF is holistic and generalized: It is motivated
by a careful analysis of the challenges involved in accelerating SGD-
based CF on FPGA. We identify three principal design challenges
1) limited on-chip memory which can limit throughput if the long
latencies of external memory accesses are not managed 2) data
dependencies among feature vectors which can prevent concurrent
processing within the FPGA pipeline and 3) pipeline stalls due to
access conflicts between different pipelines when accessing single
R/W ported on-chip memory banks. (Note that multi-ported mem-
ory banks [25, 26] can solve the access conflict problem but we
must pay a significant memory capacity penalty to do so. Multi-
port banks require significantly larger on-chip memory capacity for
solving a similar sized problem due to quadratic factor duplication
(Sec 5.3)).

Based on our analysis of these design challenges, we develop a
bipartite graph processing approach in which the input training
data is first transformed into a bipartite graph representation. This
is followed by a novel 3-level hierarchical partitioning scheme that
enables conflict-minimizing scheduling and processing of on-chip
feature vector data to significantly accelerate the processing of this
bipartite graph. We handle the specific design challenges listed
above through the following techniques:

o To overcome the first challenge, FASTCF first partitions the
input graph into induced subgraphs. In lieu of more sophis-
ticated partitioning algorithms with higher preprocessing
costs, we develop a simple and fast partitioning heuristic that
satisfies a necessary condition for storing feature vectors of
vertices in the on-chip buffer. By overlapping the communi-
cation overhead with computation, FASTCF can absorb the
long latencies of external memory accesses.

e To overcome the data dependency challenge, we maximize
the available parallelism by partitioning the edges of each
induced subgraph into matchings. This reduces the data de-
pendencies among the edges by up to 60X, and thus enables
FASTCEF to efficiently process distinct edges in parallel.

e To overcome the bank-conflict challenge, we develop a greedy
algorithm to partition each matching into batches and sched-
ule the execution of the batches to reduce conflicts due to
concurrent accesses to the shared on-chip buffer (i.e., bank
conflicts). This optimization results in up to 4.2x bank con-
flict reduction.

Experimental results show that FASTCF sustains high through-
put of up to 217 GFLOPS for training. Compared with a state-of-
the-art multi-core implementation running on a 24-core Intel Xeon
processor, FASTCF achieves 13.3Xx speedup. Compared with a state-
of-the-art GPU implementation running on a 2880-core Tesla K40C,
FASTCEF attains 12.7x speedup.

The rest of the paper is organized as follows. Section 2 covers
the background; Section 3 introduces the SGD-based CF algorithm
and the challenges in accelerating it; Section 4 presents our 3-level
hierarchical partitioning approach; Section 5 describes the architec-
ture of FASTCEF; Section 6 reports the experimental results; Section
7 discusses the related work; Section 8 concludes the paper.

2 BACKGROUND

CF relies on existing user ratings to predict the ratings that have not
been given [5]. By collecting and analyzing past rating information
from many users (collaborating), CF identifies new user-item associ-
ations and makes predictions (filtering). Most of the CF algorithms
fall into two categories, namely memory-based and model-based
algorithms [1, 5].

Memory-based CF algorithms use user ratings to compute the
similarity between users or alternatively, between items. Several
similarity metrics, such as Pearson correlation and Cosine simi-
larity [6], can be used to compute the similarity. Once a matrix of
similarities is formed, the prediction of a particular user’s rating of
an item is made based on similar users (i.e., users that have high
similarity with this user) or similar items. Although memory-based
CF algorithms are simple and fast, they cannot efficiently handle
sparse datasets [5]. In addition, their prediction performance is not
as accurate as model-based CF algorithms [5].

Model-based CF algorithms aim to develop a model of user rat-
ings using machine learning techniques. After the model is obtained,
model-based CF algorithms produce the prediction of a user’s rating
by computing the expected value of the rating in the model. Matrix
factorization model, which is also called latent factor model [3], has
shown great success to achieve high prediction accuracy for CF,
and is widely adopted in recommender systems [1, 5, 14]. Stochastic
Gradient Descent (SGD) and Alternate Least Square (ALS) are two
primary methods to perform matrix factorization for CF [1, 13, 14].
ALS can converge in fewer iterations than SGD, but ALS is hardly
scalable to large-scale datasets due to its cubic time complexity
in each iteration [14]. In this paper, we focus on accelerating the
SGD-based CF algorithm.

There are also hybrid approaches to combine CF technique
with other recommendation techniques (e.g., content-based recom-
mender [5]). Such hybrid CF algorithms can overcome the problems
of native CF such as loss of information. However, the complexity
and expense for the implementation are significantly increased as
well [5].

3 ALGORITHM AND CHALLENGES

In this section, we briefly introduce the SGD-based CF algorithm
and discuss the challenges in accelerating it.

3.1 SGD-based CF

Let U and V denote a set of users and items, |U| and |V| denote
the number of users and items, respectively. The input training
dataset is a partially filled rating matrix R = {ri;j} 7 |x|v |, in which
rij represents the rating of item v; given by user u; (0 < i < |U],
0 <j<|V)).

Assuming each user and item is associated with H latent fea-
tures!, the output model of the training process contains two ma-
trices, P (a |[U| X H matrix) and Q (a |V| X H matrix), such that their
product approximates R (i.e., R ~ P x QT). P and Q are called user
feature matrix and item feature matrix, respectively. The i-th row
of P (denoted as p;) constitutes a feature vector of user u; and the
Jj-th row of Q (denoted as g;) constitutes a feature vector of item v;.

1A typical value of H is 32 [15-17].



The prediction of the rating of item v; by user u; is the dot product
of p; and g;:
H-1
Fij =pi - CIJ=ZPih'qjh (1)
h=0
Given a known rating r;, the prediction error is computed as err;; =
rij — Fij. The objective of the training process is to obtain such P
and Q that minimize the overall regularized squared error based
on all the known ratings:
B3,
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In the objective function, A is a constant used to introduce regular-
ization to prevent overfitting. To minimize the objective function,
SGD is used to update the feature vectors [1]. SGD randomly ini-
tializes all the feature vectors and then updates them by iteratively
traversing all the known ratings until the overall squared error
(ie., Zerrizj) converges. By taking a known rating r;;, p; and g; are
updated by a magnitude proportional to a constant « (learning rate)
in the opposite direction of the gradient, yielding the following
updating rules:

p?ew:ﬁ-pi+errij~a‘qj 3)
q; " =p-gj+errij-a-pi ©

In Eq. (3) and (4), f is a constant whose value is equal to (1 — al).
The algorithm requires to incrementally update the feature vectors
once per rating; therefore, the ratings of the same item or given
by the same user cannot be concurrently processed because they
will result in the updates for the same g; or p;. Additional details
of this algorithm can be found in [1, 4].

3.2 Challenges

There are three challenges in accelerating the SGD-based CF algo-
rithm using FPGA.

First, since the feature vectors of users and items are repeatedly
accessed and updated during the processing of ratings, it is desirable
to store them in the on-chip memory of FPGA. However, for large
training dataset that involves a large number of users and items, the
feature vectors cannot fit in the on-chip memory. In this scenario,
external memory such as DRAM is required to store them. However,
accessing feature vectors from external memory can incur long
access latency, which results in accelerator pipeline stalls and even
no speedup [19].

Second, data dependencies exist among ratings, making it chal-
lenging to efficiently exploit the massive parallelism of FPGA for
concurrent processing. More specifically, the ratings of the same
item or given by the same user cannot be processed concurrently.
This is because SGD requires to incrementally update feature vec-
tors once per rating; concurrent processing of such ratings can lead
to read-after-write data hazard. We define such data dependency
among ratings as feature vector dependency.

Third, FPGA accelerators usually employ parallel processing
units to increase processing throughput [8, 19, 20]. However, the
on-chip RAMs (e.g., block RAM and UltraRAM) of FPGA support
only dual-port accesses (one read port and/or one write port) [25-
27]. When multiple processing units need concurrent accesses to
the same RAM based on distinct memory addresses, these memory

accesses have to be serially served. This leads to additional latency
to resolve the access conflicts and thus performance deterioration.

In order to overcome these challenges, we use a bipartite graph
representation of CF (Section 4.1) and propose a 3-level hierarchical
partitioning approach (Section 4.2).

4 GRAPH REPRESENTATION AND
HIERARCHICAL PARTITIONING

4.1 Graph Representation

We transform SGD-based CF into a bipartite graph-processing prob-
lem so that graph theories can be leveraged to optimize the per-
formance. The input rating matrix is converted into a bipartite
graph G, whose vertices can be divided into two disjoint sets, U
(user vertices) and V (item vertices). Each known rating in R is
represented as an edge connecting a user vertex and an item vertex
in G. We store G in the coordinate (COO) format [22], which is a
commonly used graph representation [16—18, 22—24]. This format
stores the graph as an edge list E; each edge is represented as a
< uj,vj,rij > tuple, in which u; and v; refer to the user and item
vertices, and r;; corresponds to the rating value of v; given by u;.
Algorithm 1 illustrates the SGD-based CF using bipartite graph
representation. Each vertex maintains a feature vector of length H.
All the edges in E are iteratively processed to update the feature
vectors of vertices until the overall squared error converges. When
the training process terminates, the feature vectors of all the user
vertices and item vertices constitute the output feature matrices P
and Q, respectively.

Algorithm 1 SGD-based CF using graph representation

Let p; denote the feature vector of user vertex u; (0 < i < |UJ)
Let gj denote the feature vector of item vertex v; (0 < j < |V])
Let edge;; denote the edge connecting u; and v;
CF_Train (G(U, V, E))

1: for each user/item vertex do

2. Randomly initialize its feature vector

3: end for

4: while Overall_squared_error_converages = false do

5 Overall_squared_error= 0

¢:  for each edge;; € E do

7: Read feature vectors p; and g;

8 Compute 7;; based on Eq. (1)

9: Compute err;j based on r;; and 7;;

10: Update p; and g; based on Eq. (3) and (4)

11: Overall_squared_error+ = errizj

122 end for

13: end while

14: Return all the feature vectors of vertices

4.2 3-Level Hierarchical Partitioning

4.2.1  First-Level Partitioning: On-chip Buffering and Commu-
nication Hiding. In order to address the first challenge described
in Section 3.2, we partition G into induced subgraphs to achieve
two goals: (1) the feature vectors of the vertices in each induced
subgraph can fit in the on-chip buffer; (2) the computation for



processing each induced subgraph can completely hide the com-
munication cost.

Let L (N) denote the on-chip buffer capacity in terms of the
number of feature vectors for user (item) vertices. We partition U

into [ disjoint vertex subsets {Up, . . ., Uj_1 }, each of size at most
L, where [ = {%] Similarly, V is partitioned into {Vp, ..., Vh-1},

each of size at most N, where n = {%] We will introduce the

details to partition U and V in Algorithm 3. Let Exy denote an
subset of E that consists of all the edges connecting the vertices
belonging to Uy and V;; in G (0 < x < 1,0 < y < n). Then Uy, Vy,
and Ey form an Induced Subgraph (I5) of G [28]. Since each user
(item) vertex subset has no more than L (N) vertices, the feature
vectors of all the vertices in each IS can fit in the on-chip buffer.
Because there are [ user vertex subsets and n item vertex subsets,
the total number of induced subgraphs after the partitioning is
I X n. Then, in each iteration of the training process, all the induced
subgraphs are sequentially processed by FASTCF based on Algo-
rithm 2. Note that during the processing of the edges in Ex, all the
feature vectors of the vertices in Uy and V;, have been prefetched
into the on-chip buffer; therefore, the processing units of FASTCF
can directly access the feature vectors from the on-chip buffer.

Algorithm 2 Scheduling of induced subgraph processing

1: while Overall_squared_error_converages = false do

22 forxfrom0tol—1do

3 Load feature vectors of Uy into on-chip buffer

4 for y from0ton—1do

5: Load feature vectors of Vy, into on-chip buffer

6 Process all the edges € Exy

7 Write feature vectors of Vy, into external memory
8 end for

9 Write feature vectors of Uy into external memory
10.  end for

11: end while

Using double buffering [8, 29], we can pipeline the processing of
induced subgraphs while overlapping communication and computa-
tion of each IS with its predecessor/successor. Let P(IS;) denote the
computation time to process all the edges of an induced subgraph
IS;; let T, denote the intra-subgraph communication time (i.e., the
total time for data transfers occurring during the processing of IS;).
As shown in Figure 1, we can pipeline the processing of induced
subgraphs by overlapping the computation time P(IS;) of IS, with
the writing of feature vectors from IS,_1 and the reading of feature
vectors from IS, 1. Therefore, T, = TZ‘“i rl + Tz’fl. Here, T in general
may include reads or writes of both user and item feature vectors.
We can easily derive the sufficient condition for complete overlap
of communication and computation: P(IS;) > T, Vz € [0,] X n).

A vertex-index-based partitioning approach [30] has been widely
used to perform graph partitioning for hardware accelerators [17,
20, 21]. This approach simply assigns a group of vertices with con-
tiguous indices to each vertex subset. Although this approach is fast,
it can lead to significant data imbalance such that some subgraphs
may have very few edges; in this scenario, the communication
cost cannot be completely hidden by the computation. Therefore,
a desirable partitioning approach should balance the number of
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Figure 1: Pipelined induced subgraph processing

edges among the induced subgraphs. Many sophisticated graph
partitioning approaches have been developed to achieve balanced
partitioning and simultaneously minimize some other metrics [31].
For example, vertex-cut algorithm [31] balances the number of
edges among subgraphs and meanwhile minimizes the number of
vertex replicas in distributed computing environment. However,
these sophisticated approaches usually introduce significant pre-
processing overhead. Our intuition is that it is not necessary to
invest significantly in developing complex partitioning algorithms
(in terms of preprocessing time), rather any reasonably fast algo-
rithm is acceptable as long as the derived sufficient condition is
satisfied.

We propose a simple and fast heuristic partitioning approach.
Our empirical results show that this approach leads to the balanced
partitioning such that each IS has sufficient edges for the compu-
tation to completely hide the communication cost. We define the
subset degree of a vertex subset as the total number of edges that
connect to the vertices in the subset. When we partition U and V
into vertex subsets, we attempt to pack vertices into each disjoint
vertex subset such that the subset degrees are close to each other.
However, the most important criteria is to ensure that subset sizes
are bound by L and N as defined earlier. Algorithm 3 illustrates our
approach to partition U into Uy, - - - , Uj_q; V is partitioned based
on the same methodology. We first identify the vertex degree of
each vertex (i.e., the number of edges connected to the vertex) and
sort all the vertices based on the vertex degree in non-increasing
order. Then we greedily assign each vertex into the vertex subset
which has not been full and has the minimum subset degree, until
all the vertices are assigned, subject to the subset size condition.

When each vertex is assigned to a vertex subset, we assign a new
vertex index to it (Algorithm 3, Line 18), which indicates the vertex
subset that it belongs to and its index in the vertex subset. After
U and V are partitioned, we reorder the vertices based on the new
indices such that the feature vectors of the vertices belonging to
the same vertex subset are stored contiguously in external memory.
Since user and item vertices are reordered, we also re-index the user
and item indices of each edge and partition the edges into induced
subgraphs based on the new indices.

4.2.2  Second-Level Partitioning: Data Dependency Reduction.
The second-level partitioning addresses the second challenge de-
scribed in Section 3.2. Note that the edges having the same user
vertex or item vertex cannot be concurrently processed due to the
feature vector dependencies. We partition the edges in each IS into
set of matchings, such that each matching consists of a set of



Algorithm 3 Partition U into [ subsets Uy, - - - ,Uj_;

Let uj.gegree be the number of edges connected to u; (0 < i < [U])
Let Uy.size be the number of vertices in Uy (0 < x < [)
Let Ux.gegree be the subset degree of Ux (X Ui-gegrees Ytti € Ux)
Partition (U, L, [)

1: for x fromOto!l—1do

2: Uy = %]

3 Ux.degree =0

4 Ux.size =0

s: end for

6: Sort U based on vertex degree in descending order

7. for each u; € U do

8:  subset id = -1

9:  min_degree = |E|

10: forxfrom0Otol—1do

11: if min_degree > Ux-degree and Uy .5jze < L then
12: subset_id = x

13: min_degree = Ux.gegree

14: end if

15:  end for

16 Usypser_id = Usubset_id Y Ui

17: Usubsetiid-degree = Usubset_id-degree T Ui-degree
18: Ui-new user_id = subset_id X L + Usubsetﬁid‘size

19 Usybser id-size = Usubser_id-size +1
20: end for
21: Return Uy, -+ ,Uj_4

vertex-disjoint edges. As a result, the edges in the same matching
do not have any feature vector dependencies and can be processed
in parallel.

We perform the second-level partitioning by using edge-coloring
[28], which colors all the edges of a bipartite graph such that any
two adjacent edges do not have the same color. After all the edges
are colored, the edges having the same color form a matching.
However, the classic edge-coloring algorithm in [28] can result
in small matchings, in which there are very few edges (e.g., only
1 edge). When processing such small matchings, the parallelism
provided by the hardware accelerator (i.e., parallel processing units)
is not fully utilized. We modify the edge-coloring algorithm by
keeping track of the number of edges in each matching during
the partitioning; when an edge can be partitioned into multiple
matchings, we select the matching having the minimum number of
edges.

4.2.3 Third-Level Partitioning: Bank Conflict Reduction. The ar-
chitecture of the accelerator has M parallel processing units sharing
an on-chip buffer, which is organized in 2M* (M* > M) banks with
separate banks for users and items (see Section 5.3); therefore, a
batch of M edges from a matching can be concurrently processed
at a time. However, due to the dual-port nature of on-chip RAM
[25-27], each bank can support only 1 read and 1 write request per
clock cycle. If there is a bank conflict between two or more accesses
within a batch, the memory requests to process the edges have to be
serially served. Thus the latency for resolving the bank conflict(s)
within a batch is equal to the maximum number of accesses to
the same bank within the batch. We develop the following greedy

heuristic for reducing the bank conflicts. We sort all the edges in
a matching in non-increasing order of their bank conflict index
(BCTI). The BCI of an edge is defined as the number of other edges in
the matching that have bank conflict with this edge. We partition
each matching into batches of size M by sequentially traversing the
sorted edges. We greedily assign an edge to the first batch where
its addition does not increase the current latency to resolve the bank
conflicts of the batch. Note that this is different from assigning the
edge to the batch where it has the minimum bank conflict.

5 ACCELERATOR DESIGN

5.1 Overall Architecture

The overall architecture of FASTCF is depicted in Figure 2. As
shown, two DRAM chips, DRAM, and DRAMj, are connected to
FPGA as the external memory. DRAMj stores all the edges and
DRAM; stores the feature vectors of all the vertices, respectively.
When processing an IS, the feature vectors of all the vertices belong-
ing to the IS are read from DRAM; and stored in the Feature Vector
Buffer (FVB), which is organized as banks of UltraRAM. FPGA
fetches edges from DRAM and stores them into a first-in-first-out
Edge Queue (EQ). Whenever the EQ is not full, FPGA pre-fetches
edges from DRAMj. A batch of edges are fed into the Bank Con-
flict Resolver (BCR) at a time and output in one or multiple clock
cycles, such that the edges output in the same clock cycle do not
have bank conflict accesses to the FVB. Then, each edge is checked
by the Hazard Detection Unit (HDU) to determine whether it is
data-hazard free to be processed. If an edge has no feature vector
dependency with any edge being processed in the Processing En-
gine (PE), it is sent into the PE; otherwise, pipeline stalls occur until
the dependency is resolved. The PE consists of multiple processing
units that process distinct edges in parallel. These processing units
access the feature vectors of vertices from the FVB.

DRAM, DRAM;,
External User Item
Edges Memory Feature Feature
Vectors Vectors
t x
¥ 3
Memory Controller

l

Edge Feature Vector Buffer
Quene FPGA T 3
3 ¥
l =T} o1o]
S £ 7
Bank Hazard = g 3
Conflict ¥ Detection 8 2| Processing | & 5
Resolver Unit = Engine [=

T I

Figure 2: Overall architecture



5.2 Processing Engine

The processing engine (PE) consists of M parallel processing units
that concurrently process distinct edges. We show the architecture
of each processing unit in Figure 3. Each input edge is processed as
follows: based on the user and item vertex indices, the processing
unit reads the feature vectors, p; and q;, from the FVB; then, the
prediction #;; is computed based on p; and gj; meanwhile, p; and
g;j are multiplied with the constants (i.e., « and f) to obtain ap;,
aqj, Bpi, and fq;; once the prediction error errj is obtained, pl***
and q"eW are computed based on Eq. (3) and (4); finally, p'®* and

q]”ew are written into the FVB.

Feature Vector Buffer (FVB)

new P _new

qj| | pi pi q;j
_’ A
i 2
pira; R’ @ Ze”
err;
rij _ Y
N/

Figure 3: Architecture of processing unit

The dot product of p; and gq; is computed in a binary-reduction-
tree fashion [32], requiring H multipliers and (H — 1) adders in
total. Hence, each processing unit contains 7H multipliers, (3H — 1)
adders, 1 subtractor, 1 squarer, and 1 accumulator, sustaining a
peak throughput of (10H + 2) floating point operations per clock
cycle. The processing unit is fully pipelined so that one edge can be
processed per clock cycle. We use three pipeline stages to compute
each floating point operation. Hence, the pipeline depth of the
processing unit is 3(log H + 4).

5.3 Feature Vector Buffer

Since the M processing units need concurrently access the Feature
Vector Buffer (FVB) to read and write distinct feature vectors, there
can be up to 2M read requests® and 2M write requests in each clock
cycle. However, native on-chip RAMs of FPGA provide only two
ports for reading and/or writing [25-27]. There are three major ap-
proaches to build multiport memory using dual-port on-chip RAMs,
including multi-pumping [33], replication [25], and banking [34].
Multi-pumping gains ports by running the processing units with
Mx lower frequency than the multiport memory. However, this
can significantly deteriorate the clock rate of the processing units
for a large M (e.g., M=8) [25, 26]. Replication-based approaches,

2 M for user feature vectors and M for item feature vectors

such as Live Value Table (LVT) and XOR [25], create replicas of all
the stored data to provide additional ports and keep track of which
replica has the most recently updated value for each data element
[26]. However, the size of the RAM needed in implementing this
grows quadratically with the number of ports, such that M x M
replicas are required to support M read ports and M write ports.
Additionally, the clock rate can degrade below 100 MHz when the
width and depth of the memory are large (e.g., 1Kbit x 16K) [26].

In order to support large buffer capacity and sustain high clock
rate, FASTCF adopts the banking approach [34] to build the FVB.
This approach divides the memory into equal sized banks and
interleaves these banks to provide higher access bandwidth (i.e.,
more read and write ports). As illustrated in Figure 4, the banked
FVB contains two parts of equal size, one for storing user feature
vectors and the other for storing item feature vectors. Each part
is divided into M* banks (M* > M) and each bank is a dual-port
UltraRAM [27]. Therefore, the FVB provides up to 2M* read ports
and 2M* write ports. Feature vectors of vertices are stored into
the FVB in a modular fashion based on the vertex indices, such
that p; is stored in the (i%M™)-th user bank and g; is stored in the
(j%M™*)-th item bank. Hence, the feature vector of any user (item)
can be accessed from the FVB based on the user (item) vertex index
without complex index-to-address translation.

Feature Vector Buffer
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—I Po | Pm*

User Bank,

—| P1 |PM*+1|
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Figure 4: Banked FVB

However, the banked FVB cannot handle concurrent accesses to
the same bank for distinct feature vectors. Such memory accesses
are defined as bank conflict accesses. To address this issue, we
develop a Bank Conflict Resolver (BCR) to avoid any bank conflict
accesses. The BCR fetches a batch of M edges at a time and outputs
them to the Hazard Detection Unit (HDU). The BCR ensures that all
the edges output in the same clock cycle have the feature vectors of
their vertices stored in distinct banks of the FVB. However, this can
lead to additional clock cycles to resolve the bank conflicts within a



batch; in the worst case, when all the edges in a batch have conflict
with each other, the BCR takes M clock cycles to output all the
edges in the batch.

5.4 Hazard Detection Unit

When the edges from the Bank Conflict Resolver and the edges
being processed in the PE belong to different matchings, read-after-
write data hazards due to feature vector dependencies may occur.
The Hazard Detection Unit (HDU) is constructed by BRAMs and re-
sponsible for detecting feature vector dependencies and preventing
read-after-write data hazards. We design the HDU using a fine-
grained locking mechanism. For each vertex, we assign a 1-bit flag.
A flag with value 1 means the feature vector of the corresponding
vertex is being computed by the PE, and thus cannot be accessed.
For each input edge, the HDU checks the flags of its user and item
vertices; if both the flags are 0, the edge is fed into the PE and
the flags are set to 1; otherwise, the pipeline stalls until both the
flags become 0. When the PE writes any updated feature vector
into the FVB, it also sends signals to the HDU to set the flag of the
corresponding vertex back to 0. Therefore, deadlock will not occur.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup

Our FPGA designs are implemented on a state-of-the-art Virtex
UltraScale+ xcvu9pflgb2104 FPGA [37]. The target FPGA device
has 1,182,240 slice LUTs, 2,364,480 slice registers, 6,840 DSPs, and
up to 43.3 MB of on-chip RAM. The FPGA uses two DDR4 chips
as the external memory. Each DRAM has 16 GB capacity and a
peak bandwidth of 19.2 GB/s. The host CPU is an 8-core Intel Xeon
E5-2686 processor. Each core of the host CPU runs at 2.3 GHz and
has a 32 KB L1 cache and a 256 KB L2 cache. All the cores share a 45
MB L3 cache. The host CPU and the FPGA are connected through
PCle 3.0x16 bus.

We use large real-life datasets (Table 1) to evaluate our designs.
These datasets have been widely used in related works [12, 16, 22,
35]. In our experiments, the length of each feature vector is 32
(i.e., H = 32) with each element represented using IEEE 754 single
precision format. We adopt a standard learning rate @ = 0.0001
and regularization parameter A = 0.02 [4]. We use execution time
and throughput (sustained floating point operations per second
(GFLOPS)) as our performance metrics.

Table 1: Large real-life datasets used for experiments

#users | #items | # ratings L
Dataset Description
U] 4 |E|
Libimseti [23] | 135K 168 K 17,359 K | Dating ratings
Netflix [4] 480 K 17K 100,480 K | Movie ratings
Yahoo [24] 1,200 K 136 K | 460,380 K | Music ratings

6.2 Resource Utilization, Clock Rate, and
Power Consumption

Table 2 shows the resource utilization, clock rate, and power con-
sumption of FASTCF for M = 8 (i.e., the number of processing units

= 8). The reported results are post-place-and-route results evaluated
by Xilinx Vivado Design Suite 2017.2. For M = 8, FASTCF uses up to
58.9% slice LUTs and 63.0% DSPs in the FPGA device. Therefore, we
could not increase M further to 16 due to the resource limitations.
The feature vector buffer (FVB) is organized in 32 banks and the
capacity of the FVB is empirically set to 64K feature vectors (32K
for user vertices and 32K for item vertices). We did not increase the
capacity of the FVB to 128K because we observed that the clock
rate degraded to 85 MHz when 75% UltraRAMs of the FPGA device
were used.

Table 2: Resource utilization, clock rate, and power con-
sumption of FASTCF

. . On-chip RAM (%)
Slice LUT (%) Register (%) | DSP (%)
Block RAM | UltraRAM
58.9 271 63.0 1.2 37.5
Clock rate (MHz) Power (Watt)
150 13.8

6.3 Pre-processing Time and Training Time

Table 3 and Table 4 report the pre-processing time and training
time, respectively. The pre-processing is performed by the host CPU
based on our proposed 3-level partitioning approach; the training
is performed by FASTCF. Note that the pre-processing is performed
only once, while the training is an iterative process; thus, the pre-
processing time can be amortized and is negligible compared with
the total training time. In Table 4, we also report the total training
time and the average execution time for each iteration.

Table 3: Pre-processing time

Dataset ‘ 1st-level ‘ 2nd-level | 3rd-level ‘ Total ‘

Libimseti | 0.4 sec 4.4 sec 2.7 sec 7.5 sec
Netflix 1.0 sec 10.7 sec 7.0 sec 18.7 sec
Yahoo 5.5 sec 42.3 sec 23.0 sec | 70.8 sec

Table 4: Training time
Dataset Total train- | # iterations | Avg. Texec
ing time to converge | per iteration
Libimseti 360.8 sec 11,568 0.03 sec
Netflix 876.4 sec 5,766 0.15 sec
Yahoo 2536.5 sec 3714 0.68 sec

6.4 Performance vs. Parallelism

To explore the impact of parallelism on the performance, we vary
the number of processing units (M) from 1 to 8. Figure 5 shows
the throughput performance for various M. We observe that the
throughput performance significantly improves as M increases for
all the three datasets. For M = 8, FASTCF sustains 165 GFLOPS
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Figure 5: Throughput performance for various M

for Libimseti, 213 GFLOPS for Netflix, and 217 GFLOPS for Yahoo,
respectively. However, we also observe that the number of pipeline
stalls due to feature vector dependencies increases as M increases.
This is because when a matching is to be processed, there can be up
to M x D edges of other matching(s) remaining in the M processing
units, where D is the pipeline depth of each processing unit. Thus,
a larger M increases the chances of feature vector dependencies. It
can also be observed that the throughput performance of Libimseti
is worse than Netflix and Yahoo for M = 4 and 8. This is because the
Libimseti dataset is much sparser than the other two datasets, thus
resulting in more small matchings that cannot fill up the processing
units. Since the edges belonging to different matchings can have
common vertices, when multiple small matchings are consecutively
processed, the pipeline stalls due to feature vector dependencies
are more likely to occur.

6.5 Impact of the Optimizations

To show the effectiveness of our proposed 3-level hierarchical par-
titioning approach, we compare our optimized design with non-
optimized FPGA-based baseline designs. All the comparisons are
based on M = 8.

6.5.1 Bank Conflict Reduction. We first explore the effective-
ness of the third-level partitioning in reducing the number of bank
conflicts. Here, the baseline design used for the comparison only
performs the first-level and second-level partitionings during the
pre-processing. Table 5 summarizes the results of the comparison.
We observe that our optimized design reduces the number of bank
conflicts by 2.4X to 4.2x and thus results in 1.3X to 1.5X speedup.

Table 5: Bank conflict reduction

# clocks to resolve bank Red Texec per
educ-
Dataset | conflicts per iteration i iteration (sec) | Speedup
ion
Opt. Base. Opt. I Base.

Libim. 1,165 K 2,798 K 2.4X 0.03 0.04 1.3x

Netflix 3,960 K 16,686 K 4.2X 0.15 0.23 1.5%X

Yahoo 19,393 K 75,524 K 3.9x 0.68 1.03 1.5x

6.5.2 Data Dependency Reduction. We further explore the im-
pact of the second-level partitioning to reduce the number of pipeline
stalls due to feature vector dependencies. The baseline design used
for the comparison performs the first-level and third-level partition-
ings only. Table 6 summarizes the effectiveness of this optimization.
We observe that the optimization dramatically reduces the number
of pipeline stalls due to feature vector dependencies by 28.7x to
60.1X%; as a result, the execution time per iteration is reduced by
13.3X to 15.4X.

Table 6: Pipeline stall reduction

# stalls due to de- Texec per
Reduc-
Dataset | pendencies per iteration p iteration (sec) | Speedup
ion
Opt. Base. Opt. I Base.

Libim. 2,005 K 57,524 K 28.7X 0.03 0.40 13.3X

Netflix 6,151 K 314,884 K 51.2x 0.15 2.19 14.6X

Yahoo 24,954 K 1,500,295 K 60.1X 0.68 10.45 15.4X

6.5.3 Communication Cost Reduction. Lastly, we study the im-
pact of the first-level partitioning to reduce the communication cost.
We define communication cost as the data transfer time between
the FPGA and the external memory. Here, the baseline design also
performs all the three levels of partitionings, but the first-level
partitioning is based on the simple vertex-index-based partitioning
approach [30] (described in Section 4.2.1) rather than our proposed
approach (Algorithm 3). Table 7 summarizes the results of the com-
parison. For all the three datasets, the optimized design is able to
completely hide the communication cost; while the baseline design
cannot completely hide the communication cost for Libimseti and
Yahoo datasets. This is because the vertex-index-based partitioning
approach performs unbalanced graph partitioning and thus results
in small induced subgraphs, which do not have sufficient edges to
completely hide the communication cost.

Table 7: Communication cost reduction

Unhidden communication Texec per
Dataset cost per iteration (sec) iteration (sec) | Speedup
Opt. | Base. Opt. | Base.
Libimseti 0 0.005 0.031 0.036 1.16X
Netflix 0 0 0.15 0.15 1.00x
Yahoo 0 0.04 0.68 0.72 1.06X

6.6 Comparison with State-of-the-art

We compare the performance of FASTCF with a state-of-the-art
multi-core implementation [35] and a state-of-the-art GPU imple-
mentation [22]. Native [35] implements SGD-based CF on a 24-core
Intel E5-2697 processor. It has shown the fastest training speed
among the existing multi-core implementations [15, 36]. In [22],
SGD-based CF algorithm is implemented on a 2880-core Tesla K40C
GPU. The GPU design develops several scheduling schemes for
parallel thread execution on the GPU. However, the lock-free static



scheduling schemes are not able to efficiently exploit the thousands
of cores on the GPU, and the dynamic scheduling schemes require
memory locks to handle feature vector dependencies and thus have
significant synchronization overhead. As a result, the achieved
speedup by the GPU acceleration is quite limited.

Table 8 compares the performance of FASTCF with [22, 35] for
training the same dataset (Netflix). Our design achieves 13.3x and
12.7% speedup compared with [35] and [22], respectively. Note that
the feature vector length (H) used in FASTCF is larger than [22, 35].
Therefore, from throughput perspective, FASTCF achieves 21.3x
and 25.4X improvement compared with [35] and [22], respectively.
Moreover, the power consumption of FASTCF (13.8 W) is far less
than the multi-core (130 W) and GPU (235 W) platforms.

Table 8: Comparison with state-of-the-art multicore and
GPU implementations based on Netflix dataset

Approach Platform H ’Ijexec 'per Speedup
iteration
[35] 24-core Intel E5-2697 | 20 2.00 sec 1.0x
[22] 2880-core Tesla K40C | 16 | 1.90 sec 1.1x
FASTCF Virtex UltraScale+ | 32 | 0.15 sec 13.3%

7 RELATED WORK

7.1 Graph-processing Frameworks

There are several graph-processing frameworks that support CF.
Representative examples include GraphMat [16], Graphicionado
[17], and GraphLab [15]. However, most of these frameworks imple-
ment Gradient-Descend-based CF [15-17] because it can be easily
expressed as a vertex-centric program. GD-based CF accumulates
the intermediate updates for each feature vector and performs the
update after all the ratings have been traversed in an iteration.
Therefore, it updates each feature vector only once per iteration
and thus requires more iterations to converge and more training
time than SGD-based CF (e.g., 40X more iterations to train Netflix
[35]). Native [35] implements SGD-based CF on multi-core plat-
form. It pre-processes the input training matrix by partitioning
it into submatrices, and concurrently processes the submatrices
that do not have feature vector dependencies using distinct CPU
cores. However, the design only exploits submatrix-level parallelism
(i.e, each submatrix is serially processed by a CPU core) and the
submatrices can vary significantly in size. This can result in load
imbalance among the CPU cores and thus increase the synchro-
nization overhead.

7.2 GPU-based CF Accelerators

GPUs are widely used to accelerate machine learning applications
[38]. GPU-based accelerators for memory-based CF [39] and ALS-
based CF [13] have been developed. However, it has been shown that
GPUs are not suitable for accelerating SGD-based CF [22, 38, 40].
The main reasons include (1) the fine-grained synchronization of
updated feature vectors is expensive on GPU platforms [38], and
(2) the SIMD execution of GPU further inflates the cost of thread
divergence when synchronization conflicts occur [22]. Siede et. al

[40] investigate the theoretical efficiency of SGD on GPUs, and
conclude that fundamental changes in the algorithm are necessary
to attain significant speedup. In [22], SGD-based CF is implemented
on a Tesla K40C GPU. The design develops and compares several
scheduling schemes for parallel execution of SGD on GPU, includ-
ing dynamic scheduling schemes using locks and lock-free static
scheduling schemes. However, none of the schemes is able to ef-
ficiently exploit the GPU acceleration and the achieved speedup
compared with a CPU implementation is small (< 1.1X).

7.3 FPGA-based CF Accelerators

There have not yet been many efforts to exploit FPGA to accelerate
CF. In [6], an FPGA-based accelerator for memory-based CF algo-
rithms is proposed. The design accelerates three memory-based CF
algorithms and achieves up to 16x speedup compared with multi-
core implementations. However, the training dataset of the design
is very small (4K users, 1K items, and 1M ratings), which can fit in
the on-chip memory of state-of-the-art FPGAs. To the best of our
knowledge, FASTCEF is the first design to exploit FPGA to accelerate
model-based CF algorithm for large training datasets.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented FASTCF, an FPGA-based accelerator
for SGD-based CF. FASTCF consisted of parallel processing units
sharing an on-chip feature vector buffer. To optimize the perfor-
mance of FASTCF, we proposed a novel 3-level hierarchical par-
titioning approach by using a bipartite graph representation of
CF. Our focus was to obtain simple and fast heuristics based on
identifying sufficient conditions for significant acceleration of the
SGD-based CF algorithm on FPGA. By holistically considering the
architectural characteristics of the FPGA platform, the proposed
partitioning approach resulted in a complete overlap of communi-
cation and computation, up to 60X data dependency reduction, and
4.2% bank conflict reduction. As a result, our accelerator sustained
a high throughput of up to 217 GFLOPS for training large real-life
datasets. Compared with the state-of-the-art multi-core implemen-
tation and GPU implementation, FASTCF demonstrated 13.3Xx and
12.7x speedup, respectively.

In the future, we will explore multi-FPGA architectures, in which
each FPGA device employs FASTCEF, to further reduce the train-
ing time. We also plan to generalize our partitioning approach to
support other SGD-based algorithms.
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