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We present an approach for evaluating the concentration of vacancy defects in crystalline ma-
terials by molecular simulation. The proposed method circumvents the problem of equilibration
of the number of “lattice sites” M , which characterizes the tradeoff between more, smaller lattice
cells (with some vacant), versus fewer, larger cells. Working in a grand-canonical framework, we
instead fix M and solve for the chemical potential µ that ensures thermodynamic consistency of
the ensemble-averaged pressure and the grand potential. Having determined µ this way for the
given M , the equilibrium vacancy concentration and free energy are easily determined. Methods
are demonstrated for the classical Lennard-Jones fcc crystal, examining all states where the crystal
is stable. We find for this system that the effect of equilibrating M is negligible at all conditions.
Also, although the vacancy fraction varies by many orders of magnitude with temperature and den-
sity, we find that the value at melting is nearly independent of density, equal to about 2 × 10−4.
Results further show that a lattice-energy approximation (ignoring entropic effects) underestimates
the correct concentration by four orders of magnitude at almost all conditions; ignoring only an-
harmonic contributions underestimates the vacancy concentration at melting by nearly one order of
magnitude.

I. INTRODUCTION

Point defects are known to occur naturally in crys-
talline materials and have a disproportionate impact on
their properties and performance. Point defects are ther-
modynamically stable, so they are present in fully equi-
librated crystals. Both experimental and computational
studies have been conducted in order to estimate their
behavior [1]. A difficulty facing experimental studies is
the presence of a wide variety of point defects along with
extended defects such as dislocations and grain bound-
aries, which makes it difficult to separate the effects of
these different defects and their interactions [2, 3]. Con-
sequently some uncertainty in the interpretation of the
experimental results remains and hence, computational
studies are required.
Two issues complicate the study of point defects via

molecular modeling. First, the formalism for treat-
ment of point defects, and vacancies in particular, is
clouded by a subtlety in accounting for how free volume is
distributed—in particular whether it should be allocated
to occupied sites to give each particle more freedom to
move, or whether it should be used to make more va-
cancies [4, 5]. Second, as an equilibrium property, defect
behavior is understood through reference to the free en-
ergy (FE), and free energies in general are problematic
to evaluate by molecular simulation [6–8].
The first issue is illustrated in Fig. 1. Each large box

in the figure describes the nominal arrangement of the
atoms during the simulation of a crystal. The filled cells
in the boxes describe the regions sampled by each of the
individual atoms, one atom per filled cell. The atoms
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are not constrained to sample the cells; rather the impli-
cation is that this is where they sample naturally when
equilibrated. In this simple example the atoms arrange
themselves on a cubic lattice. The case on the left of the
figure has no defects, and the number of cells (or lattice
sites) M equals the number of atoms N (400 in the ex-
ample). In the arrangement on the right, the system has
more but slightly smaller cells, M = 441, but the same
N , so the excess lattice sites represent vacancy defects
(depicted by the non-filled cells).

The complication is that the canonical ensemble com-
prises both of these arrangements (and many more), and
to properly sample the ensemble it must be possible to
consider all such cases. However, a conventional NV T
simulation (where V is the volume, and T the tempera-
ture) of a feasible sampling length is not able to make the
concerted moves needed to reach one arrangement from
the other — the simulation is non-ergodic in this respect.
Even worse, a finite-size system may not be able to ac-
commodate the values of M that are representative of
the equilibrated system. This is illustrated with the red
boxes, which represent simulations of smaller systems.
We see that the zero-defect arrangement can be accom-
modated in this smaller volume, but the system having
the cells on the right cannot.

One manifestation of this problem is that the usual
grand-canonical FE does not vary in proportion to the
volume, which means, for example, that a plot of pres-
sure P versus chemical potential µ at fixed T (and M)
will not be independent of V , as it would be for a fluid
(see Appendix A for an example). In a sense, M repre-
sents another extensive parameter that is in play. Ac-
cordingly, the issue is sometimes treated or described as
if the lattice sites were real physical quantities, akin to
molecules, with an effective chemical potential [4]. This is
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FIG. 1: Illustration of the problem. Both systems have the
same number of atoms N (represented by filled cells) and
total area, but different numbers of lattice sites M (left is
20× 20, right is 21× 21).

a valid description, but one should be careful not to take
the interpretation too far. The lattice sites are not phys-
ically real in the sense that they are not conserved, and
there is no direct reason for them to equilibrate across two
phases, for example. Instead, one could view M as an or-
der parameter, characterizing partitions of phase space.
To the extent that the system is able to equilibrate across
these regions, M represents an unconstrained degree of
freedom, and it will take a value that minimises the FE
within the constraints of the governing ensemble.
Both Swope-Andersen [4] and Pronk-Frenkel [5] give

a prescription for determining the equilibrium M value
(Meq) in order to evaluate the crystalline properties
and vacancy concentration correctly, although neither
demonstrate in an application. Reference [4] prescribes
a method that is essentially equivalent to searching over
V/M and N/M to find conditions such that the thermo-
dynamic Euler equation is satisfied. Reference [5] works
within the grand-canonical ensemble, and describes a
method for Meq based on expanding the FE in terms
of M , requiring measurement of the compressibility.
We have formulated an alternative to these approaches,
which appears to be much simpler to implement. This is
described in Sec. II.
Turning now the problem of evaluating the relevant

FE, a large portion of the computational studies consid-
ers only the zero-temperature defect energies [9]. These
are computed by molecular statics or energy minimiza-
tion techniques. However, the behavior predicted using
zero-Kelvin lattice energies might not be valid at higher
temperatures, as the harmonic and anharmonic contri-
butions are neglected. Another approach widely used is
to employ the defect formation energies (not free ener-
gies) at non-zero temperatures calculated by ensemble
averaging using molecular simulation techniques [10, 11].
However, at higher temperatures, the entropic contribu-
tions become significant, which are completely neglected
via this approach.
Harmonic methods (quasiharmonic and local har-

monic) have been used for computing the FE for the for-
mation of defects [12–14] while accounting for entropic

contributions. These methods are based upon the as-
sumption that atoms vibrate within quadratic potential
wells and thus, the full Hamiltonian can be replaced by
a harmonic expansion about the equilibrium positions
[15, 16]. However, the harmonic methods are known to
break down at temperatures above roughly half of the
melting point in case of solids containing point defects
[17], and in such circumstances, techniques that can also
include the anharmonic contributions are needed. One
such technique is thermodynamic integration (TI), which
is widely used to calculate the FE for the formation of
defects [18–20]. However, the limitation of this method
is that in order to obtain adequate statistical accuracy
for the determination of excess thermodynamic proper-
ties at a defect, a large number of molecular simulation
steps are required, thereby demanding substantial com-
putational resources. This is a particularly acute prob-
lem when employing ab initio potentials, such as den-
sity functional theory (DFT) to model the interatomic
interactions. Some earlier works have also reported the
problem of large error bars while calculating the vacancy
formation FE using the TI method [13, 17]. Thus, there
is a clear need for FE methods that can improve the ac-
curacy for crystalline systems with defects.

In this regard, we recently proposed the harmonically
mapped averaging (HMA) method for evaluation of crys-
talline properties via molecular simulation [21]. In this
method, the analytically known harmonic behavior of the
crystal is removed from the traditional ensemble aver-
ages, which leads to an accurate and precise measurement
of the anharmonic contributions without contamination
by noise produced by the already-known harmonic behav-
ior. Thus, the HMA method improves precision in the
anharmonic contributions to the extent that harmonic
behavior contributes to the noise in molecular simulation.
In case of defect-free crystals, it has proved to be much
more efficient than the conventionally used TI method
[21]. In this paper, we examine the efficiency and range
of validity of the HMA method for calculating the free
energies of point defects in crystals.

An alternative to TI for evaluation of vacancy FE in-
volves particle insertions and deletions. With appropri-
ate biasing methods, such an approach can be very effec-
tive, particularly for simple monatomic molecules. We
examine such methods in the present work as well.

The outline of this paper is as follows. In the next
section, we describe the new formalism for calculating
the properties of vacancy defects at finite temperature.
Sec. III describes the FE methods we use in this study,
while Sec. IV presents the simulation details. Sec. V
presents the results obtained using the three FE meth-
ods in our formalism, and the last section provides a sum-
mary as well as the conclusions.



3

II. FORMALISM

A. Grand-canonical ensemble

The grand-canonical partition function Ξ can be writ-
ten as a sum over the number of vacancies n:

Ξ(T, V, λ;M) = e−βL =

nmax
∑

n=0

λM−ne−βAn (1)

where L is the grand-canonical potential, defined in terms
of the activity λ ≡ exp(βµ) with µ the chemical potential,
and An ≡ A(T, V,M − n;M) is the Helmholtz FE of
the system with n vacancies; also β = 1/kBT with kB
Boltzmann’s constant, and nmax is some practical upper
limit to the number of vacancies, typically set such that
contributions from n > nmax are negligible. Equation (1)
assumes that interstitials (n < 0) are not relevant to
behavior. Alternatively,

e−βL = λMe−βA0

nmax
∑

n=0

λ−ne−β∆An (2)

where ∆An ≡ An −A0.
We can also write the probability of having n vacancies,

pn = e+βLλM−ne−βAn

=
λ−ne−β∆An

∑nmax

n=0 λ−ne−β∆An

. (3)

The pressure in the grand-canonical ensemble uses this
weighting in an average over the number of possible va-
cancies:

P̄ (T, V, λ;M) =

nmax
∑

n=0

Pnpn, (4)

where Pn is the pressure for the system with n vacancies.
The Euler equation for this ensemble is simply

L = −P̄ V. (5)

Given values for A0 and ∆An for relevant n (typically
n = 1 is enough), we handle the determination of Meq

by satisfying (5). However, we do not attempt to solve
for Meq for given V and λ, rather we perform the much
easier task of solving for λ satisfying (5) for the given V
and M . For this value of λ, the M for which we collected
our data will be Meq. Having determined λ this way, we
can evaluate the equilibrium fraction of vacancies, φ, via:

φ ≡
n̄

M
=

M − N̄

M
=

1

M

nmax
∑

n=0

npn (6)

It is worth noting that the framework described above
does not allow for variation of M in the sum over vacan-
cies that defines Ξ. The true grand partition function
includes fluctuations in M , but we show in Appendix B
that this effect contributes O(lnM) to the (extensive)
FE L, and hence it may be treated as a finite-size effect.

B. Intensive properties and thermodynamic
derivatives

The discussion above has emphasised that in a physi-
cally correct treatment of lattice systems, M is a depen-
dent quantity. Accordingly, thermodynamic properties
are naturally expressed in terms of FE derivatives that
do not constrain M , and to relate properties to the FE
we should work with data in which M varies freely as
the state is changed. However, simulation data are much
simpler to collect while holding M fixed, and the frame-
work developed above gives us a means to proceed this
way. In this section we relate FE derivatives for fixed M
to the conventional FE derivatives so that we can more
easily connect our constant-M simulation data to the FE.
It is convenient and instructive to work with intensive

quantities, formed by dividing by N , which we represent
with lower-case variables that correspond to their upper-
case extensive counterparts (e.g., v ≡ V/N). Further,
we affix a tilde on variables that are made intensive by
division by M (e.g., ṽ ≡ V/M). For a property X, the
two forms are related as

x̃ = (1− φ)x

Thus, the molar Helmholtz FE is a = a(T, v;φ). In
this representation, the vacancy fraction φ (acting in lieu
of M) adopts a value to minimise the FE in the equili-
brated system. In terms of the intensive variables, the
equilibrated state for a system simulated at given (T , ṽ)
is determined by solving for λ in

lnλ+
1

M
ln

nmax
∑

n=0

λ−ne−β∆An = βã0 + P̄ (λ)ṽ (7)

Assuming proper equilibration of φ, the Helmholtz
FE of the crystal obeys the usual relations for a pure-
component system. In particular, the pressure, molar
energy, and chemical potential are

P = −

(

∂a

∂v

)

T

(8a)

u =

(

∂βa

∂β

)

v

(8b)

µ = a+ Pv (8c)

We seek relations that reflect our control of ṽ rather than
v. Manipulation of the corresponding derivatives yields
the following expressions. First, the pressure:

P = −

(

∂a

∂ṽ

)

T

/

(

∂v

∂ṽ

)

T

(9a)

with

(

∂v

∂ṽ

)

T

=
1

1− φ
+

ṽ

(1− φ)2

(

∂φ

∂ṽ

)

T

(9b)
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The molar energy is a bit more complicated because
we are changing not the differentiation variable, but the
quantity held fixed during the differentiation:

u =

(

∂βa

∂β

)

ṽ

+

(

∂βa

∂ṽ

)

β

(

∂ṽ

∂β

)

v

=

(

∂βa

∂β

)

ṽ

+
βP ṽ

(1− φ)2

(

∂φ

∂β

)

ṽ

(10)

which uses (9a).

C. Relation to defect-free properties

Characterization of the defect-free lattice is the start-
ing point for analysis of the lattice with vacancies, and
it may be expected that the thermodynamic properties
of the lattice with defects will be relatively small per-
turbations on the properties for the defect-free lattice.
Therefore, analysis of simulation data is best done by
considering separately the behavior of the defect-free sys-
tem, and the perturbations resulting from the vacancies.
Accordingly, we separate the Helmholtz FE:

a(T, v;φeq) = a0 +∆a (11)

where again a0 = a(T, V ;φ = 0), and can be evaluated
via thermodynamic integration of data from simulation
of the defect-free lattice; note that a0 = ã0.
To evaluate ∆a directly, we can manipulate Eq. (2).

First we write it in intensive variables,

βl = −
M

N
(lnλ− βa0)−

1

N
ln

nmax
∑

n=0

λ−ne−β∆An (12)

We can combine this with the definition of L as the Leg-
endre transform of A, expressed here as:

l = a− µ,

and an Euler relation, which is applicable because we are
concerned with the M -equilibrated system:

kBT lnλ ≡ µ = a+ Pv,

to yield

β∆a = −
φ

1− φ
β(Pv +∆a)−

1

N
ln

nmax
∑

n=0

λ−ne−β∆An

or

β∆a = −
φ

1− φ
βP ṽ −

1

M
ln

nmax
∑

n=0

λ−ne−β∆An (13)

Both terms on the right-hand side will be small for low
vacancy concentrations, so this expression should yield
a result for ∆a with better precision than one based on

(11), which involves the small difference between rela-
tively large numbers.
The defect-free FE allows for no variation of φ, so its

derivatives give the defect-free pressure P0 and molar en-
ergy u0. Substituting for a as given by (11), the volume
and temperature FE derivatives become:

P =

[

P0 −

(

∂∆a

∂ṽ

)

T

]

/

(

∂v

∂ṽ

)

T

(14)

and

u = u0 +

(

∂β∆a

∂β

)

ṽ

+
βP ṽ

(1− φ)2

(

∂φ

∂β

)

ṽ

(15)

D. Case of noninteracting vacancies

The vacancy concentration in crystalline systems is
usually very small, hence the assumption that vacancies
do not interact can represent a reasonable approximation.
The Helmholtz FE of a system with n noninteracting va-
cancies and M lattice sites is given by,

e−β∆An =

(

M

n

)

e−βn∆Ar
1 (16)

where the residual FE difference ∆Ar
1 is the change in the

FE due to a single vacancy at a specific location, and the
combinatorial multiplier accounts for the different ways
of arranging the n vacancies among the M lattice sites.
With this form, the summation for Ξ in Eq. (1) is just

a binomial expansion (if we take nmax = M), and can be
summed to yield:

L(T, V, µ;M) = A0 −MkBT ln
(

λ+ e−β∆Ar
1

)

. (17)

The average N can then be obtained using:

N̄ = −βλ

(

∂L

∂λ

)

T,V

= M
λ

λ+ e−β∆Ar
1

, (18)

and from this, the vacancy concentration is:

φ =
e−β∆Ar

1

λ+ e−β∆Ar
1

. (19)

Given Eq. (17), the pressure can be expressed:

P̄ = −

(

∂L

∂V

)

T,λ

= P0 +Mφ∆P1. (20)

Upon application of Eq. (5) to determine the value of λ
that yieldsM at equilibrium, we can use Eq. (19) to elim-
inate λ to obtain directly an expression for the vacancy
concentration:

−kBT lnφ = ã0 + P0ṽ +∆Ar
1 +∆P1ṽMφ. (21)

We note that ã0 + P0ṽ is the chemical potential of the
defect-free system. Given measurements for this quan-
tity, and the vacancy-formation values ∆Ar

1, ∆P1, this
equation can be solved numerically for φ.
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It is instructive to examine the relatively simple for-
mulas for noninteracting vacancies, comparing the M -
equilibrated result, (21), with the corresponding equation
obtained when M is not equilibrated [5]:

−kBT lnφ = ã0 + P0ṽ +∆Ar
1. (22)

The difference between these formulas is just the last
term in Eq. (21), which is O(φ) and will often be small
in comparison to the O(1) terms that make up the rest
of the equation. This suggests that the effect on φ of
equilibrating M will be small, unless there is a high con-
centration of vacancies. Increasing φ also leads to more
significant interactions between vacancies, which can fur-
ther act to affect the importance of M -equilibration.

III. EVALUATION OF ∆An

The key input needed in the framework outlined above
is the FE for formation of n vacancies, ∆An. This is
evaluated by molecular simulation. We describe here two
approaches that might be used for this purpose.

A. Thermodynamic Integration (TI)

According to the TI technique, the change in
Helmholtz FE of a system from initial temperature T0

to a final temperature T can be evaluated as follows [22]:

A(T )

kBT
=

A(T0)

kBT0
−

∫ T

T0

U(T ′)

kBT ′2
dT ′. (23)

where U(T ′) denotes the configurational energy at an in-
termediate temperature T ′ between T0 and T , such that
the integration is performed along a reversible path con-
necting both the states. When integrating from a very
low temperature (i.e. T0 → 0), the 1/T 2

0 and 1/T0 di-
vergences of Eq. (23) can be removed by separating the
Helmholtz FE into lattice-energy, harmonic, and anhar-
monic contributions [23, 24]:

A(T ) = U lat +Aqh(T ) +Aah(T ). (24)

The first term represents the configurational lattice en-
ergy (U lat), calculated by energy minimization with re-
spect to the atom positions. The next term (Aqh) rep-
resents the harmonic contribution to the FE, calculated
via [17, 25]:

βAqh(T ) =
1

2

3N−3
∑

j=1

ln
λj

2πkBT
−

3

2
lnN − ln v (25)

where λj are the non-zero eigenvalues of the (3N × 3N)
Hessian matrix of the minimized potential energy, as de-
scribed in the literature [16]. The third term (Aah) repre-
sents the anharmonic contribution to the FE, calculated

via [21]:

Aah(T ) = −T

∫ T

0

Uah(T ′)

T ′2
dT ′. (26)

where Uah(T ′) represents the anharmonic configurational
energy at a temperature T ′.
The vacancy-formation FE ∆An is calculated by dif-

ferencing the TI-computed free energies of systems of n
and zero vacancies, respectively. In principle, a separate
integration is needed for each n, and for n > 1 it is nec-
essary to sample locations of the vacancies in the lattice.
We do not pursue this approach, and instead rely on the
independent-vacancy approximation (Sec. IID), evaluat-
ing the FE of formation of only a single vacancy. The
difference gives the residual FE defined in Eq. (16):

∆Ar
1 = ∆U lat +∆Aqh +∆Aah. (27)

The two methods that were used in calculating the
anharmonic configurational energy are described below:
(1) the conventional averaging technique (referred to as
conventional TI in this paper) and the recently developed
(2) harmonically-mapped averaging technique (referred
to as HMA in this paper).

1. Conventional averaging

The traditionally used ensemble averaging technique is
based on the direct calculation of ensemble average of the
total configurational energy using molecular simulation.
Thus, the anharmonic configurational energy is obtained
by subtracting the harmonic and lattice energy contribu-
tions from the ensemble-averaged total configurational
energy as follows:

Uah = 〈U〉 − U lat − Uqh, (28a)

Uqh =
3

2
(N − 1)kBT. (28b)

2. Harmonically-mapped averaging (HMA)

The conventional ensemble averaging technique does
not exploit the known harmonic character of crystalline
systems; rather, the harmonic contributions to proper-
ties are computed stochastically via molecular simula-
tion, and consequently ensemble averages suffer from
the uncertainty that these contributions introduce. This
problem is circumvented when using HMA, which yields
directly the anharmonic contribution to the energy. The
details of this method can be seen in our previous work
[21]. One of the important applications of the HMA
method is evaluation of FE of crystalline systems using
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the TI technique, where the reformulated ensemble aver-
age of the total configurational energy (in case of canon-
ical ensemble) is given by [21]:

〈U〉HMA =
3

2
(N − 1)kBT +

〈

U +
1

2
F ·∆r

〉

, (29)

where F is the vector (of length 3N) of forces on each
atom in the simulation box, and ∆r is the correspond-
ing vector of displacements of the atoms from their re-
spective lattice sites. For a harmonic system, −F ·∆r/2
is exactly equal to the total energy (beyond U lat), so
the harmonically-mapped average of 〈U + F · ∆r/2〉 is
exactly equal to U lat if applied to a harmonic system.
Added to this average is the analytic expression for the
harmonic configurational energy of the crystalline sys-
tem (i.e. 3kBT (N − 1)/2). Therefore, the anharmonic
configurational energy contribution is directly measured
by subtracting the lattice energy from the harmonically-
mapped average as shown in Eq. (30).

Uah =

〈

U +
1

2
F ·∆r

〉

− U lat. (30)

This form of the average may then be used when evalu-
ating the integral in Eq. (26).
The effectiveness of HMA relies on identifying an ap-

propriate lattice site for each atom, about which its po-
sition fluctuates. The presence of a vacancy can promote
the diffusion of atoms, causing them to fluctuate about
sites that are different from the ones they were assigned
at the start of the simulation. The computed averages do
not in principle lose accuracy in such a circumstance, but
the precision advantage is compromised. Various reme-
dies can be conceived to address this problem: one can
impose constraints that prevent diffusion events, but per-
haps introducing inaccuracy in the computed free energy;
alternatively one can track atom locations and move the
designated lattice site of an atom if it diffuses.
Diffusion events are less likely at lower temperature

and higher density, which are also the conditions where
HMA is most effective relative to conventional averag-
ing. In the present study we did not attempt to arti-
ficially prevent or compensate for the effect of diffusion
on HMA averaging. Rather we discarded any HMA re-
sults for simulations where any diffusion event was ob-
served, and replaced it with the conventional average,
which was evaluated in the same simulation run. In mul-
tiple independent runs at a given state, we sometimes
observed diffusion in some but not others, and in such
cases we generated results by combining HMA averages
from diffusion-free runs with conventional averages from
diffusion-observed simulations, weighted to minimize the
uncertainty in the overall average.

B. Grand-canonical Sampling

An alternative to TI for evaluating ∆An is to perform
sampling of the number of vacancies n, simulating in the

grand-canonical ensemble. The molecule insertions and
deletions prescribed by this ensemble will not be very
efficient if performed in the conventional way; most tri-
als will be rejected because insertion in the high-density
crystal will often result in high-energy overlaps that are
rejected, while deletions will be proportionally rejected
due to the high chemical potential that discourages par-
ticle removals. Biasing methods have been developed to
overcome these difficulties [26], but they attempt to in-
sert at/near unoccupied cells. The approach that we have
employed here, exploits the local crystalline structure of
the solids for insertion.

In the following sections, we detail the methods we use
for biasing trials so that they lead to reasonable accep-
tance rates, and biasing sampling so that we explore an
appropriate range of vacancy numbers. We also describe
how we compute the needed FE differences ∆An from
our simulation data.

1. Trial bias

We can improve sampling by attempting to insert
atoms at positions that have a high probability of being
a vacancy, identifying such positions by inserting next
to an existing atom that does not have enough nearest
neighbors. For an fcc lattice, we start the process of
insertion by identifying all atoms that have fewer than
12 nearest neighbors (atoms whose distance is less than
rnbr). We choose one atom from the list of these candi-
dates at random. We then choose one of 12 lattice vector
offsets to give an insertion site. The new atom is inserted
at a position chosen randomly from within a sphere of ra-
dius rmax around the insertion site. The probability of
accepting the insertion is a function of the energy change
due to insertion, but also on the probability of choosing
the newly-inserted atom for deletion.

For deletion, we identify candidates for deletion as an
atom at a position which could be chosen as an inser-
tion position if the atom were not present. To do this,
we find all atoms (atom 1) that have 12 or fewer nearest
neighbors. For each neighbor (atom 2) of those atoms,
we consider it to be a candidate for deletion if it is within
rmax of a lattice offset from atom 1. If an atom satisfies
the criteria multiple times (if there are multiple atoms
with 12 or fewer nearest neighbors that include the can-
didate as a neighbor), then the candidate is chosen in
proportion to the number of times it satisfies the criteria.
The probability of accepting the deletion is a function of
the energy of the deleted atom, but depends also on the
probability of inserting an atom at the deleted site.

Having defined how we conduct insertion and deletion
trials, we can write expressions for the probability of ac-
cepting these attempts. The probabilities for accepting
the insertion or deletion of an atom following the trial
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protocols described above are

PN→N+1 = min (1, χ) (31a)

PN+1→N = min (1, 1/χ) (31b)

with

χ =
12nicvshell

ndc
e−βui (31c)

where vshell =
4π
3 r3max, nic is the number of candidates

for insertion (those atoms with fewer than 12 nearest
neighbors) for the system of N atoms, and ndc is the
number of candidates for deletion (atoms which satisfy
the criteria multiple times are counted as many times as
they satisfy the criteria) for the system of N + 1 atoms.

2. Sampling bias

The biased trials of the grand-canonical sampling
scheme are corrected at acceptance, and consequently the
method samples the appropriate number of vacancies for
the system conditions. This outcome is not necessarily
desired, because systems at low temperature may never
sample a configuration with a vacancy, while large sys-
tems near the melting point may rarely sample a config-
uration without a vacancy. This is a problem because to
connect to the defect-free system that forms the basis of
our analysis method, we require information about the
system for all values of n from n = 0 to some value be-
yond n̄. To achieve this, we bias, or artificially weight,
the sampling of the vacancy number n, and we remove
the bias by appropriately re-weighting the averages.
To formulate the bias, we take an initial estimate of

the single-vacancy FE, ∆Ar
1 and use the noninteracting-

vacancy approximation (Sec. IID) to generate an esti-
mate pnonn of the probability for observing n vacancies.
Combining Eqs. (3) and (16),

pnonn ∝

(

M

n

)

(

λe−β∆Ar
1

)n

. (32)

Let nm be the n where this pn has a maximum. Then,
for n < nm we weight sampling to nominally yield equal
probability of visiting all n < nm, while for n > nm we
enhance sampling additional vacancies but attenuate the
bias to limit the largest n sampled. Specifically, we define
the weight wn such that:

wn+1

wn
=







pnonn /pnonn+1 n ≤ nm

min
[

1, 2pnonn /pnonn+1

]

n > nm

(33)

Trials are performed as already described, and accep-
tance is based on a reweighting of the χ defined in
Eq. (31c):

χbias =
wn+1

wn
χ (34)

3. Computing Vacancy Free Energies

The vacancy free energies are computed as a part of
performing Monte Carlo (MC) moves. When a move
is attempted, the value of χ (as given by Eq. (31c)) is
collected and used within a Bennett acceptance ratio
scheme[27]:

Xn,n+1 =

〈

1

1 + α/χ

〉

Xn+1,n =

〈

1

α+ 1/χ

〉

(35)

where α is based on an estimate of the FE (α =
exp (−β(An+1 −An))) and the first formula is used for
insertion and the second formula used for deletion. Then
the FE itself can be computed as

β(An+1 −An) = − ln
Xn,n+1

Xn+1,n
(36)

In principle, the FE difference is itself needed to com-
pute the FE difference, but in practice the computed re-
sult is not very sensitive to α so long as it is reasonably
close. Accordingly, we take an estimate of the FE differ-
ence from preliminary simulations and then use 11 values
of α (same for all n) to collect data during the simulation.
The α values are uniformly distributed on a logarithmic
scale from α0e

−6 to α0e
+6 where α0 is the estimate based

on preliminary simulations.

IV. SIMULATION DETAILS

We employed the Lennard-Jones (LJ) model defined

by the pair potential: U(r) = 4εLJ((σLJ/r)
12
−(σLJ/r)

6
),

where σLJ and εLJ are the LJ size and energy parame-
ters, respectively, and r is the pair separation. The LJ
potential was truncated and shifted at rc = 4ṽ−1/3, and
σLJ and εLJ/kB parameters were set to unity (LJ units).
The system energy was corrected by adding the difference
in lattice energies with and without the shift (equal to
number of interacting lattice neighbors multiplied by the
shift), but this correction was adjusted when vacancies
were present. With n vacancies, the correction was taken
to be (Unoshift − Ushift)(M − 2n)/M . Periodic boundary
conditions were employed in all three orthogonal direc-
tions.
All simulations were performed with the Etomica sim-

ulation package [28] at conditions that encompass the
region of stability of the LJ fcc crystal system [29–33].
To better represent the full range of behavior, we employ
the following state variables in lieu of the temperature
and density: a density-scaled temperature, Y ≡ T ṽ4/4,
and the square of the molar volume, ṽ2 (as indicated by
the tilde, in principle the volume reduced by M is what
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we control to specify the state). The parameter Y in par-
ticular is useful for the LJ model, as it remains finite and
meaningful in the soft-sphere limit, which is obtained as
ṽ2 → 0, and it is always less than about 0.5 for all stable
crystalline states. Further, we observe that properties
vary more uniformly with respect to ṽ2 rather than ṽ it-
self, so we take this as the independent variable governing
the density.

A. Thermodynamic Integration

Ten independent simulation runs of 108 MC steps each,
were performed (107 steps of equilibration) on simulation
boxes containing 864 atoms at three densities: ṽ2 = 0.1,
0.6, and 1.0. The samples of U+F ·∆r/2 and U were col-
lected for calculating the harmonically-mapped and the
conventional averages of (Uah/T 2)0. Then, one atom was
removed from each simulation box in order to create a va-
cancy defect, and another independent set of simulations
were conducted to calculate (Uah/T 2)1. Uncertainties
were measured based on block averages taken across ten
independent simulations at each temperature and den-
sity. At lower temperatures, no diffusion events were
observed in any of the ten runs, so HMA results could be
used in all cases, while at the highest temperatures all
runs exhibited a diffusion event and only conventional
averages were used to evaluate Uah; between these limits
a mix of the conventional and HMA results from the ten
runs were averaged.
TI was used to obtain free energies only for systems

with zero and one vacancy, respectively, so calculations
of the vacancy concentration using these data employ
the noninteracting-vacancy approximation described in
Sec. IID.

B. Particle insertion

The MC simulations were performed with 864 lat-
tice sites at twelve densities: ṽ2 = 0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1, from near-
zero temperature to the respective melting tempera-
tures. Displacement and insertion/deletion trials were
attempted with approximately a 10:1 ratio (displace-
ment:insertion/deletion). Simulations sampled 107 tri-
als after 106 equilibration steps. Vacancy FE data were
collected whenever an insertion or deletion move was at-
tempted. Pressure was computed once every 864 steps.
Uncertainty estimates are based on the variation of re-
sults obtained from ten independent simulations at each
condition.
The particle-insertion calculations sample the grand-

canonical ensemble, as described in Sec. III B. Hence, in
these simulations we collect data for varying numbers of
vacancies, and no noninteracting-vacancy approximation
is invoked in analyzing the results to determine vacancy
concentrations.
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FIG. 2: Comparison of the precision obtained by using
harmonically-mapped and conventional averaging methods,
for the calculation of anharmonic energies of vacancy
formation; the system of study is an LJ fcc crystal of density
1.0 (LJ units). Values from conventional averaging are
shifted to the right by 0.005 for clarity. Lines join the HMA
values as a guide to the eye.

The free energy A0 for the vacancy-free system was
evaluated by thermodynamic integration, as reported
elsewhere [33].

V. RESULTS AND DISCUSSION

A. Vacancy Formation Free Energy

Figure 2 presents the temperature dependence of
(Uah/T 2)1 − (Uah/T 2)0 for the isochore of density 1.0,
from near-zero temperature up to its melting tempera-
ture; these results were obtained using HMA and con-
ventional averaging methods. The size of the error bars
associated with the two methods clearly illustrates the
improved performance of HMA versus conventional av-
eraging. The contrast is particularly striking at lower
temperatures, where conventional averaging is unable to
discern a difference that is statistically non-zero.
According to the TI technique (Eq. (26)), the area un-

der this curve can be used to calculate the anharmonic va-
cancy formation FE. To this end, (Uah/T 2)1−(Uah/T 2)0
versus temperature data sets for the three isochores were
fit to straight lines (first-order polynomials), and the an-
harmonic vacancy formation free energies were calculated
using the area under these fits. Thereafter, the contribu-
tions to vacancy formation from the lattice energy and
the harmonic FE (Eqs. (24), (25)) were added, in order
to calculate the total vacancy formation free energies.
Figure 3 presents the results of the vacancy formation

free energies (∆A1), at the three isochores (ṽ2: 0.1, 0.6,
and 1.0), obtained using the harmonic approximation,
HMA, conventional TI, and particle insertion (PI) meth-
ods. At low temperatures (small Y ), the harmonic ap-
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proximation results are in agreement with the other three
methods; however, at higher temperatures the results de-
viate significantly due to the presence of non-negligible
anharmonic contributions. At all temperatures examined
in this study, the results obtained by the other three FE
methods overlap within the uncertainty limits (Supple-
mentary Material). However, our motivation here is to
compare the relative efficiency of these three methods.
Accordingly, the relative difficulty in obtaining these re-
sults is examined in the next section.
Often the vacancy formation free energy is approxi-

mated by the vacancy energy alone, ignoring entropic
contributions. Figure 3 shows that this is a poor approx-
imation, and leads to considerable underestimation of the
vacancy concentration. In the figure, the error incurred
in β∆A1 can be given as the slope of the line joining a
plotted point at the condition of interest, to the Y = 0
intercept of its isochore. Inasmuch as the plotted iso-
chores are nearly linear, we may take this simply as the
slope of the isochore for the volume of interest. While
the slopes vary a bit with ṽ2, all are about equal to −10.
A shift in β∆A1 of this magnitude corresponds to an un-
derestimation of the vacancy concentration of exp(−10)
(Eq. (22)), or more than four orders of magnitude.
Interestingly, with a classical treatment of the har-

monic behavior, the intercept (i.e., the lattice energy)
is approached with a non-zero slope, so this error is per-
sists, unattenuated, even in the limit of low temperature,
where one would expect the lattice-energy approxima-
tion to be valid. If instead using the (physically correct)
non-classical treatment of the harmonic free energy, the
approach to T = 0 is made with zero slope, but the inter-
cept is not the lattice energy, as it also includes contri-
butions from the quantum oscillator zero-point energy.
This temperature-independent error in ∆A1 leads to a
divergent error in the vacancy concentration at low tem-
perature.
Comparison of the quasiharmonic isochores with the

full anharmonic behavior, we see that the quasiharmonic
treatment begins to deviate noticeably from the true be-
havior at about half the melting temperature for each
isochore. Further, the error in the quasiharmonic β∆A1

at melting is about the same for all isochores, and equal
to about 2. This corresponds to an underestimation of
the vacancy concentration at melting by about a factor
of 7.
These observations are consistent with recent studies

that have emphasized the importance of entropic effects
and anharmonic contributions to the vacancy thermody-
namics [1, 20, 34–36].

B. Difficulty Ratio

Figure 4 shows the relative performance of the three
methods for calculating the vacancy formation free ener-
gies, in terms of the difficulty, D ≡ t1/2σ, defined in terms
of the CPU (central processing unit) time t required
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FIG. 3: Vacancy formation FE (∆A1) measurements at
the three isochores (ṽ2: 0.1, 0.6, and 1.0) from zero
temperature (where ∆A1 = ∆U lat) up to the respective
melting temperatures; these results were obtained using four
FE methods: (1) particle insertion; (2) HMA; (3)
conventional TI; (4) harmonic approximation.

to obtain a stochastic average with uncertainty σ [37].
The plot compares the performance via the ratio of dif-
ficulties of the methods (DHMA/Dconv and DPI/Dconv).
The square of the difficulty ratio gives the ratio of CPU-
times required by HMA/PI method and the conventional
method to achieve a result of the same precision. The re-
sults indicate that both the HMA and particle insertion
methods are much more efficient than the conventional
method, as the difficulty ratios are less than 1 for all the
conditions examined in this study. HMA is from 8 to 36
times faster than conventional averaging along the three
isochores examined.

Also, the results demonstrate that for this LJ system
the particle insertion method is much more computation-
ally efficient than either conventional or the HMA TI
methods — it gives results to the same precision 15 to
4500 times faster than conventional averaging. This is
because the particle insertion method benefits from the
biasing used to ensure that insertions were attempted
at locations more likely to be accepted. Additionally,
when applied to a single thermodynamic state, particle
insertion requires only a single simulation for vacancy
formation FE calculation, whereas the TI technique re-
quires multiple simulations from near-zero temperature
to the temperature of interest in order to integrate along
a reversible thermodynamic path. Thus, TI approaches
demand much higher CPU time for obtaining similar pre-
cision. However, the implementation of HMA is straight-
forward even for complex molecular systems like ice,
acetic acid, clathrates, etc., where particle insertion be-
comes increasingly difficult. Hence, though particle in-
sertion is highly efficient for simple systems, HMA would
be a more effective approach for complicated structures
where insertion is infeasible.
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FIG. 4: Comparison of the difficulties of the three FE
methods in obtaining vacancy formation free energies. The
filled symbols indicate the difficulty ratio of particle
insertion method with respect to conventional averaging
method; the unfilled symbols indicate the difficulty ratio of
HMA with respect to conventional averaging method.

C. Vacancy Concentration

Figure 5 presents the results for the vacancy concentra-
tion (φ) for a range of temperatures and densities. Part
(a) represents the data in terms of the natural variables,
allowing φ to be read easily from the graph for a given
T and ṽ2. Part (b) shows the same data, but in terms
of reduced variables Y lnφ versus Y , again showing var-
ious isochores. With this representation we are able to
present results for the entire range of stability of the crys-
tal (including the ṽ2 = 0 soft-sphere limit), on a single
graph.
Results for the three isochores where we have both TI

and particle-insertion data are in statistical agreement.
This is notable not only because it provides a demonstra-
tion of the correctness of the methods, but also because
the TI results employ the noninteracting-vacancy approx-
imation. The agreement shows that this is an excellent
approximation for the LJ system at all conditions. Fur-
thermore, calculations based on fixed M , Eq. (22), are
indistinguishable from results obtained using the more
rigorous framework that equilibrates the number of lat-
tice sites.
Figure 5 (a) demonstrates that the vacancy concen-

tration is highly sensitive to the changes in temperature
as well as density. At a fixed density, it increases sig-
nificantly with the increase in temperature; at a fixed
temperature, it increases significantly with the increase
in density. However, near the melting temperature, the
vacancy concentration is almost the same for all the den-
sities, ranging from 1 × 10−4 to 3 × 10−4. Interestingly,
the vacancy concentration of hard spheres at melting falls
in this interval [38].
On the scale of Fig. 5 (b), the vacancy concentration

varies regularly with ṽ2 at fixed Y . This plot also makes
the noise in the data visible at large Y .

D. Solid Properties

We can combine an equation of state for the vacancy-
free fcc crystal [33] with the free energy difference due
to vacancies (Eq. (13)) to obtain an equation of state for
the fcc crystal with vacancies. In Fig. 6, we present the
effect of vacancies on the pressure as a function of Y for
various densities. Each curve terminates at the melting
point. In the limit of infinite density (ṽ2 = 0), the poten-
tial is purely repulsive and having vacancies lowers the
pressure for all temperatures. As the density decreases,
the interactions become more attractive until they act
cohesively at ṽ2 = 1 and cause the pressure to increase
upon allowing vacancies to form. We also present the
approximation described in Ref. [5]:

∆P ≈ φkT/ṽ, (37)

estimating the pressure change this way using our cal-
culated values of φ. Equation (37) comes from a for-
mulation based on noninteracting vacancies, which is a
valid approximation here; however, it does not account
for changes in the chemical potential due to vacancies,
and this leads to the discrepancy seen in the figure.
In Figure 7, we plot the difference in fcc-liquid coex-

istence pressure with and without accounting for vacan-
cies. The effect of vacancies is to lower the coexistence
pressure. We also observe excellent agreement with the
approximation given in Ref. [5]:

β∆Pcoex = −
φ

vl − vs
. (38)

The magnitude of the effect of vacancies is about half
(and opposite in sign) of the finite-size effect accompa-
nying the use of a vacancy-free 500-atom system instead
of one extrapolated to the thermodynamic limit.

VI. CONCLUSION

The framework developed here for evaluating vacancy
concentrations while equilibrating the number of lattice
sites is little more complicated to apply than one that
does not recognize the need for equilibration. Both ap-
proaches require free-energy differences for creation of
one, two, etc. vacancies, while the proposed approach
also requires evaluation of the ensemble-averaged pres-
sure as a function of numbers of vacancies. This is not a
significant complication, so on the one hand there should
be no reason to perform vacancy-effect calculations that
are in principle inaccurate because they do not equili-
brate M . On the other hand, the effect of equilibrating
M is completely negligible for the simple LJ model. Fur-
ther, it appears to be a reasonable approximation to as-
sume vacancies are noninteracting, and this introduces a
significant simplification, in that only the FE difference
between zero- and one-vacancy systems is needed. These
outcomes (relating toM equilibration and noninteracting
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FIG. 5: Calculated vacancy concentrations across a range of states of the fcc LJ crystal, obtained by computing vacancy free
energies via particle insertion and (for three of the isochores) conventional and HMA TI. (a) Vacancy concentration φ as a
function of temperature T for several isochores, with ṽ2 as indicated. Note that ordinate is a “double-log” scale, such that the
exponents of the values vary as on a logarithmic scale. Each isochore extends up to its respective melting temperature; (b)
Same data as (a), but using scaled axes that permit all data to be presented. In both figures, uncertainties are smaller than
or equal to (for points near melting) the symbol size for the particle-insertion and HMA results, and are about 3 times larger
than the symbols for conventional TI near melting (not shown for clarity of figure).
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vacancies) may not apply in general, so for other systems
it would be worthwhile to examine, for example, whether
results change when using Eq. (21) instead of (22) and/or
when a second interacting vacancy is considered.
For the convenience of the reader, we summarize here

the key steps required to use the framework proposed
here.

• Evaluate the change in free energy ∆An between
systems having 0 versus n vacancies, using or ther-
modynamic integration in temperature for each n of
interest, or grand-canonical averaging as described
in Sec. III. If employing the noninteracting-vacancy
approximation, only n = 1 is needed.
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FIG. 7: Impact of finite-size effects (top curve) and
vacancies (bottom curve) on the coexistence pressure. Each
curve corresponds to a separate data set and the shading
characterizes the uncertainty (68% confidence intervals).
Each set is subtracted from the vacancy-free N = ∞ data.
The estimate of the effect of vacancies as given by the
formula of Pronk and Frenkel [5] is shown by the line, which
is superimposed on our simulation data.

• Evaluate the ensemble-averaged pressure for each
n, typically in the same simulations used to evalu-
ate ∆An.

• Evaluate that zero-vacancy free energy, A0 using
an appropriate free-energy method (e.g., thermo-
dynamic integration).

• Determine the value of λ that solves Eq. (5), where
L is given by (2), P̄ is given by (4), with pn given
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by (3).

• Using the so-determined value of λ, evaluate the
vacancy concentration φ via Eq. (6).

• Alternatively, if using the noninteracting-vacancy
approximation, solve for φ in Eq. (21). If ∆P1 is
unavailable, Eq. (22), which does not include the
effect of equilibrating M , may be used.

Fluctuations in P̄ are one of the primary sources of
uncertainty within this approach unless P0 is computed
with mapped averaging. Since the MC simulations uti-
lizing particule insertions did not use mapped averaging
to compute the pressure, we replace P0 with the pressure
computed in separate simulations.

We have applied the framework to calculate the va-
cancy concentration and coexistence pressure of fcc LJ
crystals at conditions that encompass the entire region
of their stability. The vacancy formation free energies
required in the treatment were obtained using three FE
methods: (1) particle insertion in a grand canonical
framework; (2) the recently developed HMA TI method,
and (3) conventional-averaging TI. The framework is ef-
fective at calculating the vacancy concentrations using
any of the three FE methods. Similarly, the effect of
vacancies on the coexistence pressure calculated using
our results is consistent with the predictions of Ref. [5].
Calculations based on the lattice energy alone, ignoring
entropic contributions, underestimate the vacancy con-
centration by about four orders of magnitude at almost
all conditions; ignoring only anharmonic contributions
leads to an underestimate of the concentration by nearly
one order of magnitude at melting.

We have also compared the computational efficiency of
the three FE methods. Our results show that the con-
ventional TI method is the least efficient method, and
hence, HMA TI method is more desirable for anharmonic
calculations of thermodynamic properties of crystalline
systems. The particle insertion method is the most com-
putationally efficient method out of the three methods;
however, its implementation can be challenging for com-
plex molecular systems. Thus, though particle insertion
is highly efficient for simple systems, HMA may be more
applicable approach for complicated structures where in-
sertion is infeasible.
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APPENDIX

A. An illustrative model

We demonstrate the formalism outlined in Sec. II, pre-
senting it here in the context of a simple tractable model
that exhibits some of the thermodynamic anomalies that
are introduced by failure to properly sample M . This is a
noninteracting athermal cell model, in which each atom
samples positions a cell, with available volume V/M−vcp;
here vcp is the value of V/M at the close-packed volume.
We stipulate further that this available volume increases
by a fraction f for each of the z atoms that neighbor a
vacancy. There are n ≡ M − N vacancies; we assume
that configurations having adjacent vacancies are negli-
gible. The canonical partition function for this model
with fixed M is:

e−βA = Q(V,N ;M) =

(

M

N

)(

V

M
− vcp

)N

ξM−N ,

(39a)
where we define ξ ≡ (1 + f)z. The binomial term in
Eq. (39a) counts the ways to distribute the vacancies
among the M lattice sites. The pressure and activity
are:

βP (V,N ;M) = −

(

∂βA

∂V

)

M

=
N

V −Mvcp
(39b)

λ(V,N ;M) ≡ eβµ =
Q(V,N ;M)

Q(V,N − 1,M)

=
1 +M −N

Nξ

(

V

M
− vcp

)

. (39c)

For a one-component system, a plot of µ versus P should
be independent of volume. This is not the case for this
model, however, as seen in Fig. 8 (a). This is one manifes-
tation of the failure to sample M . Alternatively, we can
examine adherence to the thermodynamic Euler equa-
tion, which states

A = −PV +Nµ. (40)

This is shown in Fig. 8 (b), where we clearly see that
the two sides of this equation differ — except at a sin-
gle value of M . This point of intersection is the proper,
equilibrium value of M for this N and V . The figure
demonstrates this condition further, where we see that
this value of M is also one that minimises the free en-
ergy A. Accordingly, we denote this as the equilibrium
number of lattice sites, Meq, and we have

(

∂A

∂M

)

T,V,N

∣

∣

∣

∣

∣

M=Meq

= 0 (41)

Note again in Fig. 8 (c) we show that the plot of µ versus
P is properly invariant with V when both are evaluated
for M = Meq.



13

3 4 5 6 7 8
µ

6

8

10

12

14

P

V→ 400
V→ 410
V→ 390

(a)

100 102 104 106 108 110
M

0

100

200

300

400

A
, 

-P
V

+
N

µ

A
-PV+Nµ 

102 104 106

M

120

122

A
, 
-P

V
+

N
µ

(b)

1 2 3 4 5 6
µ

1

2

3

4

5

P

V→ 400
V→ 500
V→ 450

(c)

100 102 104 106 108 110

M

-3.62

-3.61

-3.6

-3.59

-3.58

β
L

/V
100 101 102 103 104 105

M

80

100

120

140

160

λ

(d)

FIG. 8: Behavior of the simple cell model defined in Eq. (39) of Appendix A. All quantities are presented in arbitrary units.
(a) Pressure versus chemical potential for several values of the total volume V (as indicated) and fixed number of lattice sites
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than fixed M . (d) The current formalism successfully yields that λ (λ̂ = 120), for which any chosen M (say, M̂ = 103.25)
minimises the grand-canonical free energy.

This model is by construction one with noninteracting
vacancies (Sec. IID), so the grand potential L has the
form given by Eq. (17), with

e−β∆Ar
1 =

ξ

V/M − vcp
(42)

Specifically, we may write

βL = −M ln

[

ξ + λ

(

V

M
− vcp

)]

. (43a)

The pressure is:

βP̄ = λ

[

ξ + λ

(

V

M
− vcp

)]

−1

. (43b)

When Eq. (43) is used in Eq. (5), we obtain a formula
for λ that depends only on the ratio ṽ ≡ V/M and not

V or M individually:

ln [ξ + λ (ṽ − vcp)] = λṽ [ξ + λ (ṽ − vcp)]
−1

; (44)

solution of this equation defines λ(ṽ). Accordingly, a
parametric plot of P̄ (ṽ) (from Eq. (43b)) versus λ(ṽ)
(from (44)) must be invariant with V , as required; this
would not be the case if P̄ versus λ were given by
Eq. (43b) alone.
Having established the λ that yields M as the equilib-

rium number of lattice sites, the vacancy fraction can be
determined from Eq. (6), which for this model may be
summed to yield

φ = ξ

[

ξ + λ

(

V

M
− vcp

)]

−1

(45)

Finally, to show that the approach based on determining
λ via Eq. (5) is consistent with the view of Meq mini-
mizing the potential L for given λ, we present in Fig. 8



14

(d) a plot of βL/V versus M for a fixed V = 100 and an

arbitrarily selected value of λ, designated λ̂ ≡ 120. We
also include on the figure a plot of λ(V/M) given from
Eq. (44), showing that the λ given this way coincides

with λ̂ where L versus M is a minimum. In other words,
for a given M , Eq. (44) yields the λ for which the selected
M minimises the grand-canonical free energy.
To obtain an expression for the intensive free energy a,
we have N → ∞ while N/M = 1− φ, yielding:

a(v;φ) =−
φ

1− φ
ln ξ + ln(1− φ) +

φ

1− φ
lnφ (46)

− ln [(1− φ)v − vcp]

Note that the equilibribum φ is given by (numerical) solu-
tion of (∂a/∂φ)v = 0. The pressure according to Eq. (8a)
is

P =
1− φ

(1− φ)v − vcp
. (47)

B. Justification of approach

The framework described in Sec. II allows us to deter-
mine the equilibrium λ corresponding to a specified M ,
for some choice of V and T . First, in this Appendix we
show that in satisfying the Euler relation, Eq. (5), we
minimise L with respect to M for given λ, T , and V .
Then we show that neglect of fluctuations in M may be
treated as a finite-size effect.
To differentiate with M , we consider a finite perturba-

tion to scale up all of the system’s extensive quantities
by a factor (1+ ε), such that the change in V and M are
εV and εM , respectively. Given that the free energy L is
extensive too, as a consequence its value will change by
εL. If we subsequently perturb the volume back to its
original value (at fixed M), then the total change in L
for this process is

∆L = εL+

(

∂L

∂V

)

M,λ,T

(−εV ). (48)

Since the net change ∆L owes solely to the change in M ,
we can form the M derivative by dividing both sides by
∆M = εM , yielding

M

(

∂L

∂M

)

V,λ,T

= L+

(

∂L

∂V

)

M,λ,T

V. (49)

For the V derivative, we have

(

∂L

∂V

)

M,λ,T

= eβL
∑

n

(

∂An

∂V

)

M,V,T

λM−ne−βAn

= −eβL
∑

n

Pnλ
M−ne−βAN

= −P̄ . (50)

So,

M

(

∂L

∂M

)

V,λ,T

= L− P̄ V (51)

Hence, when Eq. (5) is satisfied, we have,

(

∂L

∂M

)

V,λ,T

= 0, (52)

which is what we set out to prove.
Now, we would like to consider the difference between

this approach and one in which we include all M , for
which the partition function is

Ξ =
∑

M

∑

N

λM−ne−βAn(M)

=
∑

M

e−β(L(M)−LMeq )ΞMeq

= Ξ(Meq)
∑

M

e−β[L(M)−L(Meq)] (53)

We can approximate the free energy difference with a
second-order series:

β[L(M)− L(Meq)] ≈ k(M −Meq)
2 (54a)

where

k ≡
β

2

(

∂2L

∂M2

)

V,λ,T

. (54b)

Then the sum in (54a) yields, for kM2
eq � 1

Ξ =
(π

k

)1/2

Ξ(Meq) (55)

To obtain the second derivative that defines k, we fol-
low the same perturbation process outlines above, but
include the second-order terms when scaling back the vol-
ume, thus:

∆L = εL+

(

∂L

∂V

)

M,µ,T

(−εV ) +
1

2

(

∂2L

∂V 2

)

M,µ,T

(εV )2.

(56)
The first two terms cancel at equilibrium, as does
∂L/∂M , leaving

(

∂2L

∂M2

)

V,λ,T

= ṽ2
(

∂2L

∂V 2

)

M,λ,T

= −ṽ2
(

∂P̄

∂V

)

M,λ,T

(57)

The free energy is then

βL = βL(Meq) +
1

2
ln

[

−
βṽ2

2π

(

∂P̄

∂V

)

M,λ,T

]

(58)
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The argument to the logarithm is positive because ther-
modynamic stability requires that

(

∂P̄ /∂V
)

M,λ,T
< 0.

We see that the correction to L(Meq) to allow for fluc-

tuations in M introduces terms of order lnM . This be-
comes negligible in comparison to L (which is O(M)) in
the thermodynamic limit (where M → ∞); hence it may
be treated as another finite-size effect.
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