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Abstract— In this paper, we describe a Cyber-Physical system
approach to Photovoltaic (PV) array control. A machine learning
and computer vision framework is proposed for improving the
reliability of utility scale PV arrays by leveraging video analysis of
local skyline imagery, customized machine learning methods for
fault detection, and monitoring devices that sense data and actuate
at each individual panel. Our approach promises to improve
efficiency in renewable energy systems using cyber-enabled
sensory analysis and fusion.

1. INTRODUCTION

The efficiency of solar energy farms requires detailed
analytics and information on each panel regarding voltage,
current, temperature and irradiance. We describe machine
learning and computer vision approaches for improving the
efficiency and reliability of utility scale solar arrays. Efficiency
improvements are accomplished through prediction of complex
dynamical system parameters using sensors and sensor fusion.
The methods presented in this paper will be implemented on
state of the art testbed shown in Figure 1. This testbed was
developed by the Sensor Signal and Information Processing
(SenSIP) Center and involves an 18kW array of 104 panels.
Cyber-physical methods that include imaging and machine
learning algorithms for shading prediction and fault detection
are being developed to improve efficiency. These methods will
be validated on the SenSIP Solar facility.

Figure 1. The SenSIP 18kw (104 panel) experimental facility
established at ASU with industry collaborators [1].

Camera and satellite sensing of skyline features as well as
parameter sensing at each panel provides information for fault
detection and power output optimization through sensor fusion
and appropriate actuator programming. Machine learning and
fusion enables us to implement robust shading prediction. The
co-authors have worked with Poundra and Energy Wireless to

develop and integrate smart monitoring devices (SMDs)
equipped with voltage, current, and irradiance sensing for fault
detection. Prior work by this team produced signal processing
algorithms for PV monitoring reported in [1-4].
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Figure 2. Networked PV Array Concept enabling: a) weather
feature correlations, b) local shading prediction, c) decision
support, and d) fault detection.

Efficiency improvements of up to 4% were documented
using circuit simulation models [2-5]. Our estimates show that
efficiency improvements up to 10% are possible using shading
prediction, customized sensor fusion and machine learning
algorithms for fault detection. The introduction of cameras and
new imaging algorithms enables short and long-term prediction
of cloud and shading patterns that will be integrated in the
overall monitoring and control system. Cloud movement
prediction enables new strategies for power grid control, array
topology reconfiguration, and control of inverter transients.
New machine learning methods that employ recently developed
divergence measures [6] will reduce uncertainty in fault
detection and enable improved monitoring and control of utility
scale remote solar sites. The SMDs have relays that enable
reconfiguration of connection topologies.

A utility-scale PV array consists of solar panels that are
connected in series, forming strings, which are in turn
connected in parallel. The DC output of the array is converted
to AC using inverters. Shading, weather patterns and
temperature can severely affect power output. To minimize
these effects, individual panel -current-voltage (I-V)
measurements, weather information [7-13], and imaging data
are essential. Moreover, controlling the power output is
possible through matrix switching (i.e., changing array
topology enabled by SMD relays [1]) of PV panels allowing for



different interconnection options. We optimize utility scale PV
array systems by exploiting the measured I-V, imaging, and
weather data. The smart monitoring devices connected to each
PV panel collect the individual panel metrics (current, voltage,
and temperature) periodically (about every 8 seconds). The
cameras provide updates at a rate of 20-30 frames per second.
The algorithmic and image/data analysis unit are equipped
with various state of the art algorithms for imaging, data mining
and prediction that identify and track various important time-
varying events and patterns. The algorithms operate on PV
array measurements and on parametric models to detect and
remedy faults using SMD panel switching (Fig. 2) or bypassing
if necessary [1]. Reference [1] explains how SMD relays
operate upon command to reconfigure the connection topology.
The development of image and video-based algorithms for
modeling and prediction of skyline features, and the study of
the underlying mathematical structures of the model parameters
differentiate this paper from the previous efforts of the team [2].

II. DYNAMIC MODELS FOR SKYLINE VIDEOS
Let f(z) be a sequence of texture and color features extracted
from a short video of the skyline indexed by time. The linear
dynamical model [15-18] parametrizes the evolution of the
features using the following equations:

J)=Cz(ty+w(t)
z(t+1) =Az(t)+v(t),

w(t~ N(O,R) (1)
v(t)~N(0, Q) (2)

where, z € RYis the hidden state vector, A € R4 the
transition matrix and C € RP*4 the measurement matrix. The

function /'€ RP represents the observed features while w and v
are noise components modeled as normal with zero mean and

covariances R € RP*? and Q € RY"4 respectively. For the LDS
model of (2), starting from an initial condition z (0), it can be
shown that the expected observation sequence derived from a
time-invariant model M= (4, C) lies in the column space of the
extended observability matrix given by
O0.f = [CT, (CA)YT, (cAy) T, ..., (CAY,

In practice, we truncate the extended observability matrix,
On' = [CT, (CA)T, (CAH)T, ..., (CA™) T, ....] and build our
additional analysis on the truncated version. The truncation
does not introduce error in our case, since beyond a few
concatenations the column rank of the matrix reaches its
maximum value (if the system is observable). The column
space of this matrix is a d- dimensional subspace of R™?, where
d is the dimension of the state-space z and is typically of the
order of 5-10. The linear dynamical model is a rich model for
representing the dynamic variations of observed texture
patterns. The parameters of the dynamical model are best
viewed as subspaces formed by the columns of the observability
matrix. Formally, the set of all d-dimensional linear subspaces
of R is called the Grassmann manifold which will be denoted
as Gng [14]. In this paper, we are interested in developing
theoretically well-grounded and computational efficient

.

algorithms to map the LDS parameters to attributes describing
skyline features from the imagery. This requires us to consider
the underlying geometric properties of the parameter-space:
which in our case is the Grassmannian. In previous work, we
described computing statistical models over the Grassmann
manifold for various image based applications [14]. We will
further build upon these insights in this paper to extract long
term robust correlations between the observed imagery and PV
circuit characteristics.

A. Riemannian geometric interpretation of dynamic model
parameters

Since we are interested in performing various statistical
correlation analyses with the estimated skyline dynamical
models, we need to first consider the challenges in performing
a standard multivariate statistical analysis if the underlying state
space is non-Euclidean. These analyses require the use of
tangent-spaces and exponential/inverse exponential maps. In
previous work, we have elaborated on the use of Riemannian
geometric concepts such as exponential maps, inverse
exponential maps etc. which will be brought to bear upon the
current task [14,21,22]. We illustrate the notion of the
exponential map in the Figure 3.
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Figure 3. This figure illustrates exponential and inverse-
exponential maps. These mappings extend the wealth of
multivariate statistical machine learning algorithms to our
general manifolds. The tangent vectors represent the final
features that will be used in conjunction with other machine
learning tools for mapping video features to skyline attributes.

These tools allow one to locally linearize the parameter-
space, and employ classical multi-variate statistical tools, such
as computing probability densities from sample data and
regression to relevant attributes. Below we describe the specific
forms of these expressions for the special case of the
Grassmann manifold, described in more detail in [14]. A
Grassmann manifold [24,25] is the set of all d-dimensional
subspaces of R Here we are interested in d-dimensional
subspaces and not in one particular basis. An equivalence class
is given by, [0], = {O¢» (V1, V2) | V1 € SO(d), V, € SO (n —
d)}, and the set of all such equivalence classes is Gn,d.
Notationally, Gn,d can also be denoted as simply SO(n)/(S0(d)
x §0 (n — d)). To utilize standard multi-variate statistical
models for correlation extraction, we need to ‘linearize’ the
curved space using the tangent-space structure of the
underlying manifold. For any other point [U] € gn,d, let 0 €
S0(n) be a matrix such that U = OT/. Then, the tangent space at
[U]is given by Tu(gn,d)= {07G | G € Ty(gn,d)}. On Sn,d and



Gn,d , the exponential map is given by, OT [ C; BT|= 0T A/ »
OT exp(4) J, where A takes an appropriate structure for each
case. The expression for inverse exponential map is not
available analytically for these manifolds and is computed
numerically. These tangent vectors themselves can be used as
inputs to standard multivariate statistical tools or other machine
learning algorithms as illustrated in Figure 3. The
dimensionality of the tangent vectors is the same as the
dimensionality of the manifolds; which in turn is governed by
the dimensionality of our video features. We expect that the
textural features extracted from the video will be high
dimensional (of the order of the number of pixels in the image).
Fortunately, we can reduce dimensionality of the tangent
vectors via principled extensions of tools such as principal
component analysis to consider the curvature of the space [19,
20]. This approach has been termed geodesic principal
components in the broader community, and we will adopt such
variations to reduce computational load. Shown in Figure 4, is
the general framework for constructing conditional probability
density functions over linear dynamical model parameters for
skyline attributes such as ‘clear’, ‘light clouds’, and ‘overcast’.
These pdfs will be modeled as wrapped normal distributions
(potentially mixtures of Normals) over the Grassmann manifold
from training data, using the procedure described above. These
basic building blocks will be used in the proposed framework
for fault prediction.

B. Temporal prediction of dynamical systems

The classification methods of dynamic textures as described

previously are effective in short durations of time, when one
can assume that the dynamic texture has wide-sense statistical
stationarity to further enhance prediction, we need to consider
looking forward in time, and anticipating dynamical evolution.
Assuming linear dynamics and wide sense stationarity is often
an unrealistic assumption when faced with the task of predicting
the evolution of a dynamical pattern. For long-term prediction,
we consider the problem of studying the evolution using non-
linear tools, which avoids making restrictive assumptions on
parametric forms. The basic principle we adopt is one of
reconstructing the hidden phase-space of the true dynamic
system using delay embeddings.
Note here, that the dynamical system under consideration is
multi-variate to begin with, since the extracted features are of
the order of pixels in the image. From the reconstructed phase-
space, the prediction problem is tackled using simple regression
models in the phase space. This contrasts with prediction using
regression models in the observation space, which is much
harder due to the non-smooth properties of the observation
sequence. If the phase-space reconstruction is properly
achieved, the evolution in the phase space is much smoother,
which will allow prediction of the next few phases. Mapping
from predicted phases to expected pixel measurements can be
achieved, which will allow us to use the previously developed
linear models for classification into one of several shading
categories.
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Figure 4. Illustration of proposed algorithm for estimating
conditional densities of skyline features from video
measurements. Video streams are modeled as linear dynamical
models, whose parameters are considered as points on a
Grassmann manifold. Conditional pdfs of sky attributes are
estimated using Riemannian geometric tools.

III. I-V FEATURES AND USE OF MACHINE LEARNING FOR
FAULT DETECTION

Reliability is a crucial factor in a PV system. Ground faults,
series and parallel arc faults, high resistance connections,
soiling, and partial shadowing need to be addressed. A solar cell
or panel is often modeled as a current source and a diode, with
parasitic series and shunt resistance (see Figure 5).
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Figure 5. Circuit model for a PV module.

The I-V data in a PV array can be measured at the panel-level
inexpensively. This data is useful since it can be used to build
correlation models with the imaging data, and is useful in
predicting possible ground faults or arc faults. The I-V
characteristic is a function of temperature, incoming solar
irradiance (direct and diffused), angle of incidence, and the
spectrum of sunlight. The panel has an optimal operating point
for maximum power. Fault detection using I-V data can be
accomplished by identifying outliers in the I-V feature space. I-
V measurements are typically highly correlated. Moreover, the
dynamics of the I-V measurements lend themselves to
predictive models.

A. Existing Approaches for fault detection

There are several articles in the literature on early fault
detection in solar arrays [26-31, 33]. However, none of these
techniques exploit statistical hypothesis testing algorithms. In
our work [3, 4] we show that we can detect faults in individual
modules using clustering algorithms. In our preliminary results,
an algorithm was developed to identify underperforming
panels.



B. Using Machine Learning for Fault Detection

Current practice is to identify faults via a human operator
examining data collected at the inverter. One study identified a
Mean Time to Repair (MTTR) of 19 days for a centrally
monitored system of residential installations [31]. With the
addition of more and higher quality data from SMDs, MTTR
could be significantly reduced.

Several challenges and research opportunities are evident in
the fault diagnosis and localization problems. First, of course, a
system must accurately classify the PV array's condition. It
must be adaptable to different array configurations without
extensive data collection for each individual array. It should be
able to react to the 'unknowns'--faults the system designers did
not anticipate. Considering these challenges, several machine
learning [43] approaches can be examined. Semi-supervised
learning could allow the generation of many realistic faults
from a few measured examples.

IV. PRELIMINARY RESULTS

A. Temporal prediction of dynamical systems

Given a large dataset of the observed imagery, we would like
to obtain useful correlations between the proposed dynamical
models, and circuit-level measurable I-V characteristics. Here,
in Figure 6. , we show a simple example to demonstrate the
utility of the skyline dynamical model and Riemannian
geometry based computations to classify attributes of cloud and
shading activity. For this experiment, we took a month-long
video-log from a weather camera looking at the skyline of the
Camelback Mountain in Phoenix AZ. A frame was captured
once every 30 mins, though we anticipate that for early warning
interventions, we may require higher capture rate. However,
this data still serves as an excellent test bed to measure the
usability of imagery to develop attributes for early warning. We
created a small training set where we annotated a few segments
as ‘clear’, ‘moderate cloudy’, and ‘overcast’. This training set
was used to learn a probability density function on the
Grassmannian. As seen in figures 6 and 7, the scores provided
to test data encode meaningful attributes. A high score implies
clear skies and a low score implies overcast skies. These results
are encouraging and show that one can detect such attributes
from oncoming clouds and use those as early indicators of
shading. To illustrate the strength of the dynamical approach on
predicting transition between cloudy and non-cloudy patterns,
we consider a non-linear Lyapunov exponent based approach.
For the textural feature per frame, we will use Gabor filter-bank
responses.

Modeling temporal dynamical evolution of these textural
features using largest Lyapunov exponents, we get a spatio-
temporal representation of sky videos, per feature dimension.
From Figure 7, we see that largest Lyapunov exponents provide
a clear distinction between clear sky and cloudy sky, with
spatiotemporal modeling providing information about the
transition phase between these two states.
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Figure 6. Image-based measures of sky-clarity, an attribute
useful for predicting shading. This metric was created from
dynamical models of image texture, with a manifold-based
metric on dynamical model parameters. Sample images at
various times show how the index separates ‘clear skies’ and
‘hazy/cloudy skies’. Using a small network of horizon-viewing
cameras it is possible to develop early warning systems.
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Figure 7. Spatio-temporal modeling of sky videos using GIST
and largest Lyapunov exponents; with time stamps for clear
sky, transition from clear-cloudy sky and cloudy sky. These

transitions can be used for prediction.

B.  Minimum Covariance Determinant estimator for fault
detection

The Minimum Covariance Determinant (MCD) can estimate
the center and shape of a cluster [38]. In the PV context, this
algorithm could run on V-I plots across all panels. The MCD

minimizes the function det(f:) over all possible subsets H of

the data containing observations of H PV panels, where X is the
sample covariance matrix of H. The output of an MCD
algorithm consists of the optimal subset of panels H* and its
centroid is pp+ and covariance matrix Y. py+ and 3° may be
used to form a distance metric
dM) = (M — pp)T X* (M — ppe)  which measures  the
extent to which a measurement is an outlier.

The FAST-MCD algorithm [39] can determine approximate
results with reduced complexity by iteratively modifying the
subset of h points such that its covariance determinant decreases
with each iteration, rather than testing every possible subset. In
preliminary simulations using only voltage and current data and
(temporarily) excluding temperature measurements, the MCD-
based detection method delivered reliable results when applied
to simulated arc and ground faults, as shown in Figures 8 and 9.
Figure 9 shows a scatter plot of the panel voltages and currents
during an arc event where the faulty panel is resolved to be
outside the cluster of functioning panels. These preliminary




simulations with synthetic data indicate that most faults can be
reliably detected.
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Figure 9. Scatter Plot under arc fault.

C. Preliminary Results Using Gaussian Mixture Models:

Machine learning algorithms have been successful in several
signal and image processing applications [34-35]. The utility
of machine learning tools and Internet-of-Things (IoT)
topologies in renewable energy has been reported before in [44-
46]. To demonstrate the feasibility of applying machine
learning for fault detection, we started with a simple k-means
algorithm with results reported in [1]. However, with the use of
probabilistic models rather than hard boundaries, we can obtain
better clustering results [35,43]. As an initial step, we explore
the use of Gaussian Mixture Models trained with Expectation
Maximization (EM).

The result in Figure 10 shows the implementation of fault
detection using Gaussian Mixture Models. Simulated fault data
were obtained using the UW-Madison PV model and a SPICE
circuit simulation [21-23]. The dataset was gathered under
normal conditions. A cluster for each panel was formed. Two
clusters were randomly initialized. For the training of clusters,
we use the EM algorithm as it has shown to perform well in
clustering applications [35]. The difference in the simulated
faulty panel and normally working panel are seen from two
different clusters in Figure 10. The normally functioning panel

has cluster points which are compact while the scattered cluster
points indicate the simulated faulty panel.

Further statistical analysis is needed to develop a better
understanding of clustering patterns. Customized machine
learning methods that use divergence measures [6] to improve
clustering in cases where there are overlaps.
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Figure 10. Clustering using GMM. Training forms clusters of

normal and simulated fault PV data.

V. CONCLUSION

We addressed the problem of PV array monitoring and
control using advanced imaging and machine learning
algorithms. We proposed integration of machine learning,
image processing and optimization techniques for real time
monitoring of PV arrays. Preliminary results for fault detection
demonstrated clustering successfully faults and our simulations
with imaging prediction promise significant efficiency
improvements.
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