
Abstract— In this paper, we describe a Cyber-Physical system 
approach to Photovoltaic (PV) array control.  A machine learning 
and computer vision framework is proposed for improving the 
reliability of utility scale PV arrays by leveraging video analysis of 
local skyline imagery, customized machine learning methods for 
fault detection, and monitoring devices that sense data and actuate 
at each individual panel. Our approach promises to improve 
efficiency in renewable energy systems using cyber-enabled 
sensory analysis and fusion. 

I. INTRODUCTION 
The efficiency of solar energy farms requires detailed 

analytics and information on each panel regarding voltage, 
current, temperature and irradiance.  We describe machine 
learning and computer vision approaches for improving the 
efficiency and reliability of utility scale solar arrays.  Efficiency 
improvements are accomplished through prediction of complex 
dynamical system parameters using sensors and sensor fusion. 
The methods presented in this paper will be implemented on 
state of the art testbed shown in Figure 1. This testbed was 
developed by the Sensor Signal and Information Processing 
(SenSIP) Center and involves an 18kW array of 104 panels. 
Cyber-physical methods that include imaging and machine 
learning algorithms for shading prediction and fault detection 
are being developed to improve efficiency. These methods will 
be validated on the SenSIP Solar facility. 

 

 
Figure 1. The SenSIP 18kw (104 panel) experimental facility 
established at ASU with industry collaborators [1]. 

 
Camera and satellite sensing of skyline features as well as 

parameter sensing at each panel provides information for fault 
detection and power output optimization through sensor fusion 
and appropriate actuator programming.  Machine learning and 
fusion enables us to implement robust shading prediction. The 
co-authors have worked with Poundra and Energy Wireless to 

develop and integrate smart monitoring devices (SMDs) 
equipped with voltage, current, and irradiance sensing for fault 
detection. Prior work by this team produced signal processing 
algorithms for PV monitoring reported in [1-4]. 

 

 
Figure 2. Networked PV Array Concept enabling: a) weather 
feature correlations, b) local shading prediction, c) decision 
support, and d) fault detection. 
 

Efficiency improvements of up to 4% were documented 
using circuit simulation models [2-5]. Our estimates show that 
efficiency improvements up to 10% are possible using shading 
prediction, customized sensor fusion and machine learning 
algorithms for fault detection. The introduction of cameras and 
new imaging algorithms enables short and long-term prediction 
of cloud and shading patterns that will be integrated in the 
overall monitoring and control system. Cloud movement 
prediction enables new strategies for power grid control, array 
topology reconfiguration, and control of inverter transients. 
New machine learning methods that employ recently developed 
divergence measures [6] will reduce uncertainty in fault 
detection and enable improved monitoring and control of utility 
scale remote solar sites. The SMDs have relays that enable 
reconfiguration of connection topologies. 

A utility-scale PV array consists of solar panels that are 
connected in series, forming strings, which are in turn 
connected in parallel. The DC output of the array is converted 
to AC using inverters. Shading, weather patterns and 
temperature can severely affect power output. To minimize 
these effects, individual panel current-voltage (I-V) 
measurements, weather information [7-13], and imaging data 
are essential. Moreover, controlling the power output is 
possible through matrix switching (i.e., changing array 
topology enabled by SMD relays [1]) of PV panels allowing for 
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different interconnection options. We optimize utility scale PV 
array systems by exploiting the measured I-V, imaging, and 
weather data. The smart monitoring devices connected to each 
PV panel collect the individual panel metrics (current, voltage, 
and temperature) periodically (about every 8 seconds). The 
cameras provide updates at a rate of 20-30 frames per second.  

The algorithmic and image/data analysis unit are equipped 
with various state of the art algorithms for imaging, data mining 
and prediction that identify and track various important time-
varying events and patterns. The algorithms operate on PV 
array measurements and on parametric models to detect and 
remedy faults using SMD panel switching (Fig. 2) or bypassing 
if necessary [1]. Reference [1] explains how SMD relays 
operate upon command to reconfigure the connection topology. 
The development of image and video-based algorithms for 
modeling and prediction of skyline features, and the study of 
the underlying mathematical structures of the model parameters 
differentiate this paper from the previous efforts of the team [2]. 

II. DYNAMIC MODELS FOR SKYLINE VIDEOS 
Let f(t) be a sequence of texture and color features extracted 

from a short video of the skyline indexed by time. The linear 
dynamical model [15-18] parametrizes the evolution of the 
features using the following equations: 

 
   f(t)=Cz(t)+w(t)      w(t)~ N (0, R)   (1) 
   z(t+1) =Az(t)+v(t),    v(t)~N (0, Q)   (2) 
 
where, z ε ℝd

 is the hidden state vector, A ε ℝd*d, the 
transition matrix and C ε ℝp*d, the measurement matrix. The 
function f ε ℝp represents the observed features while w and v 
are noise components modeled as normal with zero mean and 
covariances R ε ℝp*p and Q ε ℝd*d respectively. For the LDS 
model of (2), starting from an initial condition z (0), it can be 
shown that the expected observation sequence derived from a 
time-invariant model M= (A, C) lies in the column space of the 
extended observability matrix given by  

O∞
T = [CT, (CA)T, (CA2) T, …., (CAn)T, ….]. 

In practice, we truncate the extended observability matrix,  
Om

T = [CT, (CA)T, (CA2) T, …., (CAm-1) T, ….] and build our 
additional analysis on the truncated version. The truncation 
does not introduce error in our case, since beyond a few 
concatenations the column rank of the matrix reaches its 
maximum value (if the system is observable). The column 
space of this matrix is a 𝑑𝑑- dimensional subspace of ℝ𝑚𝑚𝑚𝑚, where 
𝑑𝑑 is the dimension of the state-space 𝑧𝑧 and is typically of the 
order of 5-10. The linear dynamical model is a rich model for 
representing the dynamic variations of observed texture 
patterns. The parameters of the dynamical model are best 
viewed as subspaces formed by the columns of the observability 
matrix. Formally, the set of all 𝑑𝑑-dimensional linear subspaces 
of ℝ𝑛𝑛 is called the Grassmann manifold which will be denoted 
as 𝒢𝒢𝑛𝑛,d [14]. In this paper, we are interested in developing 
theoretically well-grounded and computational efficient 

algorithms to map the LDS parameters to attributes describing 
skyline features from the imagery. This requires us to consider 
the underlying geometric properties of the parameter-space: 
which in our case is the Grassmannian. In previous work, we 
described computing statistical models over the Grassmann 
manifold for various image based applications [14]. We will 
further build upon these insights in this paper to extract long 
term robust correlations between the observed imagery and PV 
circuit characteristics. 

A. Riemannian geometric interpretation of dynamic model 
parameters 
 Since we are interested in performing various statistical 
correlation analyses with the estimated skyline dynamical 
models, we need to first consider the challenges in performing 
a standard multivariate statistical analysis if the underlying state 
space is non-Euclidean. These analyses require the use of 
tangent-spaces and exponential/inverse exponential maps. In 
previous work, we have elaborated on the use of Riemannian 
geometric concepts such as exponential maps, inverse 
exponential maps etc. which will be brought to bear upon the 
current task [14,21,22]. We illustrate the notion of the 
exponential map in the Figure 3.  
 

 
Figure 3. This figure illustrates exponential and inverse-
exponential maps. These mappings extend the wealth of 
multivariate statistical machine learning algorithms to our 
general manifolds. The tangent vectors represent the final 
features that will be used in conjunction with other machine 
learning tools for mapping video features to skyline attributes. 
 
 These tools allow one to locally linearize the parameter-
space, and employ classical multi-variate statistical tools, such 
as computing probability densities from sample data and 
regression to relevant attributes. Below we describe the specific 
forms of these expressions for the special case of the 
Grassmann manifold, described in more detail in [14]. A 
Grassmann manifold [24,25] is the set of all 𝑑𝑑-dimensional 
subspaces of ℝ𝑛𝑛. Here we are interested in 𝑑𝑑-dimensional 
subspaces and not in one particular basis. An equivalence class 
is given by, [𝑂𝑂]b = {𝑂𝑂𝑂𝑂𝑏𝑏 (𝑉𝑉1, 𝑉𝑉2) | 𝑉𝑉1 ∈ SO(𝑑𝑑), 𝑉𝑉2 ∈ 𝑆𝑆𝑆𝑆 (𝑛𝑛 − 
𝑑𝑑)}, and the set of all such equivalence classes is 𝒢𝒢𝒢𝒢,𝑑𝑑. 
Notationally, 𝒢𝒢𝒢𝒢,d can also be denoted as simply 𝑆𝑆𝑆𝑆(𝑛𝑛)/(𝑆𝑆𝑆𝑆(𝑑𝑑) 
× 𝑆𝑆𝑆𝑆 (𝑛𝑛 − 𝑑𝑑)). To utilize standard multi-variate statistical 
models for correlation extraction, we need to ‘linearize’ the 
curved space using the tangent-space structure of the 
underlying manifold. For any other point [𝑈𝑈] ∈ 𝒢𝒢𝒢𝒢,d , let 𝑂𝑂 ∈ 
𝑆𝑆𝑆𝑆(n) be a matrix such that 𝑈𝑈 = 𝑂𝑂𝑇𝑇J. Then, the tangent space at 
[𝑈𝑈] is given by 𝑇𝑇[U](𝒢𝒢𝒢𝒢,𝑑𝑑)= {𝑂𝑂𝑇𝑇𝐺𝐺 | 𝐺𝐺 ∈ 𝑇𝑇[𝐽𝐽](𝒢𝒢𝒢𝒢,𝑑𝑑)}. On 𝒮𝒮𝒮𝒮,d and 



 
 
𝒢𝒢𝒢𝒢,d , the exponential map is given by, 𝑂𝑂𝑇𝑇 [ 𝐶𝐶; 𝐵𝐵T] ≡ 𝑂𝑂𝑇𝑇 𝐴𝐴𝐽𝐽 ↦ 
𝑂𝑂𝑇𝑇 exp(𝐴𝐴) 𝐽𝐽, where 𝐴𝐴 takes an appropriate structure for each 
case. The expression for inverse exponential map is not 
available analytically for these manifolds and is computed 
numerically. These tangent vectors themselves can be used as 
inputs to standard multivariate statistical tools or other machine 
learning algorithms as illustrated in Figure 3. The 
dimensionality of the tangent vectors is the same as the 
dimensionality of the manifolds; which in turn is governed by 
the dimensionality of our video features. We expect that the 
textural features extracted from the video will be high 
dimensional (of the order of the number of pixels in the image). 
Fortunately, we can reduce dimensionality of the tangent 
vectors via principled extensions of tools such as principal 
component analysis to consider the curvature of the space [19, 
20]. This approach has been termed geodesic principal 
components in the broader community, and we will adopt such 
variations to reduce computational load. Shown in Figure 4, is 
the general framework for constructing conditional probability 
density functions over linear dynamical model parameters for 
skyline attributes such as ‘clear’, ‘light clouds’, and ‘overcast’. 
These pdfs will be modeled as wrapped normal distributions 
(potentially mixtures of Normals) over the Grassmann manifold 
from training data, using the procedure described above. These 
basic building blocks will be used in the proposed framework 
for fault prediction. 

B. Temporal prediction of dynamical systems 
 The classification methods of dynamic textures as described 
previously are effective in short durations of time, when one 
can assume that the dynamic texture has wide-sense statistical 
stationarity to further enhance prediction, we need to consider 
looking forward in time, and anticipating dynamical evolution. 
Assuming linear dynamics and wide sense stationarity is often 
an unrealistic assumption when faced with the task of predicting 
the evolution of a dynamical pattern. For long-term prediction, 
we consider the problem of studying the evolution using non-
linear tools, which avoids making restrictive assumptions on 
parametric forms. The basic principle we adopt is one of 
reconstructing the hidden phase-space of the true dynamic 
system using delay embeddings. 
Note here, that the dynamical system under consideration is 
multi-variate to begin with, since the extracted features are of 
the order of pixels in the image. From the reconstructed phase-
space, the prediction problem is tackled using simple regression 
models in the phase space. This contrasts with prediction using 
regression models in the observation space, which is much 
harder due to the non-smooth properties of the observation 
sequence. If the phase-space reconstruction is properly 
achieved, the evolution in the phase space is much smoother, 
which will allow prediction of the next few phases. Mapping 
from predicted phases to expected pixel measurements can be 
achieved, which will allow us to use the previously developed 
linear models for classification into one of several shading 
categories. 
 

 
Figure 4. Illustration of proposed algorithm for estimating 
conditional densities of skyline features from video 
measurements. Video streams are modeled as linear dynamical 
models, whose parameters are considered as points on a 
Grassmann manifold. Conditional pdfs of sky attributes are 
estimated using Riemannian geometric tools. 

III. I-V FEATURES AND USE OF MACHINE LEARNING FOR 
FAULT DETECTION  

Reliability is a crucial factor in a PV system. Ground faults, 
series and parallel arc faults, high resistance connections, 
soiling, and partial shadowing need to be addressed. A solar cell 
or panel is often modeled as a current source and a diode, with 
parasitic series and shunt resistance (see Figure 5). 

 
Figure 5. Circuit model for a PV module. 

 
The I-V data in a PV array can be measured at the panel-level 

inexpensively. This data is useful since it can be used to build 
correlation models with the imaging data, and is useful in 
predicting possible ground faults or arc faults. The I-V 
characteristic is a function of temperature, incoming solar 
irradiance (direct and diffused), angle of incidence, and the 
spectrum of sunlight. The panel has an optimal operating point 
for maximum power. Fault detection using I-V data can be 
accomplished by identifying outliers in the I-V feature space. I-
V measurements are typically highly correlated. Moreover, the 
dynamics of the I-V measurements lend themselves to 
predictive models. 

A. Existing Approaches for fault detection 
There are several articles in the literature on early fault 

detection in solar arrays [26-31, 33]. However, none of these 
techniques exploit statistical hypothesis testing algorithms. In 
our work [3, 4] we show that we can detect faults in individual 
modules using clustering algorithms. In our preliminary results, 
an algorithm was developed to identify underperforming 
panels. 



 
 
B. Using Machine Learning for Fault Detection 

Current practice is to identify faults via a human operator 
examining data collected at the inverter. One study identified a 
Mean Time to Repair (MTTR) of 19 days for a centrally 
monitored system of residential installations [31]. With the 
addition of more and higher quality data from SMDs, MTTR 
could be significantly reduced. 

Several challenges and research opportunities are evident in 
the fault diagnosis and localization problems. First, of course, a 
system must accurately classify the PV array's condition. It 
must be adaptable to different array configurations without 
extensive data collection for each individual array.  It should be 
able to react to the 'unknowns'--faults the system designers did 
not anticipate. Considering these challenges, several machine 
learning [43] approaches can be examined. Semi-supervised 
learning could allow the generation of many realistic faults 
from a few measured examples.  

IV. PRELIMINARY RESULTS 

A. Temporal prediction of dynamical systems 
 Given a large dataset of the observed imagery, we would like 
to obtain useful correlations between the proposed dynamical 
models, and circuit-level measurable I-V characteristics. Here, 
in Figure 6. , we show a simple example to demonstrate the 
utility of the skyline dynamical model and Riemannian 
geometry based computations to classify attributes of cloud and 
shading activity. For this experiment, we took a month-long 
video-log from a weather camera looking at the skyline of the 
Camelback Mountain in Phoenix AZ. A frame was captured 
once every 30 mins, though we anticipate that for early warning 
interventions, we may require higher capture rate. However, 
this data still serves as an excellent test bed to measure the 
usability of imagery to develop attributes for early warning. We 
created a small training set where we annotated a few segments 
as ‘clear’, ‘moderate cloudy’, and ‘overcast’. This training set 
was used to learn a probability density function on the 
Grassmannian. As seen in figures 6 and 7, the scores provided 
to test data encode meaningful attributes. A high score implies 
clear skies and a low score implies overcast skies. These results 
are encouraging and show that one can detect such attributes 
from oncoming clouds and use those as early indicators of 
shading. To illustrate the strength of the dynamical approach on 
predicting transition between cloudy and non-cloudy patterns, 
we consider a non-linear Lyapunov exponent based approach. 
For the textural feature per frame, we will use Gabor filter-bank 
responses. 
 Modeling temporal dynamical evolution of these textural 
features using largest Lyapunov exponents, we get a spatio-
temporal representation of sky videos, per feature dimension. 
From Figure 7, we see that largest Lyapunov exponents provide 
a clear distinction between clear sky and cloudy sky, with 
spatiotemporal modeling providing information about the 
transition phase between these two states. 

 
Figure 6. Image-based measures of sky-clarity, an attribute 
useful for predicting shading. This metric was created from 
dynamical models of image texture, with a manifold-based 
metric on dynamical model parameters. Sample images at 
various times show how the index separates ‘clear skies’ and 
‘hazy/cloudy skies’. Using a small network of horizon-viewing 
cameras it is possible to develop early warning systems. 
 

 
Figure 7. Spatio-temporal modeling of sky videos using GIST 
and largest Lyapunov exponents; with time stamps for clear 
sky, transition from clear-cloudy sky and cloudy sky. These 
transitions can be used for prediction. 
 

B. Minimum Covariance Determinant estimator for fault 
detection 
 The Minimum Covariance Determinant (MCD) can estimate 
the center and shape of a cluster [38]. In the PV context, this 
algorithm could run on V-I plots across all panels. The MCD 
minimizes the function 𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺�) over all possible subsets H of 
the data containing observations of H PV panels, where 𝚺𝚺� is the 
sample covariance matrix of H. The output of an MCD 
algorithm consists of the optimal subset of panels H* and its 
centroid is μh* and covariance matrix ∑*. μh* and ∑* may be 
used to form a distance metric  
d(M) =  �(M −  μℎ∗)𝑇𝑇 ∑∗ (M − μℎ∗)  which measures the 
extent to which a measurement is an outlier. 
The FAST-MCD algorithm [39] can determine approximate 
results with reduced complexity by iteratively modifying the 
subset of h points such that its covariance determinant decreases 
with each iteration, rather than testing every possible subset. In 
preliminary simulations using only voltage and current data and 
(temporarily) excluding temperature measurements, the MCD-
based detection method delivered reliable results when applied 
to simulated arc and ground faults, as shown in Figures 8 and 9. 
Figure 9 shows a scatter plot of the panel voltages and currents 
during an arc event where the faulty panel is resolved to be 
outside the cluster of functioning panels. These preliminary 



 
 
simulations with synthetic data indicate that most faults can be 
reliably detected.  

 
 

Figure 8. ROC curves for series arc fault. 

 
Figure 9. Scatter Plot under arc fault. 

 

C. Preliminary Results Using Gaussian Mixture Models:  
 Machine learning algorithms have been successful in several 
signal and image processing applications [34-35].  The utility 
of machine learning tools and Internet-of-Things (IoT) 
topologies in renewable energy has been reported before in [44-
46]. To demonstrate the feasibility of applying machine 
learning for fault detection, we started with a simple k-means 
algorithm with results reported in [1]. However, with the use of 
probabilistic models rather than hard boundaries, we can obtain 
better clustering results [35,43]. As an initial step, we explore 
the use of Gaussian Mixture Models trained with Expectation 
Maximization (EM).  
 The result in Figure 10 shows the implementation of fault 
detection using Gaussian Mixture Models. Simulated fault data 
were obtained using the UW-Madison PV model and a SPICE 
circuit simulation [21-23]. The dataset was gathered under 
normal conditions. A cluster for each panel was formed. Two 
clusters were randomly initialized. For the training of clusters, 
we use the EM algorithm as it has shown to perform well in 
clustering applications [35]. The difference in the simulated 
faulty panel and normally working panel are seen from two 
different clusters in Figure 10. The normally functioning panel 

has cluster points which are compact while the scattered cluster 
points indicate the simulated faulty panel. 
 Further statistical analysis is needed to develop a better 
understanding of clustering patterns. Customized machine 
learning methods that use divergence measures [6] to improve 
clustering in cases where there are overlaps.  
 

 
Figure 10. Clustering using GMM. Training forms clusters of 
normal and simulated fault PV data. 

V. CONCLUSION 
 We addressed the problem of PV array monitoring and 

control using advanced imaging and machine learning 
algorithms. We proposed integration of machine learning, 
image processing and optimization techniques for real time 
monitoring of PV arrays. Preliminary results for fault detection 
demonstrated clustering successfully faults and our simulations 
with imaging prediction promise significant efficiency 
improvements. 
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