
Abstract— Photovoltaic (PV) array analytics and control have 
become necessary for remote solar farms and for intelligent fault 
detection and power optimization.   The management of a PV 
array requires auxiliary electronics that are attached to each solar 
panel.  A collaborative industry-university-government project 
was established to create a smart monitoring device (SMD) and 
establish associated algorithms and software for fault detection 
and solar array management.  First generation smart monitoring 
devices (SMDs) were built in Japan.  At the same time, Arizona 
State University initiated research in algorithms and software to 
monitor and control individual solar panels.  Second generation 
SMDs were developed later and included sensors for monitoring 
voltage, current, temperature, and irradiance at each individual 
panel.  The latest SMDs include a radio and relays which allow 
modifying solar array connection topologies.  With each panel 
equipped with such a sophisticated SMD, solar panels in a PV 
array behave essentially as nodes in an Internet of Things (IoT) 
type of topology. This solar energy IoT system is currently 
programmable and can: a) provide mobile analytics, b) enable 
solar farm control, c) detect and remedy faults, d) optimize power 
under different shading conditions, and e) reduce inverter 
transients.  A series of federal and industry grants sponsored 
research on statistical signal analysis, communications, and 
optimization of this system.  A  Cyber-Physical project, whose aim 
is to improve solar array efficiency and robustness using new 
machine learning and imaging methods, was launched recently.     

I. INTRODUCTION 
The utility of individual solar panel monitoring electronics 

for fault detection purposes was explored after the Fukushima-
Daiichi nuclear accident in Japan, where plans were considered 
at that time for deployment of solar energy plants in the affected 
areas [1].  Because of the radiation in the area, the detection of 
faulty panels became an issue and companies and universities 
were commissioned to develop hardware and software 
technologies for remote monitoring of individual panels in large 
utility-scale solar farms.  The need for monitoring was also 
fueled by elevated standards for solar array efficiencies and the 
need for analytics.  As a result, some Japanese and US 
companies developed electronics for networked monitoring of 
solar panels.  At that time, a collaboration of these Japanese and 
US companies with Arizona State University was established to 
produce hardware, algorithms and software for solar panel 
monitoring.  Industry developed the first-generation monitoring 
devices that were equipped with sensors for monitoring voltage, 
current, temperature and irradiance. Ethernet connectivity for 
these devices was also developed in Japan, and the ASU SenSIP 
center began developing algorithms for fault detection and 
control of solar panels.  A small 13x1 solar array facility was 
built at the Arizona Public Service (APS) Star facility near 
ASU, which allowed the ASU team and industry researchers to 
begin performing simulations and experiments.  The second 
generation SMDs had enhanced electronics, radios for Wi-Fi 
connectivity, relays and a new array of sensors.   With these 

hardware technologies and with the algorithms developed by 
SenSIP, ASU researchers were able to demonstrate efficiencies 
[2].  SenSIP obtained three consecutive federal grants to 
develop novel statistical signal processing and machine 
learning algorithms for fault detection and solar panel topology 
optimization.  

 

  
Fig. 1. Smart monitoring devices (SMDs) developed in Japan 

and used for Solar monitoring and control research.  The SMD 
has a microcontroller, a network radio, relays for reconnecting 
or bypassing panels, and sensors. With the SMDs, solar panels 
are seen and managed as IoT nodes. 

 

The latest NSF Cyber-Physical grant [3] has an ambitious 
plan that will treat solar panels as Internet-of-Things (IoT) 
nodes and develop a new generation of fault detection and 
efficiency optimization algorithms, enabled by customized 
machine learning algorithms, cloud movement detection, and 
interfaces for inverters that promise to improve efficiencies by 
as much as 10%.  

This paper accompanies the keynote speech of the author at 
IISA 2017. The paper covers the development of new 
algorithms, the design of a new experimental facility equipped 
with IoT-enabled panels, and the integration of vision and 
fusion algorithms. These promise to achieve efficiencies and 
create a new generation of solar array farms that continuously 
optimize their performance, enable mobile analytics, and 
provide remote control and fault detection capabilities.  
Outcomes of this research will also enable power prediction and 
inverter transient control capabilities. 

II. THE IOT-ENABLED 18KW SOLAR FACILITY 
A solar facility was developed at the MacroTechnology 
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Works (MTW) facility (Fig. 2) located at the Arizona State 
University park. This facility consists of 104 panels with an 
estimated output of 18kW.  The 8x13 array was fitted by smart 
monitoring devices which enable users to obtain analytics for 
each panel, detect faults, bypass faulty panels, monitor cloud 
movement, and change connectivity to maximize power output. 
The details on all the elements, sensors, communications and 
relays of this experimental facility have been reported in [4]. In 
addition to management and control of all IoT nodes on this 
facility, the experimental platforms will enable researchers to 
validate machine learning and imaging algorithms used for fault 
detection and cloud movement prediction.    

The facility will be soon capable of obtaining visual 
information through a sky camera and a set of three irradiance 
sensors.  This information will be used to predict cloud 
movement and provide lookahead data for control.   

 

 
 
Figure 2.  The solar energy monitoring facility at ASU 

showing the sensor fusion center, the smart monitoring device, 
and the solar panels.  One SMD is dedicated for each solar panel 
rendering it as an IoT programmable node.  

 
 

IoT node control will enable the user of the system to change 
the connections from say serial to parallel and form new 
connection topologies to respond to different shading 
conditions.  The SMD matrix is shown in Fig. 3 together with 
the relays and the facility at MTW.   

The ability to change the connections of these IoT enabled 
panels poses several interesting optimization problems.  In 
addition, the detection and repair of faulty panels becomes less 
expensive for remote solar farms.  Prior work from the group 
[2-7,34] demonstrated potential for significant gain in 
efficiency. A simulation is described below with shading.  

III. SOLAR ARRAY SIMULATION WITH SHADING 
Even one under-performing module in a string affects the 

output of the array. It is hence beneficial to rearrange the array 
configuration to either remove the under-performing module 
entirely or position it in a way that its effects are reduced. 

Figure 3 illustrates a scenario where reconnection benefits 
the array output. The example has 52 modules in a 13-series, 4-
parallel strings configuration. Two of the 52 modules are 
shaded and this is simulated by reducing the irradiance values 
for these two modules to 25% of the actual irradiance. It is seen 
that by removing the two shaded modules and configuring the 

remaining 50 modules in 10 series, 5 parallel configurations, we 
observe an increase in power output. 

 

 
Figure 3.  Improvement of array output under shading by 
changing the array topology. Example taken from [2]. 

IV. IOT SOLAR ARRAY ANALYTICS 
The overall concept for IoT analytics for solar farms is shown 

in the block diagram of Figure 4., where the various 
components of the systems and their role is shown.   The 
modules form a matrix whose connections are controlled by 
relays embedded in the SMD (switching block in Figure 5).  The 
connection topology of the array can be changed by issuing a 
local or a remote (IoT) instruction.  If the fault detection 
algorithm indicates a faulty panel that disrupts the efficiency of 
the PV array, the panel can be bypassed by issuing a 
programming command to the appropriate SMD.  Connections 
can also be changed to optimize output under different shading 
conditions.  This was previously simulated [2, 32] and shown 
to produce increased efficiencies.  

SMD sensors connected to each PV panel collect the 
individual panel measurements (current, voltage, and 
temperature) periodically (about every 8 seconds). The 
collected information can be transmitted to an IoT central 
server. The weather data consists of irradiance, wind and 
atmospheric temperature, and is obtained from a locally 
installed weather station.  

V. THIRD GENERATION SMD FOR SOLAR IOT CONTROL 
Research towards developing a third generation SMD is 

continuing. The envisioned SMD will be equipped with state of 
the art machine learning algorithms that identify and track time-
varying events such as: underperforming panels, shading, and 
faults. The SMD will interface with IoT networked imaging 
sensors to predict shading (Figs. 4 and 5). The development of 
customized prediction algorithms for cloud movement and 
panel shading, represents a significant advancement over 
previous efforts and will enable new strategies for power grid 
control, array topology reconfiguration, and control of inverter 
transients. 

 



 
 

 

 
 

Figure 4. The IoT Networked PV Array Concept enabling:  
shading prediction, fault detection, mobile analytics, power 
optimization under shading conditions, inverter transient 
control, and interface to smart grid.  

 
The study of solar power analytics, where the solar array is 

viewed as an IoT network enabled by remotely programmable 
SMDs that communicate with one another, promises to elevate 
efficiency particularly in cases involving cloud shading and 
faults.  The new SMDs will enable us to develop and embed 
machine learning methods that employ recently developed 
divergence measures [31] which will reduce uncertainty in fault 
detection. Moreover, new imaging techniques [22,32,34] will 
allow improved shading prediction.  

 
Figure 5. Envisioned third generation SMD enabling IoT Solar 

Panel Interfaces for PV Array Management 

VI. USING COMPUTER VISION TO PREDICT SHADING 
Weather and cloud motion prediction is very useful for 

forecasting the power output [8-12] of the solar array. Several 
methods have been used for shading prediction [15] including 
Kalman methods [16,17], machine learning and neural 
networks [18-20], and Autoregressive (AR) models [13, 21]. 
The research described here will use sky imaging features for 
predicting cloud movement.  Image-based sky-clarity measures 

are described in [12] where a linear dynamical model was 
shown to represent the variations of texture patterns.  The work 
here focuses on developing computationally efficient 
algorithms to describe skyline features from the imagery.  The 
planned research involves statistical correlation analyses with 
the estimated skyline dynamical models [22]. Previous work 
[14, 22-25] has studied the use of Riemannian and other 
geometric concepts that can be applied in cloud motion 
prediction (see [12] for algorithm details and for all the 
associated mathematical equations). 

VII. PANEL FAULT DETECTION  
Reliability in solar arrays is crucial for power generation 

efficiency.  Soiling, partial shading, ground faults have to be 
detected.  Circuit models of solar panels have been used in the 
past for fault detection purposes [2].  The I-V data at the panel-
level is quite useful and can be monitored in an inexpensive 
manner. An optimal operating point for a panel is the one that 
yields maximum power. Statistical analysis can be used to 
detect outliers in I-V data (see [2] and [12] for mathematical 
details).  Fault detection has been described in several papers 
[26-31,33]. Faults are typically identified by human operators 
using inverter data.  There are several papers on fault detection 
in solar arrays and in general PV array performance model is 
used to derive the expected array I-V curve. The expected I-V 
curve is usually compared with the measured one. Another 
approach involves taking measurements and detecting outliers. 
In [2] the Euclidean and Mahalanobis distance were used for 
detect outliers.  These are given below for data vectors x1 and 
x2: 

 

 
The simulation from [2] in Figure 6 shows the I-V curve and 

the tolerance ellipses for a ground fault simulation. It is shown 
that a minimum covariance determinant (MCD) estimator 
[2,35] forms a useful cluster to detect outliers while the 
Mahalanobis distance has an unacceptable tolerance.     

 
Figure 6.  I-V Curves and fault detection (from [2]). 

Machine learning approaches for fault detection have been 



 
 
used in some of the studies involving Gaussian Mixture Models 
trained with Expectation Maximization  (algorithm details in 
[12]). 

VIII. CONCLUSION 
 This paper is associated with the keynote talk of the author 

at the IISA 2017 which argues that communication aspects of 
an array of solar panels can be viewed in the context of Internet 
of Things. We described several new technologies, electronics, 
and algorithms for solar array monitoring and control.  The 
electronics and algorithms developed by collaborative activities 
involving industry, university and government organizations 
demonstrate that an Internet-of-Things framework can be 
indeed used for utility-scale solar farms. We have discussed 
several approaches involving statistical signal processing, 
machine learning and computer vision that can be used in 
conjunction with this IoT solar energy framework to elevate 
efficiencies.    
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