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Photon beam asymmetry � measurements for ω photoproduction in the reaction �γ p → ωp are reported 
for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged 
photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The 
measurements obtained markedly increase the size of the database for this observable, extend coverage to 
higher energies, and resolve discrepancies in previously published data. Comparisons of these new results 
with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate 
the importance of interferences between t-channel meson exchange and s- and u-channel contributions, 
underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the 
Bonn–Gatchina partial-wave analysis indicate the � data reported here help to fix the magnitudes of 
the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the 
resonant portion of the J P = 3/2+ partial wave), as well as the resonant portions of the smaller partial 
waves with J P = 1/2−, 3/2−, and 5/2+.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

As a composite system of quarks and gluons, the nucleon has 
an excitation spectrum largely dictated by the underlying dynamics 
of the strong interaction. Thus, ideally, a description of the excited 
states of the nucleon should arise naturally from a theory built 
from quantum chromodynamics (QCD). However, nearly a half-
century of experimental and theoretical study has not produced 
either a satisfactory theoretical description or a full empirical in-
ventory of the states present in the nucleon resonance spectrum. 
The current understanding of the shortcomings of these efforts (as 
reviewed in, e.g., Refs. [1–6]) could be summarized by the provoca-
tive title of a classic paper from over thirty years ago: “Where 
have all the resonances gone?” [7]. The answer those authors sup-
plied to that question remains part of the current lore today: many 
of the “missing resonances” are likely coupled to channels with 
far smaller strengths than those states that are coupled to pion–
nucleon final states.

Meson photoproduction has proven to be a very productive tool 
for clarifying details of the nucleon resonance spectrum, comple-
menting other approaches in the search for missing resonances. 
Older theoretical analyses of individual observables in meson pho-
toproduction often attempted to identify nucleon excited states 
by adding sets of overlapping Breit–Wigner resonances, an ap-
proach which jeopardizes unitarity. More modern approaches use 
a K -matrix formalism to respect unitarity while simultaneously in-
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corporating multiple observables from the meson photoproduction 
database in order to identify the complex poles and residues at-
tributable to specific nucleon resonances [8]. Such analyses have 
shown the nucleon resonance spectrum to possess many broad 
and overlapping excitations, making progress difficult. Nonetheless, 
with respect to the mystery of the missing resonances, the current 
ambiguities in the nucleon resonance spectrum may still reflect the 
fact that the experimental database for the nucleon remains dom-
inated by studies of πN final states, as implied in 1980 by Koniuk 
and Isgur [7].

Over the past two decades, new experimental facilities have be-
come available, permitting experiments targeting ηN , K�, and K�

final states. These studies have greatly expanded knowledge of nu-
cleon resonances, as summarized in the reviews noted above [1–6]. 
Though many experiments have now investigated photoproduction 
of ηN , K�, and K� final states, the reaction for ω photoproduc-
tion on the nucleon remains relatively unexplored, even though 
experiments focused on observables for that reaction can address 
several unique theoretical interests. For example, since the thresh-
old for ω photoproduction (1.108 GeV) lies above the thresholds 
for π and η photoproduction, the reaction probes the higher-mass 
nucleon resonances in the so-called third resonance region, where 
the πN and ηN photoproduction cross sections have become con-
siderably smaller than at lower energies. As in η photoproduction, 
the isoscalar nature of the ω means that ωp final states can pro-
vide an “isospin filter” for the nucleon resonance spectrum, select-
ing only isospin I = 1

2 excitations. But, in contrast to the spinless 
isoscalar η and η′ mesons and isovector π mesons, the ω has an 
intrinsic spin of 1, yielding a richer set of angular momentum com-
binations for intermediate states. As a practical matter for experi-
ments, the ω has a much smaller intrinsic width (� = 8.49 MeV) 
than the ρ (� = 149.1 MeV), although both mesons have similar 
masses [9]. The narrower width for the ω aids greatly in identify-
ing that meson in missing-mass reconstructions. Furthermore, the 
principal decay mode for the ω meson (π+π−π0 with a branch-
ing ratio of 89.2% [9]) includes two charged pions, whose relative 
ease in detection also facilitates reconstruction.

All these features of ω photoproduction have stimulated the-
orists using a variety of approaches to harvest information from 
this particular channel [10–21]. Differential cross sections for me-
son photoproduction form the bulk of the database for baryon 
spectroscopy, and a number of experiments have provided data 
for ω photoproduction on the proton [22–34]. However, differen-
tial cross sections alone are insufficient to deconvolute the nucleon 
resonance spectrum. Polarization observables in meson photopro-
duction, where selection of the orientations of the initial spins 
of the nucleon and photon, as well as measurements of the ori-
entation of the intrinsic angular momentum of particles in the 
final state, give additional insight into the details of the reaction 
mechanism [35–37]. Such observables can arise from interferences 
between contributing amplitudes, consequently demanding much 
more specificity about the properties of the hypothesized reso-
nance states involved in the reaction than the differential cross 
sections.

The photon beam asymmetry � is one such polarization ob-
servable. As discussed in Ref. [38], � for vector meson photopro-
duction on a nucleon is obtained with a linearly-polarized photon 
beam incident on an unpolarized target. Using a coordinate system 
where the z-axis is defined by the incoming photon direction, this 
observable can be expressed in the center-of-mass frame as

dσ

d�
= dσ0

d�

[
1− Pγ � cos{2 (ϕ − α)}] , (1)

where dσ
d� is the differential cross section for the reaction us-

ing a polarized photon beam, dσ0 is the unpolarized differential 
d�
Fig. 1. (Color online.) Definition of angles in Eq. (1). (a) Side view: A polarized pho-
ton (whose electric field lies in a plane formed by the incoming photon momentum 
vector and the electric field vector) enters from the left, strikes the nucleon, and 
produces an ω meson, which then travels in the plane determined by the mo-
mentum of the incoming photon and the momentum of the meson. (b) End view: 
Looking upstream along the axis determined by the incoming photon, α is the an-
gle between the plane of beam polarization and the horizontal plane, while ϕ is the 
angle between the photon polarization plane and the horizontal plane.

cross section, Pγ is the degree of linear polarization of the photon 
beam, ϕ is the azimuthal angle of the photoproduced meson rel-
ative to a plane parallel to the floor in the laboratory frame, and 
α is the azimuthal angle between the photon beam polarization 
plane and the laboratory floor plane. (The angles are illustrated in 
Fig. 1.) Predictions of � show that this observable is very sensitive 
to the details of which resonances are involved in the �γ p → ωp
reaction [10,11,19,16]. However, the three published sets of mea-
surements of � for this reaction [31,39,40], which have yielded a 
total of 74 data points, are often in conflict with each other.

The results of the experiment described in this report markedly 
increase the database for � by adding nearly four times more data 
points and extending coverage to higher incident photon energies. 
These new data possess finer energy and angle resolution, and re-
solve discrepancies among the previously published results. The 
measurements reported here also should motivate new theoreti-
cal analyses of this reaction that will further clarify the nucleon 
resonance spectrum.

2. Experiment

This experiment was part of a program carried out in Experi-
mental Hall B at the Thomas Jefferson National Accelerator Facility 
(Jefferson Lab) in order to provide the large set of observables 
for exclusive meson photoproduction needed to better understand 
the nucleon resonance spectrum. The results reported here are 
based on analyses of data taken during the “g8b” running period 
at that facility. Data for � for π+ , π0, η, and η′ photoproduction 
from the same running period were extracted and reported previ-
ously [41–43]. Those publications provide details of the experiment 
and running conditions, which we summarize here.

The linearly-polarized photon beam was generated by coherent 
bremsstrahlung of the primary Jefferson Lab electron beam inci-
dent on a diamond radiator [44]. In coherent bremsstrahlung, the 
normal bremsstrahlung spectrum is enhanced at specific photon 
energies due to the lattice excitations within the oriented crystal. 
Intensity enhancements in the resulting photon spectrum above 
the normal bremsstrahlung spectrum possess significant polariza-
tion. The peak corresponding to the highest-energy polarized pho-
tons is called the coherent edge. By adjusting the orientation of 
the diamond radiator with respect to the incident electron beam, 
the polarization vector of the photon beam can be rotated and the 
energy of the coherent edge can be adjusted.

For this work, a 4.55-GeV electron beam scattering from the 
crystal planes of a 50-μm-thick diamond radiator produced the 
linearly-polarized photons, with a remotely-controlled goniometer 
used to adjust the polarization direction. The degree of linear po-
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larization for the photon beam was estimated with a calculation 
that used knowledge of the goniometer orientation and the ge-
ometry of the full beam line, including the degree of collimation 
of the photon beam, during each portion of the data collection 
period [45]. Timing information and energy definition for the po-
larized photons were obtained using the bremsstrahlung photon 
tagger in Hall B [46].

The photon beam impinged on a 40-cm-long liquid hydro-
gen target located 20 cm upstream of the center of the CEBAF 
Large Acceptance Spectrometer (CLAS) [47]. CLAS consists of six 
(ideally) identical charged-particle magnetic spectrometers con-
tained within a superconducting toroidal magnet that generates 
an approximately azimuthal magnetic field distribution. Informa-
tion from the CLAS subsystems was analyzed to provide four-
momentum and reaction vertex information event-by-event for 
each charged particle originating in the cryogenic target region and 
passing through the tracking regions of the spectrometer. For these 
measurements, data from the drift-chamber subsystem for track-
ing charged particles [48], the time-of-flight subsystem [49], and 
a plastic scintillator array surrounding the cryogenic target (which 
determined when charged particles passed from the target into the 
drift chamber region) [50], provided the primary information for 
determining the four-momenta of the recoil proton, the photopro-
duced mesons, and their decay products.

The running period was split into intervals of approximately 
one week during which data were taken at a specific setting of 
the coherent-edge energy. The coherent-edge settings were 1.3, 1.5, 
1.7, and 1.9 GeV. Approximately every hour within each interval, 
the polarization plane for the �E-field of the photon beam was ad-
justed to either be parallel to the floor or perpendicular to the 
floor in order to minimize the effects of any change in the CLAS 
acceptance within a coherent-edge setting. Measurements where 
the same photon energy was present in adjacent coherent-edge 
settings were used to check for consistency in polarization esti-
mates for a given photon energy. These consistency checks indi-
cated that the uncertainty in the photon beam polarization was 
6%, as noted in Ref. [41]. Runs with an amorphous carbon radiator 
were also taken periodically during each interval to provide data 
for unpolarized photons. The use of the amorphous radiator and 
alternate polarization orientations reduced systematic uncertain-
ties arising from the non-uniform CLAS acceptance for the charged 
decay products of the ω meson through the comparison of com-
binations of the data from the different polarization orientations 
with data from the amorphous radiator.

3. Data reduction and analysis

For each charged-particle track seen in CLAS, the measured 
speed v , β = v/c, and three-momentum were used for particle 
identification via the GPID algorithm [51,41,42]. That algorithm 
compares the measured β of the particle whose identity is to 
be determined with estimated values of β based on hypothetical 
identities for that particle. The hypothetical particle identity that 
provided a β value closest to the measured β was then assigned 
to that particle. A visualization of the performance of this tech-
nique may be seen in Fig. 1 of Ref. [41].

With the identity of each scattered particle established, correc-
tions were made for the energy lost by each scattered charged 
particle as that particle passed through the materials in the cryo-
genic target and the CLAS detector with the CLAS ELOSS program 
[52]. The timing information for each charged-particle track was 
used to determine the time when that track originated in the tar-
get (i.e., the vertex time). Independently, the timing information of 
each electron detected at the focal plane of the tagger was used to 
determine the time when the corresponding bremsstrahlung pho-
ton arrived at the vertex (photon time). The photon whose photon 
time most closely matched with the vertex time was selected as 
the photon that caused the reaction. This selection was important 
because the intensity of the electron beam impacting the radiator 
of the photon tagger was such that multiple photons could arise 
from a single pulse of beam electrons. Events were rejected where 
an additional photon was within ± 1 ns of the selected photon in 
order to avoid any ambiguity in determining which photon caused 
the reaction.

The kinematic quantities determined from the time-of-flight 
and drift-chamber systems yielded good definition of the four-
momenta for the p, π+ , and π− particles scattered into CLAS. 
Nonetheless, to simultaneously correct for imperfections in the 
map for the magnetic field of CLAS, momentum corrections for 
tracks were determined by demanding four-momentum conserva-
tion in a kinematic fit of a large sample of γ p → π+π−p events 
seen in the spectrometer where all three final-state particles were 
detected, in the same manner as discussed in Ref. [43].

Based on the assumption that the reaction observed was γ p →
pX , the polar scattering angle and the magnitude of the three-
momentum for the proton recoiling from meson photoproduction 
can be used to calculate the mass MX of the missing state X . 
As seen in the upper panel of Fig. 2, however, a sizeable back-
ground in the missing-mass spectrum for γ p → pX appears under 
the peak associated with photoproduction of the ω meson due to 
multi-pion and ρ meson photoproduction. This background was 
reduced by requiring that the recoil proton and charged pions re-
sulting from the decay ω → π+π−π0 were detected in CLAS, and 
then identifying a neutral meson by assuming the decay ω →
π+π−Y with the restriction on the missing mass MY = M(π0). 
This requirement effectively removed contributions from ρ photo-
production and significantly reduced the background beneath the 
photoproduced ω peak, as exemplified in the lower panel of Fig. 2. 
The remaining background is attributable primarily to multi-pion 
photoproduction, which was removed to extract the ω yield as de-
scribed below.

These ω missing-mass spectra were then split into 27-MeV-
wide bins in photon energy. Incorporating the results of the kine-
matic fit described above, the centroids for each of the photon 
energy bins used in this analysis were determined to an accu-
racy that was typically better than ± 0.1 MeV, and always better 
than ± 0.5 MeV. These binned spectra were then analyzed as in 
Refs. [41,42] with a Fourier-moment method to extract the beam 
asymmetry as a function of the center-of-mass meson scattering 
angle cos(θω

c.m.) for the specific incident photon energy Eγ bins 
(and, consequently, center-of-mass W bins) chosen for this anal-
ysis. Cosine-nϕ-moment histograms (where n = 0, 2, 4) were con-
structed by taking each ω event in the missing-mass histograms 
and weighting that event by the value of cosnϕ corresponding to 
that event. With this approach, events within a particular cos(θω

c.m.)

bin for ϕ are combined simultaneously to determine �. Applying 
this Fourier-moment method to �, the resulting equation for the 
beam asymmetry may be written as

� = Ỹ⊥2 − Ỹ‖2
P‖
2 (Ỹ⊥0 + Ỹ⊥4) + P⊥

2 (Ỹ‖0 + Ỹ‖4)
, (2)

where Ỹ⊥n (Ỹ‖n) is the background-subtracted meson yield for a 
photon beam with polarization vector perpendicular (parallel) to 
the laboratory floor, normalized by the number of incident pho-
tons for that particular polarization orientation, with each event 
weighted according to the Fourier moment cosnϕ , and P⊥ (P‖) 
is the degree of photon polarization. The numerator and denom-
inator in Eq. (2) were constructed for each kinematic bin. For 
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Fig. 2. Missing mass MX for the reaction γ p → pX for the 1.9-GeV coherent-edge 
setting, with peaks corresponding to various photoproduced mesons. Upper panel: 
Full missing-mass spectrum. Lower panel: Missing-mass spectrum for the reaction 
γ p → pX requiring X → π−π+π0, as described in the text.

Fig. 3. Example of yield extraction for the numerator n (upper panel) and denomi-
nator d (lower panel) defined by Eq. (2) for Eγ = 1.314 GeV and cos(θω

c.m.) = −0.55. 
The solid line indicates the background fit discussed in the text.

each Fourier-moment histogram within a kinematic bin, the me-
son yield was determined by removing the background under the 
ω meson peak. Since the ω peak shows up very clearly in such his-
tograms, this background subtraction was accomplished by fitting 
each of the Fourier-moment histograms with the combination of 
a second-order polynomial shape (describing the multi-pion back-
ground) and a Gaussian (describing the ω peak). The background 
was well-described by the polynomial shape, and the uncertainty 
in the background was given by the uncertainty in this shape de-
termined by the fit. The ω yield for that particular histogram was 
then obtained by subtracting the polynomial from the original dis-
tribution and then summing the remaining events within the area 
of the ω peak. Examples of Fourier-moment histograms with back-
ground fits are shown in Fig. 3. Finite-size bin corrections for ex-
tracted � values are also addressed with this method, as described 
in Ref. [41]. Using preliminary estimates of the spin-density matrix 
elements for ω decay [53], the values of � also were corrected to 
account for CLAS acceptance variations for charged pions due to 
any polarization transferred to those pions in the ω decay.

4. Statistical and systematic uncertainties

A statistical uncertainty for � was determined for each kine-
matic bin, based on the definition in Eq. (2). With that definition, 
many experimental quantities (e.g., acceptance, target thickness, 
single-particle detection efficiencies) canceled in Eq. (2) so that the 
uncertainty for a particular kinematic bin was to a great extent 
dictated by statistical uncertainties in the ω yield for that bin [41,
42]. Nonetheless, the various components of the statistical uncer-
tainties have non-vanishing covariances, so the determination of 
statistical uncertainties, while straightforward, must be undertaken 
with care; details are provided in Refs. [41,54].

The relative normalization of the photon flux for the differ-
ent coherent-edge settings and polarization orientations had sta-
tistical uncertainties much less than 1%, contributing negligibly to 
the overall uncertainty in �. The effects arising from polarization 
transfer to the charged pions from ω decay used to reconstruct 
the ω provided an additional statistical uncertainty in � for each 
kinematic bin, which was conservatively set to 0.01 for all kine-
matic bins based on those simulations. This uncertainty due to 
polarization transfer was then added in quadrature to the statisti-
cal uncertainty in � from Eq. (2) to arrive at the overall statistical 
uncertainty for that kinematic bin.

The systematic uncertainties for all values of � obtained at a 
particular photon energy Eγ arose from the uncertainties in the 
polarization of the photon beam and the relative flux normaliza-
tion for that particular photon energy. By analyzing � measure-
ments for the same Eγ taken at different coherent-edge settings, 
as noted above, the systematic uncertainty in the photon beam po-
larization for a particular polarization orientation was found to be 
4%, as reported in Ref. [41]. Since two different polarization ori-
entations are combined to obtain �, and the photon-beam flux 
contributions are negligible, adding the two polarization uncertain-
ties in quadrature resulted in an estimated systematic uncertainty 
in � of 6% for all photon energies, as given in Refs. [41,42].

5. Results and comparisons with prior results

The results for � obtained here [55] are shown in Fig. 4. The 
uncertainty shown at each point is the statistical uncertainty in 
� described in Sect. 4. Since both the bremsstrahlung photon flux 
and the ω photoproduction cross section decrease as the photon 
energy increases, the uncertainties seen in the � results grow 
larger with increasing W . This effect is particularly noticeable in 
the results for the 1.9 GeV coherent edge setting, which yielded 
the data above Eγ = 1.7 GeV (i.e., W > 2.01 GeV). Beyond the 
statistical uncertainties, the entire � distribution at each center-
of-mass energy W shown in Fig. 4 possesses the 6% systematic 
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Fig. 4. (Color online.) Photon beam asymmetry � as a function of cos(θω
c.m.) for �γ p → ωp for Eγ from 1.152 GeV (W = 1.744 GeV) to 1.876 GeV (W = 2.097 GeV). 

Uncertainties for data reported here (black squares) are statistical for each point shown, and do not include a 6% systematic uncertainty at each energy. Also shown are 
results from CBELSA/TAPS (open red squares [39]) and GRAAL (blue open circles [31] and red solid circles [40]). The predictions described in the text by CQM (black dotted 
lines) and CCA (red dotted–dashed lines), as well as new fits with the Bonn–Gatchina formalism discussed in the text (black dashed and black solid lines), are also shown.
uncertainty due to the uncertainty in the polarization of the pho-
ton beam noted in Sect. 4.

The published results for � from the CBELSA/TAPS collabora-
tion [39] and the GRAAL collaboration [31,40] are also shown in 
Fig. 4. The data reported here extend knowledge of this observable 
well beyond the W range studied in those previous experiments, 
and generally have higher precision. The energy-bin width here 
(typically ∼27 MeV) is considerably smaller than that for the pre-
vious studies (typically ∼100 MeV). Near threshold where observ-
ables change rapidly, the better energy resolution of the current 
study will prove very useful to future analyses of the nucleon res-
onance spectrum. Angular resolution is also much better in the 
current results, which will enable more detailed comparisons with 
the theoretical predictions below.

As is clear from Fig. 4, our results and the previous measure-
ments of � indicate that this observable is negative and signif-
icantly different from zero near cos(θω

c.m.) = 0. This general ob-
servation will be of interest to the discussion in the next section. 
With respect to the shape of � as a function of cos(θω

c.m.), all mea-
surements suggest a generally similar angular dependence for �. 
In more detail, the overall agreement with the CBELSA/TAPS re-
sults [39] is good for all energies reported in that work, though the 
experimental uncertainties are much larger for that earlier work 
than the uncertainties in the results reported here. On the other 
hand, the results reported here generally do not agree with those 
from the GRAAL publications except at the most forward and most 
backward angles where � approaches zero. The older results from 
GRAAL [31] generally are smaller in magnitude than the data re-
ported here. The data reported here also disagree with the newer 
GRAAL measurements [40] at intermediate angles by a factor of 
about 2. Furthermore, at about Eγ ≥1.3 GeV, the two GRAAL pub-
lications appear to disagree with each other at intermediate angles. 
The results from both GRAAL publications generally disagree with 
the results from CBELSA/TAPS at most intermediate angles. Since 
the angular dependence of � in both GRAAL datasets appears sim-
ilar to that measured here and by CBELSA/TAPS, and since the 
CBELSA/TAPS results agree with the results reported here, the ob-
served discrepancies between our results and GRAAL may be due 
to an unknown systematic effect in the yield extraction for the 
more recent GRAAL publication. Regardless, our data weigh in fa-
vor of the CBELSA/TAPS results versus the GRAAL measurements.
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6. Comparison with theoretical predictions

When coupled with measurements of other observables and/or 
other reactions, these new data can provide important tests and 
constraints for theoretical predictions of the nucleon resonance 
spectrum. As examples for this discussion, three different ap-
proaches are compared with these new � data. In these compar-
isons, the reader should note that large � values at intermediate 
angles are not produced by t-channel exchange, but rather must 
arise from contributions from the s- and u-channels [10,11,19]. 
This makes measurements at those angles especially useful in test-
ing contributions of nucleon resonances.

The first set of predictions provided here (denoted CQM here-
after) used a SU (6) ⊗ SU (3) constituent-quark model with an 
effective chiral Lagrangian approach for the reaction dynamics [56,
10–13,57]. The Lagrangian for the quark-ω coupling utilized a non-
relativistic constituent-quark treatment for the nucleon. Thus, as 
suggested in Sect. 1, such an approach is an approximation to the 
idealized fundamental quark-level description of the nucleon in 
terms of QCD. The CQM consisted of three pieces: s- and u-channel 
nucleon exchange, t-channel Pomeron (natural parity) exchange, 
and t-channel π0 (unnatural parity) exchange. In this model, with 
respect to the comment above concerning large values of � at in-
termediate angles, those large asymmetries cannot be produced 
by Pomeron and/or π0 exchanges, but rather must arise through 
the interference between (1) the Pomeron and/or π0 exchange and 
(2) the (s- and u-channel) effective Lagrangian nucleon exchange. 
The tree-level diagrams were calculated explicitly in this approach, 
and the quark-model wavefunctions for the nucleons and baryon 
resonances provided a form factor for the interaction vertices. 
Consequently, all of the s- and u-channel resonances could be con-
sistently included to facilitate searching for “missing resonances.” 
A set of eight well-known resonances expressed in terms of their 
representations in SU (6) ⊗ SU (3) were included. Specifically, those 
resonances were the N(1440)1/2+ , N(1520)3/2− , N(1535)1/2− , 
N(1680)5/2+ , N(1710)1/2+ , N(1720)3/2+ , N(1900)3/2+ , and 
N(2000)5/2+ .

The CQM predictions [56] are compared with the results from 
this and prior experiments in Fig. 4. As noted above, any large 
observed asymmetry in the CQM results must arise through in-
terference effects between Pomeron and/or π0 t-channel exchange 
and the s- and u-channel contributions. Hence, the general obser-
vation above that all measurements of � in Fig. 4 are significantly 
different from zero at intermediate angles implies that such inter-
ferences indeed are present and are critical to understanding the 
data for all energies studied here. Next, we note that the param-
eters in CQM were adjusted [56] to fit the older GRAAL data [31]. 
The CQM predictions therefore do not consider more recent data. 
Thus, as expected from the discussion of previously published data, 
where the older GRAAL data exist, the CQM predictions markedly 
underpredict the data reported here. However, simply multiplying 
the predictions by a factor of 2 at those energies results in a pre-
diction very close in magnitude and shape to the data reported 
here. This suggests that the resonances used and the interferences 
found in Refs. [10–13] could still be mostly correct, aside from 
the constants used to fix the magnitudes of the various terms 
to fit the older GRAAL data. The CQM calculation indicated that 
the N(1720)3/2+ played the major role in the shape of the angu-
lar dependence seen for � near threshold to about W = 1.9 GeV. 
Given the interest in quark-based descriptions of the nucleon and 
the suggestive agreement seen between the shape of the angular 
dependence in the CQM predictions and this new data, an updated 
fit with this approach would be interesting.

A second set of predictions for � used a coupled-channels ap-
proach (denoted CCA hereafter) where pion- and photon-induced 
reactions were considered simultaneously while unitarity was pre-
served [19]. We were provided predictions for Eγ = 1.206 to 
2.012 GeV [58]. The CCA formalism was one component of a pro-
gram of analyses for electromagnetic meson production data at 
Jefferson Lab’s Excited Baryon Analysis Center. The CCA predic-
tions for π and ω production employed a set of six intermediate 
channels (πN , ηN , π�, σN , ρN , ωN), and incorporated off-shell 
effects using the dynamical coupled-channel method developed by 
Matsuyama, Sato, and Lee [59]. A large value for � in this model 
required s- and u-channel contributions in one or more partial-
waves for the ωN intermediate state. The incorporation of the 
ωN intermediate state was found to produce marked changes in 
the D15 partial-wave amplitude, underscoring the importance of 
considering multiple channels and reactions simultaneously. The 
predictions for the unpolarized differential cross sections for γ p →
ωp that were incorporated in the fit were in very good agreement 
with published data [29].

Though a large database of about 1800 data points was incor-
porated in the CCA fit, no � data for �γ p → ωp were included 
in the fit. The CCA results thus represented a true prediction for 
that observable. When the CCA predictions of Ref. [19] were com-
pared to the only � data existing at that time (the older GRAAL 
data [31]), the calculation predicted � with a magnitude greater 
than those data except at the lowest energy. By contrast, as seen 
in Fig. 4, the same CCA predictions agree well with the new data 
reported here [19,58]. Given that CCA simultaneously fits six differ-
ent channels with good success, the agreement seen in Fig. 4 sug-
gests the model likely is correct in much of its description of the 
underlying dynamics for the various reaction channels. While the 
CQM model indicated that the N(1720)3/2+ resonance was criti-
cal to understanding � near threshold, CCA found instead that the 
D13 partial-wave amplitude, using resonances with bare masses of 
1.899 GeV and 1.988 GeV, were the most significant component in 
generating the asymmetry. Given the importance of multi-channel 
coupling effects, the disagreement between CQM and CCA perhaps 
lies in a failure of the CQM calculations to respect unitarity in the 
γ p reactions. Updating the CCA work with this new data could 
clarify resonance contributions for W < 2 GeV.

A third set of calculations was developed for this publication by 
the Bonn–Gatchina group (denoted here as BG) from their partial-
wave analysis [18,21,60]. The BG analysis incorporates a large 
database (more than 2000 data points) of differential cross sections 
and spin observables from pion- and photon-induced reactions on 
the nucleon. This approach makes use of dispersion relations based 
on the N/D technique, corresponding to the solution of the Bethe–
Salpeter equation with separable interactions. Consistent in part 
with the CQM results noted above, a recent analysis with the BG 
approach of ω photoproduction using newly-available data on the 
E and G spin observables found that the J P = 3/2+ partial wave 
provided the strongest contributions to describing correctly the 
W behavior of spin observables [61]. The Pomeron exchange con-
tribution amounted to nearly half the total cross section for the 
γ p → ωp at W = 2 GeV.

Fig. 4 shows the results from these new fits using the BG ap-
proach with (black solid line) and without (black dashed line) 
considering the data reported here, indicating the impact of these 
new data on the BG parameters. As illustrated by the differences 
seen in that figure between the original BG predictions and those 
considering the data reported here, our new � data significantly 
change the BG predictions at all energies, with the differences be-
coming more pronounced as W increases. When incorporated into 
the new fits, the � data reported here helped refine details of the 
interference between the leading amplitudes in the calculation – 
the Pomeron exchange and the resonant portion of the J P = 3/2+
partial wave – as well as the resonant portions of the smaller par-
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tial waves (e.g., the J P = 1/2− , 3/2− , and 5/2+). Further details 
and discussion of this new BG analysis will form the subject of a 
subsequent publication.

7. Conclusions

The results of the experiment reported here have provided hun-
dreds of new high-precision data for � for the reaction �γ p → ωp, 
nearly quadrupling the size of the database for this observable. 
The results resolve the disagreements between the previously pub-
lished datasets from CBELSA/TAPS and GRAAL, where agreement 
between the CBELSA/TAPS results and the results reported here 
would suggest that the GRAAL measurements are systematically 
too small. Our results also extend the database for � to higher en-
ergies, facilitating explorations of nucleon excitations within that 
energy regime. An initial study with the BG partial-wave approach 
indicates these new data significantly impact the predictions for �
using that approach, showing that these new data will help further 
refine understanding of the interference of many of the partial-
wave amplitudes that contribute to the ωp photoproduction reac-
tion. Similar comparisons with other theoretical models will fur-
ther enhance our knowledge of the nucleon resonance spectrum.
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