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New results on the single-differential and fully integrated cross sections for the process γvp → p′π+π− are
presented. The experimental data were collected with the CLAS detector at Jefferson Laboratory. Measurements
were carried out in the kinematic region of the reaction invariant massW from 1.3 to 1.825 GeV and the photon
virtuality Q2 from 0.4 to 1.0 GeV2. The cross sections were obtained in narrow Q2 bins (0.05 GeV2) with the
smallest statistical uncertainties achieved in double-pion electroproduction experiments to date. The results were
found to be in agreement with previously available data where they overlap. A preliminary interpretation of
the extracted cross sections, which was based on a phenomenological meson-baryon reaction model, revealed
substantial relative contributions from nucleon resonances. The data offer promising prospects to improve
knowledge on the Q2 evolution of the electrocouplings of most resonances with masses up to ∼1.8 GeV.

DOI: 10.1103/PhysRevC.98.025203

I. INTRODUCTION

During the past several decades, experiments have been
performed in laboratories all over the world in order to investi-
gate exclusive reactions ofmeson photo- and electroproduction
off proton targets. This investigation is typically carried out
through the detailed analysis of the experimental data with the
goal of extracting various observables. Further theoretical and
phenomenological interpretations of the extracted observables
provide valuable information on nucleon structure and features
of the strong interaction [1–4].

A large amount of experimental data on exclusive meson
photo- and electroproduction has been collected in Hall B at
Jefferson Laboratory with the CLAS detector [5]. The analysis
of these data has already provided a lot of information on
differential cross sections and different single- and double-
polarization asymmetries with almost complete coverage of
the final hadron phase space.1 Some kinematic areas, however,
are still lacking this information.

This paper introduces new information on the fully in-
tegrated and single-differential cross sections of the re-
action γvp → p′π+π− at 1.3GeV < W < 1.825GeV and
0.4 GeV2 < Q2 < 1.0 GeV2. The cross sections were ex-
tracted along the standards of the CLAS data analysis and
added into the CLAS physics database [6]. They are also
available on GitHub [7]. High experimental statistics allow
for narrow binning (i.e., 0.05 GeV2 inQ2 and 25 MeV inW ),
as well as smaller statistical uncertainties than were achieved
in previous studies of double-pion electroproduction cross

1The numerical results on observables measured with the CLAS
detector are available in the CLAS physics database [6].

sections [8–10]. The conditions of the experiment and the data
analysis procedure are described in Secs. II–IV.

The kinematic region covered by the analyzed data has
already been partially investigated bymeasurements of double-
pion electroproduction cross sections [8,9]. The cross sections
reported in Ref. [8], although extracted inQ2 bins of the same
width (0.05 GeV2), overlap with the present results only in
the low region 0.45 GeV2 < Q2 < 0.6 GeV2 and W up to
∼1.55GeV. The comparison of the present results with the
measurements fromRef. [8] is given in Sec.VB. The cross sec-
tions reported in Ref. [9] for 1.4GeV < W < 1.825GeV, that
have been extracted in much widerQ2 bins 0.5 GeV2 < Q2 <
0.8 GeV2 and 0.8 GeV2 < Q2 < 1.1 GeV2, also partially
overlap with the results reported here. However, since they
have been averaged over a largeQ2 range, direct comparisons
with these data are not straightforward and are not shown
here.

One of the promisingways tomove closer to the understand-
ing of nucleon structure and principles of the strong interaction
is the study of nucleon excited states [1–4]. The extracted cross
sections are of great significance for these studies because of
the essential sensitivity of the double-pion electroproduction
channel to the manifestation of resonances above !(1232).
Most of these excited states have a considerable branching
ratio to the Nππ final state, especially those with masses
above 1.6 GeV, which are known to decay mostly by the
emission of two charged pions. Beside that, the reported cross
sections benefit from a narrow Q2 binning, which is valuable
for investigating the resonant structure through establishing the
Q2 evolution of the resonance electrocouplings.

The most common way to investigate nucleon resonances
is to perform a phenomenological analysis of the observables
within a reaction model, as in the case of the double-pion
exclusive channel with the JLab - Moscow State University

025203-2



MEASUREMENTS OF THE … PHYSICAL REVIEW C 98, 025203 (2018)

(Russia) model JM [11]. This model, which aims at the
extraction of resonance electrocouplings and the identification
of different reaction mechanisms, has proven itself as an
effective tool for the analysis of the experimental cross sections
[11–13].

Section V introduces the JM-model-based preliminary in-
terpretation of the extracted cross sections, which includes
the estimation of contributions from nucleon resonances. The
relative resonant contributions to the cross section are found to
range from 20% to 70% (depending on the kinematic region),
which is a very promising indication that a reliable extraction
of the resonance electrocouplings within the JMmodel will be
possible.

The complete analysis of the present cross sections within
the JM model, which aims to determine the evolution of
the electrocouplings of most nucleon resonances with masses
up to ∼1.8GeV (including the new potential candidate state
N ′(1720)3/2+ [14]), will be the subject of a future publication.

II. EXPERIMENTAL SETUP

The data reported in this paper were acquired at Jefferson
Laboratory (JLab) Hall B with the CEBAF Large Acceptance
Spectrometer (CLAS) [5], which consisted of six sectors that
were operated as independent detectors. Each sector included
drift chamber (DC), a Čerenkov counter (CC), a time-of-flight
system (TOF), and a sampling electromagnetic calorimeter
(EC). The CLAS detector had a toroidal magnetic field that
bent charged particle trajectories and therefore allowed for the
determination of their momenta in the DC. The electron beam
was provided by the Continuous Electron Beam Accelerator
Facility (CEBAF). The measurements were part of the “e1e”
run period that lasted from November 2002 until January 2003
and included several datasets with different configurations
(hydrogen and deuterium targets as well as two different beam
energies of 1 and 2.039 GeV).

The experimental configuration for the analyzed dataset
was the following. The torus field setting was such as to
bend negative particles toward the beam line (in-bending
configuration). The data were obtainedwith a 2-cm-long liquid
hydrogen target, located at −0.4 cm along the z axis (near the
center of CLAS) and a 2.039-GeV electron beam.

The target was specific to the “e1e” run period and its setup
is presented in Fig. 1. In order to avoid bubble formation, the
target had a special conical shape that allowed draining the
bubbles away from the beam interaction region. The target
cell had 15-µm-thick aluminum entrance and exit windows.
In addition, an aluminum foil was located downstream of the
target. This foil was made exactly the same as the entry/exit
windows of the target cell and served for both the estimation
of the number of events that originated in the target windows
and the precise determination of the target z position along the
beam line.

The dataset included runs with the target cell filled with
liquid hydrogen (full) as well as runs with an empty target cell
(empty). The latter served to subtract the contribution from
the background events produced by the scattering of electrons
on the target windows. In Fig. 2, the distributions of electron
coordinate z at the interaction vertex are shown for events

15 µm Al
Target windows

Kapton cell wallsµmRadius = 0.35 − 0.60 cm 50
Nominal length = 2 cm

Torlon base

FIG. 1. The target cell and support structure used during the
CLAS “e1e” run period.

from both empty (dashed curve) and full (solid curve) target
runs. Both distributions are normalized to the corresponding
charge accumulated on the Faraday cup (FC). The value of
the vertex coordinate z was corrected for the effects of beam
offset2 at the stage of data calibration. Both distributions
in Fig. 2 demonstrate the well-separated peak around ze′ =
2.4 cm originating from the downstream aluminum foil. The
distribution of events from the empty target runs also shows
two other similar peaks that correspond to the windows of the
target cell. In addition to the empty target event subtraction, a
cut on the z coordinate of the electron was applied. This cut is
shown by the two vertical lines in Fig. 2: Events outside these
lines were excluded from the analysis.

III. EXCLUSIVE REACTION EVENT SELECTION

To identify the reaction ep → e′p′π+π−, the scattered
electron and at least twofinal-state hadrons need to be detected,
while the four-momentum of the remaining hadron can be

2The beam offset is the deviation of the beam position from the
CLAS central line (x, y) = (0, 0) that can lead to the inaccurate
determination of the vertex position.
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FIG. 2. Distributions of the electron z coordinate at the vertex for
full (solid curve) and empty (dashed curve) target runs. The vertical
lines show the applied cuts.Both full and empty target distributions are
normalized to the corresponding charge accumulated on the Faraday
cup (FC).
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FIG. 3. Sampling fraction distributions for the data (top plot) and
theMonte Carlo (bottom plot). Both plots correspond to CLAS sector
1. Events between the curveswere treated as good electron candidates.

calculated from energy-momentum conservation. The fastest
particle that gives signals in all four parts of the CLAS detector
(DC, CC, TOF, and EC) was chosen as the electron candidate
for each event. To identify hadrons, only signals in the DC and
TOF were required.

A. Electron identification

To reveal good electrons from all electron candidates,
electromagnetic calorimeter (EC) and Čerenkov counter (CC)
responses were analyzed.

According to Ref. [15], the overall EC resolution as well
as uncertainties in the EC output summing electronics lead to
the fluctuation of the EC response near the hardware threshold.
Therefore, to select only reliable EC signals, a minimal cut on
the scattered electronmomentumPe′ (which is known from the
DC) should be applied at the software level. As was suggested
in Ref. [15], this cut was chosen to be Pe′ > 0.461GeV.

In the next step, a so-called sampling fraction cut was
applied to eliminate in part the pion contamination. To develop
this cut, the fact that electrons and pions had different energy
deposition patterns in the EC was used. The energy deposited
by an electron (Etot ) is proportional to its momentum (Pe′ ),
while a π− loses a constant amount of energy per scintillator
(≈2 MeV/cm) independently of its momentum. Therefore,
for electrons the quantity Etot/Pe′ plotted as a function of Pe′

should follow a straight line that is parallel to the x axis (in
reality this line has a slight slope). This line is located around
the value 1/3 on the y axis, since by the EC design an electron
loses about 1/3 of its energy in the active scintillators.

In Fig. 3, the total energy deposited in the EC divided
by the particle momentum is shown as a function of the
particle momentum for the data (top plot) and the Monte
Carlo (bottom plot). In this figure, a cut on the minimal
scattered electron momentum is shown by the vertical line
segment,while the other two curves correspond to the sampling
fraction cut that was determined via a Gaussian fit to different
momentum slices of the distribution. The distributions for the
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FIG. 4. The CC regions with reliable detection efficiency are
shown in black as a function of the polar (θcc) and azimuthal (ϕcc)
angles in theCCplane for CLAS sector 1. These regionswere selected
according to the criterion (1). The curves, which are superimposed on
the distribution, show an overall fiducial cut that was applied in the
CC plane.

experimental data and theMonte Carlo simulation differ, since
the former is plotted for inclusive electrons, while the latter is
for simulated double pion events only. The mean value of the
simulated distribution turned out to be slightly below that of
the experimental one due to the approximations used in the
reproduction of electromagnetic showers in the Monte Carlo
reconstruction procedure.

To improve the quality of electron candidate selection
and π−/e− separation, a Čerenkov counter was used. As
was shown in Ref. [16], there was a contamination in the
measured CC spectrum that manifested itself as a peak at
low number of photoelectrons (the so-called few photoelectron
peak). The main source of this contamination was found to
be the coincidence of accidental photomultiplier tube (PMT)
noise with a pion track measured in the DC [16].

It turned out that the CC had some inefficient zones that
could not be simulated by the Monte Carlo technique as being
too dependent on specific features of the CC design. Signals
from these zones, being depleted of photoelectrons, shifted
the measured CC spectrum toward zero and therefore add up
to the few photoelectron peak. Thus the inefficient zones can be
differentiated from the efficient ones by amore pronounced few
photoelectron peak. The following criterion for the geometrical
selection of the efficient zones in theCCwas used (seeRef. [17]
for details)

NNph. el.>5(θcc,ϕcc)

Ntot(θcc,ϕcc)
> 0.8, (1)

where the denominator corresponds to the total number of
events in the particular (θcc,ϕcc) bin, while the numerator
corresponds to the number of events with more than five
photoelectrons in the same (θcc,ϕcc) bin. The polar (θcc) and
azimuthal (ϕcc) angles of the electron candidate are defined in
the CC plane.

In Fig. 4, the distribution of the CC regions with reliable
detection efficiency, which were selected according to the
criterion (1), are shown in black as a function of θcc and ϕcc for
CLAS sector 1. As is seen in Fig. 4, there was an inefficient
area in the middle of the sector (shown in white). This was
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FIG. 5. Number of photoelectrons for the left-side PMT in seg-
ment 10 of sector 1 of the CC. The black curve shows the fit by
the function given by Eq. (2). The vertical line shows the applied cut.
Regions that are needed to calculate the correction factor [see Eq. (3)]
are shown as hatched and in black.

expected since two CC mirrors were joined there. The curves,
which are superimposed on the distribution, show an overall
fiducial cut that is applied in the CC plane. Then, within that
overall cut, for both the experimental data and theMonte Carlo
simulation, only electron candidates that originated from the
black regions were analyzed.

Although being substantially reduced after elimination of
signals from the inefficient zones, the few-photoelectron peak
was still present in the experimental CC spectrum as shown
in Fig. 5. This peak in the photoelectron distribution was cut
out for each PMT in each CC segment individually. The cut
position for one particular PMT is shown by the vertical line in
Fig. 5. Since therewas nowayof reproducing the photoelectron
spectrum by a Monte Carlo simulation, this cut was applied
only to the experimental data, and good electrons lost in this
way were recovered by the following procedure. The part of
the distribution on the right side of the vertical line was fit
by the function given by Eq. (2), which is a slightly modified
Poisson distribution,

y = P1

⎛

⎝ P
x
P2
3

"
(
x
P2

+ 1
)

⎞

⎠e−P3 , (2)

where P1, P2, and P3 are free fit parameters.
The fitting function was then continued into the region on

the left side of the vertical line. In this way, the two regions,
shown in black and hatched in Fig. 5, were determined. Finally,
the correction factors were defined by Eq. (3) and applied as
a weight for each event which corresponded to the particular
PMT:

Fph. el. =
hatched area + black area

hatched area
. (3)

The correction factor Fph. el. depended on PMT number and
was typically on the level of a few percent.

B. Hadron identification

The CLASTOF system provided timing information, based
onwhich the velocity (βh = vh/c) of the hadron candidate was
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FIG. 6. βh vs momentum distributions for positively charged
hadron candidates (topplot) andnegatively chargedhadron candidates
(bottom plot) for scintillator number 34 in CLAS sector 1. The black
solid curves correspond to the nominal βn given by Eq. (4). Events
between the dashed and dot-dashed curves were selected as π+ (π−)
and protons, respectively.

calculated. The value of the hadron candidate momentum (ph)
was in turn provided by the DC. The charged hadron can be
identified by a comparison of βh, determined by the TOF, with
βn given by

βn =
ph√

p2
h +m2

h

, (4)

where βn is the nominal value that is calculated using the
hadron candidate momentum (ph) and an exact hadron mass
assumption mh.

The experimental event distributions βh versus ph were
investigated for each TOF scintillator in each CLAS sector.
An example of these distributions is shown in Fig. 6 for
positively charged hadron candidates (top plot) and negatively
charged hadron candidates (bottom plot). The example is given
for scintillator 34 of CLAS sector 1. In Fig. 6, the solid
curves are given for βn calculated according to Eq. (4) for
the corresponding hadron mass assumptions. The event bands
of the pion and proton candidates are clearly seen around the
corresponding βn curves. The dashed curves show the cuts that
were used for pion identification, while the dot-dashed curves
serve to identify protons.
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During the run, some TOF scintillator counters worked
improperly and therefore their signals were considered to be
unreliable and were removed from consideration in both data
and simulation. For properly working counters, the hadron
identification cuts were chosen to be the same as shown in
Fig. 6. They were applied on both experimental and recon-
structed Monte Carlo events. It was found that for some
scintillators the hadron candidate bands in the experimental
distributions were slightly shifted from the nominal positions.
A special procedure was developed to correct the timing
information for the affected TOF counters [17].

C. Momentum corrections

Because of slight misalignments in the DC positions, small
inaccuracies in the description of the torus magnetic field, and
other possible reasons, the measured momentum and angle
of particles had some small systematic deviations from the
real values. Since the effects were of an unknown origin, they
could not be simulated, and therefore a special momentum
correction procedure was needed for the experimental data.
According to Ref. [18], the evidence of the need of such
corrections is most directly seen in the dependence of the
elastic peak position on the azimuthal angle of the scattered
electron. It is shown in Ref. [18] that the elastic peak position
turns out to be shifted from the proton mass value and this
shift depends on CLAS sector.

The significance of the above effect depends on the beam
energy. It was found that in this dataset, with the beam energy
of 2.039 GeV, a small shift (∼3 MeV) in the elastic peak
position took place, while Ref. [18] demonstrated that in the
case of 5.754-GeV beam energy, this shift reached 20 MeV.
Moreover, Ref. [18] also showed that this effect became
discernible only if the particle momentum was sufficiently
high (e.g., for pions the correction was needed only if their
momentum was higher than 2 GeV). Here, because of the
small beam energy and the fact that in double-pion kinematics
hadrons carry only a small portion of the total momentum,
the correction is needed only for electrons, while deviations
in hadron momenta can be neglected.

The electron momentum corrections used for this dataset
were developed according to Ref. [18] for each CLAS sector
individually and included an electron momentum magnitude
correction, as well as an electron polar angle correction.
Although the corrections were established using elastic events,
they were applied for all electron candidates in the dataset.
The influence of these corrections on the elastic peak position
is shown in Fig. 7. The corrections bring the position of the
elastic peak closer to the proton mass for all six CLAS sectors.

The above effects do not lead to substantial distortions of
the hadron momenta. However, hadrons lose a part of their
energy due to their interaction with detector and target media,
and hence their measured momentum appears to be lower than
the actual value. Simulation of the CLAS detector correctly
propagates hadrons through themedia and, therefore, the effect
of the hadron energy loss is included into the efficiency and
does not impact the extracted cross section value. However,
in order to avoid shifts in the distributions of some kinematic
quantities (e.g., missing masses) from their expected values,
an energy loss correction was applied to the proton momentum

1 2 3 4 5 6
Sector number
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FIG. 7. Elastic peak position for six CLAS sectors before
(squares) and after (stars) the electron momentum correction. The
horizontal line shows the proton mass.

magnitude, since the low-energy protons were affected the
most by energy loss in the materials. The simulation of the
CLAS detector was used to establish the correction function,
which then was applied for both experimental and recon-
structed Monte Carlo events.

D. Other cuts

1. Fiducial cuts

The active detection solid angle of the CLAS detector was
smaller than 4π [5] as the areas covered by the torus field coils
were not equipped with any detection system, thus forming
gaps in the azimuthal angle coverage. In addition, the detection
area was also limited in polar angle from 8◦ up to 45◦ for
electrons and up to 140◦ for other charged particles. The edges
of the detection area, being affected by rescattering from the
coils, field distortions, and similar effects, should be excluded
from consideration by applying specific (fiducial) cuts on the
kinematic variables (momentum and angles) of each particle.
These cuts were applied for both real events and Monte Carlo
reconstructed events.

The “e1e” run period used a torus magnetic field config-
uration that forced negatively charged particles to be inbend-
ing. For these particles, sector-independent, symmetrical, and
momentum-dependent cuts were applied. Figure 8 shows the
number of detected electrons (top plot) and π− (bottom plot)
as a function of the angles ϕ and θ for CLAS sector 1 in a
specific momentum slice. The angles ϕ and θ were taken at the
interaction vertex. The solid black curves correspond to the
applied fiducial cuts that select the regions with a relatively
flat particle density along the azimuthal angle.

For positively charged particles, which were outbending
in the “e1e” run period, momentum-independent and slightly
asymmetrical fiducial cuts are the best choice. These cuts were
established in the sameway as for negatively charged particles,
i.e., by selecting the areas with a relatively flat particle density
along the ϕ angle. In Fig. 9, these cuts are shown by the
black curves that are superimposed on the ϕ versus θ event
distributions for protons (top plot) and π+ (bottom plot). All
angles are given at the interaction vertex.
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Some additional inefficient areas, not related to the CLAS
geometrical acceptance, were revealed in this dataset. These
areas were typically caused by the DC and TOF system
inefficiencies (dead wires or PMTs). To exclude them from
consideration, additional fiducial cuts on the θ versus momen-
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FIG. 9. Fiducial cuts for positively charged particles. The top plot
shows the ϕ vs θ distribution for protons, while the bottom plot
corresponds to that for π+. Both distributions are given for sector
1 of CLAS and the range over momentum specified in the plots. The
solid black curves show the applied fiducial cuts.
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FIG. 10. θ vs momentum distribution for π+ in CLAS sector 1.
The angle θ was taken at the point of the interaction. The black curves
show the applied fiducial cuts.

tum distributions were applied, where θ was taken at the point
of the interaction. These cuts were different for each CLAS
sector. An example of the cut for a π+ in sector 1 of CLAS is
shown by the black curves in Fig. 10.

2. Data quality check

During a long experimental run, variations of the exper-
imental conditions, e.g., fluctuations in the target density or
changes in the response of parts of the detector, can lead to
fluctuations in event yields. Only the parts of the run with
relatively stable event rates should be considered. Therefore,
cuts on data acquisition (DAQ) live time and number of events
per Faraday cup (FC) charge need to be established.

The FC charge was updated with a given frequency, and
hence the whole run time could be divided into blocks. Each
block corresponded to the portion of time between two FC
charge readouts. Theblocknumber ranged fromone to a certain
maximum number over the run time.

The DAQ live time is the portion of time within the block
during which the DAQ was able to accumulate events. A
significant deviation of the live time from the average value
indicates event rate alteration.

In Fig. 11, the number of blocks is shown as functions of
the DAQ live time and the yields of inclusive and elastic events
normalized to FC charge (from top to bottom). The blocks
between the vertical black lines in Fig. 11 were taken into
consideration.

3. Exclusivity cut

For picking out the reaction ep → e′p′π+π−, it is sufficient
to register two final-state hadrons along with the scattered
electron. The four-momentum of the remaining unregistered
hadron can be recovered using energy-momentum conserva-
tion (the “missing mass” technique). Thus one can distinguish
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FIG. 11. Data quality check plots. The number of blocks as a
function of the DAQ live time (top plot), and the yields of inclusive
(middle plot) and elastic (bottomplot) events normalized to FC charge
are shown. The vertical black lines show the applied cuts.

between four different event topologies depending on the
specific combination of registered final hadrons (X is the
undetected part):

(1) ep → e′p′π+X,
(2) ep → e′p′π−X,
(3) ep → e′π+π−X, and
(4) ep → e′pπ+π−X.

Because of the experimental conditions, topology 1 with a
π− missing contains about 50% of the total statistics, while
the remaining half of the total is relatively equally distributed
among the other topologies that require a π− detection. This
uneven distribution of the statistics between the topologies
originates from the fact that CLAS does not cover the polar
angle range 0 ◦ < θlab < 8 ◦ [5]. The presence of this forward
acceptance hole does not affect much the registration of the

positive particles (p and π+), since their trajectories are bent
by the magnetic field away from the hole, whereas the negative
particles (e and π−) are inbending so that their trajectories
are bent in the forward direction. Electrons, having generally
a high momentum, undergo small track curvature, and the
presence of the forward hole leads for them only to a constraint
on theminimal achievableQ2.However, for negative pions, the
situation is dramatic: Being heavier and slower, they are bent
dominantly into the forward detector hole and therefore most
of them cannot be detected. This leads to the fact that the π−

missing topology contains the dominant part of the statistics.
The topologieswere defined so that they did not overlap. For

example, the topology ep → e′p′π+X required the presence
of e′, p′, and π+ candidates and the absence of π− candi-
dates, avoiding in this way double counting. In most of the
CLAS papers on double-pion electroproduction [8–10], only
topologies 1 and 4 were used. However, in this study all four
topologies were used in combination. This approach allowed
not only an increase of the analyzed statistics (about 50%),
but also population of events in a broader part of the reaction
phase space, since the topologies had nonidentical kinematic
coverage.

For the case when one of the final hadrons was not detected,
the missing mass MX for the reaction ep → e′h1h2X is
determined by

M2
X =

(
Pe + Pp − Pe′ − Ph1 − Ph2

)2
, (5)

where Ph1 and Ph2 are the four-momenta of the registered
final-state hadrons, Pe and Pp the four-momenta of the initial
state electron and proton, and Pe′ is the four-momentum of the
scattered electron.

For topology 4, the missing massMX for the reaction ep →
e′p′π+π−X is given by

M2
X = (Pe + Pp − Pe′ − Pπ+ − Pπ− − Pp′ )2, (6)

where Pe, Pp, Pe′ , Pπ+ , Pπ− , and Pp′ are the four-momenta of
the initial- and final-state particles.

The distributions of the missing mass squared (M2
X) for

various topologies are shown in Fig. 12 for 1.675GeV < W <
1.7GeV in comparison with the Monte Carlo. The stars show
the experimental data,while the curves are from the simulation.
The plots in Fig. 12 represent the topologies 1 to 4 from
top to bottom. The arrows show the applied exclusivity cuts.
Each distribution in Fig. 12 is normalized to the corresponding
integral.

Figure 12 demonstrates good agreement between the exper-
imental and theMonte Carlo distributions, since the simulation
included both radiative effects and a background fromother ex-
clusive channels. The former was taken into account according
to the inclusive approach [19]. Themain source of the exclusive
background was found to be the reaction ep → e′p′π+π−π0.
The events for that reaction were simulated along with the
double-pion events, considering the ratio of three-pion/double-
pion cross sections taken from Ref. [20]. The simulation of
double-pion events was carried out based on the JM05 version
of double-pion productionmodel [21–23], while for three-pion
events a phase space distribution was assumed.
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FIG. 12. Missing mass squared (M2
X) distributions for the four

event topologies for 1.675GeV < W < 1.7GeV and 0.45 GeV2 <

Q2 < 0.5 GeV2 in comparison with the Monte Carlo. The stars show
the experimental data, while the curves are from the simulation. The
plots show the topologies 1 to 4 from top to bottom. The arrows show
the applied exclusivity cuts. Each distribution is normalized to the
corresponding integral.

For the purpose of the cross section calculations, experi-
mental events from all four topologies were summed up in
each multi-dimensional bin. With respect to the simulation,
the reconstructed Monte Carlo events were also subject to the
same summation.

IV. CROSS SECTION CALCULATION

A. Kinematic variables

Once the selection of the double-pion events has been
carried out, the four-momenta of the final-state hadrons are
known (either detected or calculated as missing) and defined in
the laboratory frame that corresponds to the system where the
target proton is at rest and the axis orientation is the following:
zlab, along the beam; ylab, pointing upward with respect to the
Hall floor; and xlab, along [y⃗lab × z⃗lab].

The cross sections were obtained in the single-photon
exchange approximation in the center-of-mass frame of the
virtual photon–initial proton system (c.m.s.). The c.m.s. is
uniquely defined as the system where the initial proton and
the virtual photon exchanged in the scattering move towards
each other with the axis zc.m.s. along the photon and the net
momentum equal to zero. The axis xc.m.s. is situated in the
electron scattering plane, while yc.m.s. is along [z⃗c.m.s. × x⃗c.m.s.].

To transform the laboratory system to the c.m.s., two
rotations and one boost should be performed [17]. The first
rotation situates the axis x in the electron scattering plane. The
second one aligns the axis z with the virtual photon direction.
Then the boost along z is performed.

Thekinematic variables that describe thefinal hadronic state
are calculated from the four-momenta of the final hadrons in
the c.m.s. [8,10]. The three-body final state is unambiguously
determined by five kinematic variables. Beside that, the vari-
ables W and Q2 are needed to describe the initial state.

There are several ways to choose the five variables for
the description of the final hadronic state. In this study, the
following generalized set of variables is used [8,10,11,17,24]:

(1) invariant mass of the first pair of hadronsMh1h2 ;
(2) invariant mass of the second pair of hadrons Mh2h3 ;
(3) the first hadron solid angle #h1 = (θh1,ϕh1 );
(4) the angle αh1 between the two planes (i) defined by

the three-momenta of the virtual photon (or initial
proton) and the first final-state hadron and (ii) defined
by the three-momenta of all final state hadrons (see the
Appendix).

The cross sections were obtained in three sets of variables
depending on various assignments for the first, second, and
third final hadrons:

(1) first p′, second π+, third π−:
Mp′π+ ,Mπ+π− , θp′ , ϕp′ , αp′ (or α(pp′ )(π+π− )),

(2) first π−, second π+, third p′:
Mπ−π+ ,Mπ+p′ , θπ− , ϕπ− , απ− (or α(pπ− )(p′π+ )), and

(3) first π+, second π−, third p′:
Mπ+π− ,Mπ−p′ , θπ+ , ϕπ+ , απ+ (or α(pπ+ )(p′π− )).

B. Binning and kinematic coverage

The kinematic coverage in the initial-state variables is
shown by the Q2 versus W distribution in Fig. 13. The
distribution represents the number of exclusive double-pion
events left after the cuts and corrections described above. The
white boundary limits the analyzed kinematic area, where the
double-pion cross sections were extracted, and encompasses
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FIG. 13. Q2 versus W distribution populated with selected
double-pion events. The cross section was calculated in two-
dimensional (2D) cells within the white boundaries.

about 1.2 million events. The black grid demonstrates the
chosen binning in the initial-state variables.

The binning in the hadronic variables is listed in Table I.
It was chosen to maintain reasonable statistical uncertainties
of the single-differential cross sections for allW andQ2 bins.
The binning choice also takes into account the cross section
drop near the double-pion production threshold at≈1.22GeV,
as well as the broadening of the reaction phase space with
increasing W .

Special attention is required for the binning in the invariant
masses. The upper and lower boundaries of the invariant mass
distributions depend on the hadron masses and W as

Mlower = mh1 +mh2 and

Mupper(W ) = W − mh3, (7)

where mh1 , mh2 , and mh3 are the masses of the final hadrons.
Since the cross section is calculated in a bin Wleft < W <

Wright, the boundary of Mupper is not distinct. For the purpose
of binning in mass, the value of Mupper was calculated using
Wcenter, at the center of theW bin. As a result, some events with
W > Wcenter turned out to be located beyondMupper. Hence, it
was decided to use a specific arrangement of mass bins with
the bin width !M determined as

!M =
Mupper(Wcenter ) − Mlower

Nbins − 1
, (8)

where Nbins is the number of the bins specified in the first row
of Table I.

The chosen arrangement of bins forces the last bin to be
situated completely out of the boundaries givenbyEq. (7) using

TABLE I. Number of bins for each hadronic variable.

Hadronic variable W range (GeV)

1.3–1.35 1.35–1.4 1.4–1.45 >1.45

M Invariant mass 8 10 12 12
θ Polar angle 6 8 10 10
ϕ Azimuthal angle 5 5 5 8
α Angle between planes 5 6 8 8

dσ
dM

h
1h

2

MNbins−1
left Wleft −mh3 MNbins−1

right Wright −mh3 Mh1h2

Wleft < W < Wright

FIG. 14. Schematic representation of the invariant mass distri-
butions ending in Mupper calculated according to Eq. (7) for three
choices ofW atWleft (dot-dashed),Wcenter (solid), andWright (dashed).
The black points at MNbins−1

left and M
Nbins−1
right show the left and right

boundaries of the next to last bin, respectively.

Wcenter. The cross section for this extra bin was very small, but
it was kept so that no events were lost. When integrating the
cross section over the mass distribution, these events in the
extra bin were included, but a cross section for this bin is not
reported.

The cross section in the next to last bin (labeled as bin
number Nbins − 1) should be treated carefully. This is best il-
lustrated in Fig. 14, which shows schematically the distribution
of events in mass, ending in Mupper for three choices of W
at Wleft (dot-dashed), Wcenter (solid), and Wright (dashed). The
black points at MNbins−1

left and MNbins−1
right show the left and right

boundaries of the next to last bin, respectively. In the next to
last bin events with W < Wcenter are distributed over a range,
which is less than !M defined by Eq. (8). However, when
extracting the cross sections, the event yield was divided by
the full bin width !M , thus leading to an underestimation of
the cross section.

The correction for this effect was made using the TWOPEG
double-pion event generator [25], because the statistics of the
experimental data were not sufficient for this purpose. The
correction factor to the cross section in the next to last bin is
the ratio of the simulated cross sections calculated with fixed
!M defined by Eq. (8) and with !̃M = W − mh3 − MNbins−1

left ,
which was different for each generated event. This factor
provided the correction to the cross section in the next to last
bin that varied from 5% to 10%.

In addition to the above procedure, one more binning issue
should be considered. The cross section extracted within the
bin in any kinematic variable was assigned to its central
point. In the areas with nonlinear cross section behavior, the
finite bin size caused the distortion of the cross section value
due to its averaging within the bin. To cure this effect, a
binning correction was applied that included a cubical spline
approximation for the cross section shape [17]. The typical
value of the correction was∼1% rising up to 4% for some data
points at low W .

C. Cross section formula

In the single-photon exchange approximation, the virtual
photoproduction cross section σv (which is the focus of this
paper) is connected with the experimental electron scattering
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cross section σe via
d5σv

d5τ
= 1

"v

d7σe

dWdQ2d5τ
,

d5τ = dMh1h2dMh2h3d#h1dαh1 . (9)
Here d5τ is the differential of the five independent variables

of the final π+π−p state that were described in Sec. IVA, "v
is the virtual photon flux given by

"v(W,Q2) = α

4π
1

E2
beamm

2
p

W
(
W 2 − m2

p

)

(1 − εT)Q2
, (10)

where α is the fine structure constant (1/137),mp is the proton
mass, Ebeam = 2.039GeV is the energy of the incoming elec-
tron beam, and εT is the virtual photon transverse polarization,
given by

εT =
[
1+ 2

(
1+ ν2

Q2

)
tan2

(
θe′

2

)]−1

. (11)

Here ν = Ebeam − Ee′ is the virtual photon energy, while
Ee′ and θe′ are the energy and the polar angle of the scattered
electron in the laboratory frame, respectively.

The experimental electron scattering cross section σe intro-
duced in Eq. (9) was calculated as

d7σe

dWdQ2d5τ
= 1

ER

(
Nfull
Qfull

− Nempty

Qempty

)

!W!Q2!5τ
(
lρNA

qeMH

) , (12)

where Nfull and Nempty are the numbers of selected double-
pion events inside the seven-dimensional bin for runs with
hydrogen and empty target, respectively. Each event was
weighted with the corresponding photoelectron correction
factor given byEq. (3). AlsoQfull = 5999.64µCandQempty =
334.603 µC are the values of the charge accumulated on the
Faraday cup for runs with hydrogen and empty target, respec-
tively, and qe = 1.6 × 10−19 C is the elementary charge, ρ =
0.0708 g/cm3 is the density of liquid hydrogen at a temperature
of 20 K, l = 2 cm is the length of the target, MH = 1.00794
g/mol is the molar density of the natural mixture of hydrogen,
and NA = 6.02 × 1023 mol−1 is Avogadro’s number.

In Eq. (12), E = E (!W,!Q2,!5τ ) is the detector effi-
ciency for the seven-dimensional bin coming from the Monte
Carlo simulation and R = R(!W,!Q2) is the radiative cor-
rection factor described in Sec. IVE.

The electron scattering cross section in the left-hand side of
Eq. (12) was assumed to be obtained in the center of the finite
seven-dimensional kinematic bin !W!Q2!5τ .

The limited statistics of the experiment did not allow
estimates of the five-fold differential cross section σv with a
reasonable accuracy. Therefore, being obtained on the multi-
dimensional grid, the cross section σv was then integrated
over at least four hadron variables. Hence only the sets of
the single-differential and fully integrated cross sections are
presented as a result here.

For each bin inW andQ2, the following cross sections were
obtained:

dσv

dMh1h2

=
∫

d5σv

d5τ
dMh2h3d#h1dαh1 ,

dσv

dMh2h3

=
∫

d5σv

d5τ
dMh1h2d#h1dαh1 ,

dσv

d
(
−cosθh1

) =
∫

d5σv

d5τ
dMh1h2dMh2h3dϕh1dαh1 ,

dσv

dαh1

=
∫

d5σv

d5τ
dMh1h2dMh2h3d#h1 , and

σ int
v (W,Q2) =

∫
d5σv

d5τ
dMh1h2dMh2h3d#h1dαh1 . (13)

Since the cross sections were obtained on the five-
dimensional kinematic grid, integrals in Eq. (13) were cal-
culated numerically on that grid.

D. Efficiency evaluation

For the Monte Carlo simulation, the GENEV event gener-
ator [26] developed by Genova group was used. This event
generator uses the JM05 model [23] for the investigated
double-pion channel, while for the background channel ep →
e′p′π+π−π0, which was generated along with the main one,
GENEV assumes a phase-space distribution for all kinematic
variables. The simulation accounts for radiative effects accord-
ing to the approach described in Ref. [19].

The generated events were passed through the GEANT-
based detector simulation and reconstruction procedures. The
efficiency factor E from Eq. (12) was then calculated in each
!W!Q2!5τ bin as

E (!W,!Q2,!5τ ) = Nrec

Ngen
, (14)

where Ngen is the number of generated double-pion events
(without any cuts) inside the multi-dimensional bin, whileNrec
is the number of reconstructed either double- or three-pion
events that survived in the bin after event selection. This
definition of the efficiency factorE accounted for the three-pion
background that was negligible atW < 1.6GeV and increased
up to a few percent at W ≈ 1.8GeV. The averaged (over all
analyzed multi-dimensional cells) value of the efficiency was
found to be about 11%.

Because of the blind areas in the geometrical coverage of
the CLAS detector, some kinematic bins of the double-pion
production phase space turned out to have zero acceptance.
In such bins, which are usually called empty cells, the cross
section cannot be experimentally defined. The empty cells
contribute to the integrals in Eq. (13) along with the other
kinematic bins. Ignoring the contribution from the empty
cells leads to a systematic cross section underestimation and,
therefore, some model assumptions for the cross section in
these cells are needed. This situation causes a slight model
dependence of the final result.

A special procedure was developed in order to take into
account the contributions from the empty cells to the integrals
in Eq. (13). The map of the empty cells was determined using
the Monte Carlo simulation. A cell was treated as empty, if it
contained generated events (Ngen > 0) but did not contain any
reconstructed events (Nrec = 0).

Additionally, the efficiency in some kinematic bins could
not be reliably determined due to boundary effects, bin-to-bin
event migration, and limited Monte Carlo statistics. Such
cells were excluded from consideration and also treated as
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empty cells. They can be differentiated from the cells with
reliable efficiency by a larger relative efficiency uncertainty
δE
E (absolute efficiency uncertainty δE is defined in Sec. IVF).
In order to determine the criterion for the cell exclusion, the
distribution shown in Fig. 15 was produced for each bin in W
and Q2. This figure gives the uncertainty δE

E versus efficiency
E , showing the number of multi-dimensional cells. As is seen
in Fig. 15, cells with relative efficiency uncertainty greater than
30% are clustered along the horizontal stripes. This clustering
originates from the fact that efficiency was obtained by the
division of two integer numbers and reveals the bins with
small statistics of the reconstructed events. Moreover, these
horizontal stripes containmany cells with unreliable extremely
small efficiency. Therefore, themulti-dimensional bins that are
located above the horizontal line in Fig. 15were excluded from
consideration and treated as empty cells.

Once the map of the empty cells was determined, the cross
section produced by the TWOPEG event generator [25] was
used as a model assumption for these kinematic bins. This
event generator employs the double-pion cross sections from
the recent version of the JM15model fit to the data [8,9,13,27],
as well as the data [20,28] itself and up to now provides the
best cross section estimation in the investigated kinematic
region. Reference [25] describes in detail the approach used
in TWOPEG in order to estimate the cross sections.

Figure 16 introduces the single-differential cross sections
given by Eq. (13) extracted for three sets of the kinematic
variables described in Sec. IVA. The empty squares corre-
spond to the case when the contribution from the empty cells
was ignored, and the black circles are for the case when that
was taken into account in the way described above. The black
curves represent the TWOPEG cross sections that were used
as a model assumption. The figure demonstrates a reasonably

small contribution from the empty cells (and therefore a small
model dependence of the results) that was achieved using all
four available reaction topologies in combination. Only the
edge points in the θ distributions reveal pronounced empty cell
contributions due to the negligible or zero CLAS acceptance
in the corresponding directions. To account for the model
dependence, the part of the single-differential cross section
that came from the empty cells was assigned a 50% relative
uncertainty. The corresponding absolute uncertainty δmodel was
combined with the total statistical uncertainty, as was done in
Refs. [10,27].

E. Radiative correction

The radiative correction to the extracted cross sections was
performed using the TWOPEG event generator for the double-
pion electroproduction [25], which accounts for the radiative
effects bymeans of thewell-known approach of Ref. [19]. This
approach has successfully proven itself as an efficient tool to
calculate inclusive radiative cross section from thenonradiative
one. In Ref. [19], the approach is applied to the inclusive
case, while in TWOPEG, the double-pion integrated cross
sections are used instead. The radiative photons are supposed
to be emitted collinearly either to the direction of the initial or
scattered electron (the so-called “peaking approximation”).

In Refs. [19,25], the calculation of the radiative cross
section is split into two parts. The “soft” part assumes the
energy of the emitted radiative photon to be less than a certain
minimal value (10 MeV), while the “hard” part is for the
photons with an energy greater than that value. The “soft”
part is evaluated explicitly, while for the calculation of the
“hard” part, an inclusive hadronic tensor is assumed. The latter
assumption is, however, considered adequate, since approaches
that are capable of describing radiative processes in exclusive
double-pion electroproduction are not yet available.

The radiative correction factorR in Eq. (12)was determined
in the following way. The double-pion events either with or
without radiative effects were generated with TWOPEG, and
then the ratio given by Eq. (15) was taken in each !W!Q2

bin.

R(!W,!Q2) = N2D
rad

N2D
norad

, (15)

where N2D
rad and N2D

norad are the numbers of generated events
in each !W!Q2 bin with and without radiative effects,
respectively. Neither N2D

rad nor N
2D
norad are subject to any cuts.

This approach gives the correction factor R only as a
function of W and Q2, disregarding its dependence on the
hadronic variables. However, the need to integrate the cross
section at least over four hadronic variables [see Eq. (13)]
considerably reduces the influence of the final-state hadron
kinematics on the radiative correction factor, thus justifying
the applicability of the procedure [19,25].

The quantity 1/R, which is averaged over all consideredQ2

bins, is plotted in Fig. 17 as a function ofW . The dependence
of the correction factor on Q2 was found to be negligible.
The uncertainties associated with the statistics of the generated
events are very small and therefore not seen in Fig. 17.
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FIG. 16. The extracted single-differential cross sections for the cases when the contribution from the empty cells was ignored (empty
squares) and when it was taken into account (black circles). The former are reported with the uncertainty δtotstat given by Eq. (19) (it is smaller
than the symbol size), while the latter are with the uncertainty δtotstat,mod given by Eq. (20). The curves show the TWOPEG cross sections that were
used as a model assumption for the empty cell contribution. All distributions are given for one particular bin in W andQ2 (W = 1.6125GeV,
Q2 = 0.475 GeV2).

F. Statistical uncertainties

The limited statistics of both the experimental data and
the Monte Carlo simulation are two sources of statistical
fluctuations of the extracted cross sections. The cut on the
efficiency uncertainty described in Sec. IVD was chosen in
a way that the latter source gives a minor contribution to the
total statistical uncertainty.

The absolute statistical uncertainty to the five-fold differ-
ential virtual photoproduction cross section caused by the
statistics of the experimental data was calculated as

δ
exp
stat (!

5τ ) = 1
E
1
R

1
"v

√(
Nfull
Q2

full
+ Nempty

Q2
empty

)

!W!Q2!5τ
(
lρNA

qeMH

) . (16)

The absolute uncertainty to the cross section due to the
limited Monte Carlo statistics was estimated as

δMC
stat (!

5τ ) = d5σv

d5τ

(
δE
E

)
, (17)

where E is the efficiency inside the multi-dimensional bin de-
fined byEq. (14), while δE is its absolute statistical uncertainty.

Because Ngen and Nrec in Eq. (14) are not independent, the
usual method of partial derivatives is not applicable in order
to calculate δE . Therefore, the special approach described in
Ref. [29] was used for this purpose. Neglecting the event
migration between the bins, this approach gives the follow-
ing expression for the absolute statistical uncertainty of the
efficiency:

δE =
√
(Ngen − Nrec)Nrec

N3
gen

. (18)

The twoparts of the statistical uncertainty given byEqs. (16)
and (17) were combined quadratically into the total abso-
lute statistical uncertainty to the cross section in the multi-
dimensional bin:

δtotstat(!
5τ ) =

√(
δ
exp
stat

)2 +
(
δMC
stat

)2
. (19)
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FIG. 17. The quantity 1/R [see Eq. (15)] as a function of W

averaged over all considered Q2 bins.

The uncertainties δtotstat for the extracted single-differential
cross sections were obtained from the uncertainties δtotstat(!

5τ )
of the five-fold differential cross sections according to the
standard error propagation rules.

Finally for the single-differential cross sections, the total
statistical uncertainty δtotstat was combined with the uncertainty
δmodel, which accounted for themodel dependence of the results
that came from the empty cell contribution (see Sec. IVD):

δtotstat,mod =
√(

δtotstat

)2 + (δmodel)2. (20)

G. Systematic uncertainties

The systematic uncertainties of the obtained results domi-
nate the statistical ones and originate from several sources.

The presence of the elastic events in the dataset helped with
the normalization verification of the extracted cross sections.
For this purpose, the elastic cross section was extracted and
compared with the parametrization [30], and a 3% fluctuation
was found. Therefore this value was included into the system-
atic uncertainty of the extracted double-pion cross sections as a
global factor. This factor takes into account inaccuracies in the
luminosity calculation (due to miscalibrations of the Faraday
cup, target density instabilities, etc.) as well as errors in the
electron registration and identification.

In order to study the systematic uncertainties, the double-
pion cross sections were obtained using an alternative method
of the topology combination. In contrast with themainmethod,
where events from all four topologies were summed up in each
multi-dimensional bin, the alternative one considers only those
events that come from the topologywith themaximal efficiency
in the bin. The difference between the cross sections obtained
in these two ways was interpreted as a systematic uncertainty.
Since various topologies correspond to different detected final
hadrons, this uncertainty includes the errors due to the hadron
identification. This uncertainty was calculated for each bin in
W and Q2 and found to be of the order of 2%.

According to Sec. IVA, the double-pion cross sections
were extracted in three sets of the kinematic variables. The
difference between the cross sections obtained by integration
over these three kinematic gridswas interpreted as a systematic

uncertainty. This uncertainty was computed for each bin inW
and Q2 and was typically of the order of 5%. For the final
results, the integrated cross sections averaged over these three
grids are reported.

As a common practice with CLAS [8,10], an extra 5%
global uncertainty was assigned to the cross section due to
the inclusive radiative correction procedure (see Sec. IVE).

The uncertainties due to the sources mentioned above
were summed up in quadrature to obtain the total systematic
uncertainty for the integrated double-pion cross sections.
The relative systematic uncertainty in each W and Q2 bin
can be propagated as a global factor to the corresponding
single-differential cross sections, which are reported with the
uncertainty δtotstat,mod only [see Eq. (20)].

V. COMPARISON WITH THE MODEL AND PREVIOUSLY
AVAILABLE DATA

In Fig. 18, the W dependencies of the extracted integrated
cross sections of the reaction γvp → p′π+π− are shown by
the black circles for twelve bins in Q2. The gray shadowed
areas correspond to the total cross section uncertainty, which
is the uncertainty δtotstat,mod given by Eq. (20) summed up in
quadrature with the total systematic uncertainty. The error bars
that correspond to the uncertainty δtotstat,mod only are smaller than
the symbol size.

For each (W,Q2) point shown in Fig. 18, nine single-
differential cross sections [see Eq. (13)] are reported. An
example of these cross sections is presented in Fig. 19 for
the particular pointW = 1.6375 GeV andQ2 = 0.525 GeV2,
where the black symbols are for the single-differential cross
sections, while the error bars show the uncertainty δtotstat,mod.

The whole set of the extracted cross sections is available in
the CLAS physics database [6] and also on GitHub [7].

The extracted cross sections benefit from the minimal
statistical uncertainty and the minimal model dependence
among the previous studies of double-pion electroproduction
cross sections [8–10]. This was achieved due to the high
experimental statistics and the fact that four reaction topologies
were analyzed in combination.

A. Comparison with the model

A preliminary interpretation of the extracted cross sections
was based on the meson-baryon reaction model JM, which is
currently the only available approach for phenomenological
analysis of the double-pion electroproduction cross sections.
This model aims at extracting the resonance electrocouplings
as well as establishing the contributions from different reaction
subchannels and has proven itself as an effective tool for the
analysis of the experimental cross sections [11–13].

The preliminary interpretation of the results included the
estimations of the full double-pion cross sections (integrated
and single-differential), as well as their resonant parts. The
former is shown in Figs. 18 and 19 by the solid curves, while
the latter are shown by the dashed curves.

For this study, a fit of the obtained results within the
JM model was not performed, and therefore an estimation
of the full double-pion cross sections was obtained using
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ansatz of the JM model [11,13] (see text for more details).

the JM-model-based TWOPEG [25] event generator. This
generator employs the five-fold differential structure functions
from the recent version of the JM model fit to all existing
CLAS results on double-pion photo- and electroproduction
[8,9,13,27]. In the kinematic areas already covered by the
CLAS data, TWOPEG performs the interpolation of the model
structure functions and successfully reproduces the available
integrated and single-differential cross sections. In the areas
not yet covered by the CLAS data, special extrapolation
procedures have been applied that included additional world
data on the integrated photoproduction cross sections [20,28].
This event generator gives the absolute cross section values
(see Ref. [25] for details) that can be treated as a cross section
prediction. To perform a comparison with the reported cross
sections, TWOPEG predictions were adjusted to them using
their experimentally established Q2 dependence. The quality
of the description of the experimental results achieved in this
way is shown in Figs. 18 and 19 by the solid curves for the
integrated and single-differential cross sections, respectively.

The resonant contribution to the full cross section was
estimated using the unitarized Breit-Wigner ansatz of the
JM model [13]. The model considered that, in the inves-
tigated W range, the dominant part of the resonant con-
tribution to the cross section is formed by the following
nine resonances: P11(1440),D13(1520), S11(1535), S31(1620),

S11(1650), F15(1680),D33(1700), P13(1720), and P
′

13(1720),
3

where P
′

13(1720) is a new potential candidate state [14].
The electrocouplings of these nine states in the investigated
Q2 range were evaluated using the functions of their Q2

dependences taken from the study [10]. These functions
were obtained as a polynomial fit of the available data on
the resonance electrocouplings including those at the photon
point [11,13,31–41]. Reference [10] describes in detail the
fit procedure. Because of the scarce data on electrocouplings
close to the photon point and the fact that the S1/2 does not
exist at the photon point, the fit for the S1/2 electrocoupling
of the resonances S31(1620), F15(1680), and P

′

13(1720) is
unreliable atQ2 ! 0.6 GeV2. Therefore, for these three states
at Q2 ! 0.6 GeV2, the constant value of the S1/2 taken at the
last available Q2 point was used.

Additionally, the states P33(1600), D15(1675), and
D13(1700),4 although giving an insignificant contribution
comparing with the nine resonances mentioned above, were

3In the updated PDG format N (1440)1/2+, N (1520)3/2−,
N (1535)1/2−, !(1620)1/2−, N (1650)1/2−, N (1680)5/2+,
!(1700)3/2−, N (1720)3/2+, and N ′(1720)3/2+, respectively.
4!(1600)3/2+, N (1675)5/2−, and N (1700)3/2−, respectively.
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FIG. 19. The extracted single-differential cross sections (symbols) for one particular bin inW andQ2 (W = 1.6375GeV,Q2 = 0.525GeV2).
The error bars correspond to the uncertainty δtotstat,mod given by Eq. (20). The solid curves are for the cross section prediction obtained from
TWOPEG [25], while the dashed curves correspond to the resonant contribution estimated within the unitarized Breit-Wigner ansatz of the JM
model [11,13] (see text for more details).

included into the calculations with the values of their electro-
couplings taken from the studies [11,23] forQ2 = 0.65 GeV2.
In order to partially take into account a contribution from
the tails of the high-lying states, the resonances F35(1905)
and F37(1950)5 were also introduced into the model with the
values of their electrocouplings taken from the study [23] for
Q2 = 0.65GeV2. These two states give from 2% to 20% of the
total resonant contribution as W grows from 1.7 to 1.8 GeV.
For all resonance states, the unitarized Breit-Wigner ansatz
[13] was used and the hadronic decay widths to the π! and
ρp final states were taken from Ref. [11].

The estimation for the resonant part of the cross section is
shownby the dashed curves in Figs. 18 and 19 for the integrated
and single-differential cross sections, respectively. The relative

5!(1905)5/2+ and !(1950)7/2+, respectively.

resonant contribution to the integrated cross section is shown
in Fig. 20 as a function of Q2 for various ranges in W . It
was obtained as the ratio of the evaluated resonant part to
the TWOPEG estimation for the full cross section. Figure 20
demonstrates the growth of the relative resonant contribution
with increasing W , consistent with previous studies [11,12].
For small W ∼ 1.45 GeV, this contribution stays on a level
of 20%, while at higher W ∼ 1.75 GeV it reaches 70%.
The resonant contribution at W ∼ 1.75 GeV is somewhat
underestimated, since the resonances with masses above 1.8
GeV were not fully taken into account in this estimation.

The estimated resonant part of the cross section depends
on the assumption for the Q2 behavior of the resonance
electrocouplings. Since a fit within the JM model was not
performed, the uncertainty for this estimation can hardly be
evaluated explicitly. A recent JM model fit of the data [10]
gives an uncertainty for the resonant part of about 6%.
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B. Previously available data

In Fig. 21, the extracted integrated double-pion cross
sections are compared with the available data [8]. The cross
sections [8]were obtainedwith a 1.515-GeV electron beam en-
ergy, which is different from that of the data reported here. This
introduces a small systematic distortion into the comparison
caused by a beam energy dependence of the longitudinal cross
section part. The kinematic coverages of these two datasets
overlap only in three bins inQ2. Meanwhile, the cross sections
presented here should be treated as more reliable, since they
were extracted with a more advanced technique—i.e., the
combination of all four available topologies was used instead
of only two in Ref. [8], the map of the empty cells was better
determined using the cut on the efficiency uncertainty, the
contribution from the empty cells was accounted for by the
advanced method using TWOPEG [25], and furthermore, finer
binning in the hadronic variables was achieved. Nevertheless,
Fig. 21 demonstrates reasonable agreement between these two
sets of the cross sections within the total uncertainties.

VI. CONCLUSIONS AND OUTLOOK

In this paper, new results on the integrated and single-
differential cross sections of the reaction γvp → p′π+π−

at W from 1.3 to 1.825 GeV and Q2 from 0.4 to 1 GeV2

are reported. The results are a significant improvement over
previously available data [8,9] in this kinematic region due
to the extension in the W coverage and due to the in-
creased statistics, thereby achieving a finer binning in Q2

(0.05 GeV2). The whole set of the obtained cross sections
is available in the CLAS physics database [6] and also on
GitHub [7].

The kinematic coverage of the extracted cross sections
overlaps with that of the previously available results [8] in
threeQ2 points 0.475, 0.525, and 0.575 GeV2 forW from 1.3
to≈1.5GeV. In this region of overlap, the two cross section sets
were found to be in agreement, as Fig. 21 demonstrates. The
double-pion cross sections reported in Ref. [9] also partially
overlap with the results presented here, but since they were
obtained in much wider Q2 bins, a comparison with them is
not straightforward.

The cross section extraction procedure has some improve-
ments in comparison with previous studies [8–10]. An original
method of revealing cells with unreliable efficiency via a cut
on the relative efficiency uncertainty was applied. The cross
sections in kinematic cellswith zero acceptancewere estimated
using a recently developed event generator TWOPEG [25].
All available reaction topologies were combined together to
minimize statistical uncertainties as well as the contribution
from kinematic cells with zero acceptance, in this way achiev-
ing a very modest model dependence of the obtained cross
sections.

The obtained cross sections are compared with the pre-
dictions of the JM-model-based TWOPEG event generator,
which currently provides the best double-pion cross section
estimation in the investigated kinematic region. The compar-
isons presented in Figs. 18 and 19 show reasonably good
agreement between the TWOPEG estimations (solid curves)
and the experimental cross sections (symbols). The resonant
contributions to the cross section (dashed curves in Figs. 18
and 19) were evaluated using the unitarized Breit-Wigner
ansatz of the JM model, which includes all well-established
resonances in amplitude form. This estimation shows a sizable
resonant contribution (see Fig. 20) that indicates the possibility
of reliable extraction of the resonance electrocouplings.

The experimental results presented here will be further
analyzed within the framework of the reaction model JM
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[11–13]. This analysis will eventually allow a determination
of the Q2 evolution of the electrocouplings of most nucleon
resonances with masses up to∼1.8 GeV for photon virtualities
Q2 from 0.425 to 0.975 GeV2. For those resonances with mass
greater than 1.6GeV,which decay preferentially to thepπ+π−

final state, this information will be obtained for the first time.
These efforts are under way and the results will be presented
in a future publication on the subject.
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APPENDIX: THE DEFINITION OF THE ANGLE α

The calculation of the angle απ− from the second set
of hadron variables mentioned in Sec. IVA is given below.
The angles αp′ and απ+ from the other sets of variables are
calculated analogously [17].

A

B

π+
p

p

βπ−
δ

γ απ−
e

γ

e

FIG. 22. Definition of the angleαπ− . The planeB is defined by the
three-momenta of all final-state hadrons, while the plane A is defined
by the three-momenta of the π− and initial proton. The definitions of
the auxiliary vectors β⃗, γ⃗ , and δ⃗ are given in the text.

The angle απ− is the angle between the two planes A and
B (see Fig. 22). The plane A is defined by the initial proton
and π−, while the plane B is defined by the momenta of all
final-state hadrons. Note that the three-momenta of the π+,
π−, and p′ are in the same plane, since in the c.m.s. their total
three-momentum has to be equal to zero.

To calculate the angle απ− , first two auxiliary vectors γ⃗
and β⃗ should be determined. The vector γ⃗ is the unit vector
perpendicular to the three-momentum P⃗π− , directed toward
the vector (−n⃗z) and situated in the plane A. n⃗z is the unit
vector directed along the z axis. The vector β⃗ is the unit vector
perpendicular to the three-momentum of the π−, directed
toward the three-momentum of theπ+ and situated in the plane
B. The angle between the two planes απ− can be calculated as

απ− = arccos(γ⃗ · β⃗ ), (A1)

where arccos is a function that runs between zero and π , while
the angle απ− may vary between zero and 2π . To determine the
α angle in the range between π and 2π , the relative direction
between the π− three-momentum and the vector product
δ⃗ = [γ⃗ × β⃗] of the auxiliary vectors γ⃗ and β⃗ should be taken
into account. If the vector δ⃗ is collinear to the three-momentum
of the π−, the angle απ− is determined by Eq. (A1), and in the
case of anticollinearity by

απ− = 2π − arccos(γ⃗ · β⃗ ). (A2)

The defined above vector γ⃗ can be expressed as

γ⃗ = aα (−n⃗z)+ bαn⃗Pπ− with

aα =
√

1

1 −
[
n⃗Pπ− · (−n⃗z)

]2 and

bα = −
(
n⃗Pπ− · (−n⃗z)

)
aα , (A3)

where n⃗Pπ− is the unit vector directed along the three-
momentum of the π− (see Fig. 22).

Taking the scalar products (γ⃗ · n⃗Pπ− ) and (γ⃗ · γ⃗ ), it is
straightforward to verify that γ⃗ is the unit vector perpendicular
to the three-momentum of the π−.

The vector β⃗ can be obtained as

β⃗ = aβ n⃗Pπ+ + bβ n⃗Pπ− with

aβ =
√

1
1 − (n⃗Pπ+ · n⃗Pπ− )2

and

bβ = −(n⃗Pπ+ · n⃗Pπ− )aβ , (A4)

where n⃗Pπ+ is the unit vector directed along the three-
momentum of the π+.

Again taking the scalar products (β⃗ · n⃗Pπ− ) and (β⃗ · β⃗ ), it
is straightforward to see that β⃗ is the unit vector perpendicular
to the three-momentum of the π−.

Further detailed information about the kinematics of the
reactions with three-particle final states can be found in
Ref. [24].
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