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Abstract—With recent trend of wearable devices and
Internet of Things (IoTs), it becomes attractive to de-
velop hardware-based deep convolutional neural networks
(DCNNs) for embedded applications, which require low
power/energy consumptions and small hardware foot-
prints. Recent works demonstrated that the Stochastic
Computing (SC) technique can radically simplify the hard-
ware implementation of arithmetic units and has the poten-
tial to satisfy the stringent power requirements in embed-
ded devices. However, in these works, the memory design
optimization is neglected for weight storage, which will in-
evitably result in large hardware cost. Moreover, if conven-
tional volatile SRAM or DRAM cells are utilized for weight
storage, the weights need to be re-initialized whenever the
DCNN platform is re-started.

In order to overcome these limitations, in this work
we adopt an emerging non-volatile Domain-Wall Memory
(DWM), which can achieve ultra-high density, to replace
SRAM for weight storage in SC-based DCNNs. We pro-
pose DW-CNN, the first comprehensive design optimiza-
tion framework of DWM-based weight storage method. We
derive the optimal memory type, precision, and organi-
zation, as well as whether to store binary or stochastic
numbers. We present effective resource sharing scheme

for DWM-based weight storage in the convolutional and
fully-connected layers of SC-based DCNNs to achieve a de-
sirable balance among area, power (energy) consumption,
and application-level accuracy.

I. Introduction

The emerging of autonomous systems, such as unmanned
vehicles, robotics, and cognitive wearable devices, imposed
a challenge in designing computer systems with machine in-
telligence. The demand for machine intelligence has been
exacerbated by the explosion of the big data, which pro-
vides huge potential to enhance business decision making,
science discovery, and military or political analysis, etc.,
albeit whose processing is beyond the capacity of human
beings. Recently, deep learning, especially deep convolu-

tional neural networks (DCNNs), has been proven to be an
effective technique that is capable of handling unstructured
data for both supervised and unsupervised learning [1–7].
It becomes one of the most promising type of artificial neu-
ral networks and has been recognized as the dominant ap-
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Comparison of key factors of different memory

technologies, (data from [28])

proach for almost all recognition and detection tasks [8].

The hardware accelerations for DCNNs have been a
booming research area on General-Purpose Graphics Pro-

cessing Units (GPGPUs) [9, 10] and Field-Programmable

Gate Arrays (FPGAs) [11–14]. Nevertheless, there is
a trend of embedding DCNNs into light-weight embed-
ded and portable systems, such as surveillance monitoring
systems [15], self-driving systems [16], and wearable de-
vices [17]. These scenarios require very low power/energy
consumptions and small hardware footprints, and ne-
cessitate the investigation of novel hardware computing
paradigms.

Recent works [18–23] considered the Stochastic Comput-

ing (SC) technique [24] as a low-cost substitute to conven-
tional binary-based computing for DCNNs. The SC tech-
nique has also been investigated on neural networks and
Deep Belief Networks (DBNs) [25, 26]. SC can radically
simplify the hardware implementation of arithmetic units,
which are resource-consuming in binary designs, and has
the potential to satisfy the low-power requirements of DC-
NNs. It offers a colossal design space for optimization due
to its reduced area and high soft error resiliency. How-
ever, the works [19,20] exhibit certain shortcomings of ne-
glecting the memory design optimization as the memory
storage requirements in state-of-the-art DCNNs has be-
come highly demanding [27] (especially to store weights in
fully-connected layers.) Moreover, if conventional volatile
SRAM or DRAM cells are utilized for weight storage,
the weights need to be initialized whenever the hardware
DCNN platform is powered on, which hurdles the desirable
“plug-and-play” property of such platforms.
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Basic operations in DCNN. (a) Inner product, (b) pooling,

(c) activation function.

Figure 3 illustrates the widely used DCNN architecture
LeNet-5 [33]. There are three types of layers in DCNN:
Convolutional Layer, Pooling Layer, and Fully Connected

Layer. The convolutional layer is a unique block of DCNN,
and calculates the inner product of the receptive fields and
a set of learnable filters to extract the feature of input [34].
Figure 4 illustrates the process of feature extraction by
convolution operations. The input feature map size is 7×7,
and the filter size is 3×3. Suppose the stride is two, then
the result of the convolution will have nine elements.

The outputs of the convolution layer are fed to the pool-
ing layer. There are two common strategies of pooling: max

pooling and average pooling . Max pooling is to select the
maximum value in the selected region, and average pool-
ing is to calculate the average value in the selected region.
Pooling process will further reduce the dimension of data.
In this paper, we adopt max pooling as our pooling strategy
because of the better application-level performance in con-
vergence speed and classification accuracy. After the pool-
ing process, the data will be sent to the activation function.
Different activation functions can apply to DCNNs. How-
ever, the most suitable one for stochastic computing ap-
plications is the hyperbolic tangent (tanh) [35,36] because
it can be efficiently implemented as a finite state machine
with stochastic inputs or an up/down counter with binary
inputs.

In a DCNN, the high-level reasoning is done by the fully
connected layer which takes outputs from all neurons in
previous layer. Based on our experiment, the fully con-
nected layer is the least sensitive to the correlation between
weights. So a novel architecture of the fully connected layer
with optimized neuron structure will have a great potential
to reduce the neuron size as well as power consumption.

Three main operations of DCNN, i.e., inner product,
pooling, and activation function, are shown in Figure 5,
and these operations are cascadedly connected in DCNN.
Please note that the inner product operation is used in both
convolution and fully-connected neuron, but with different
scales.

C. Stochastic Computing (SC)

In SC, a stochastic number is utilized to represent a real
number by counting the number of 1’s in a bit-stream. In
the unipolar format, a real number x is represented by a
stochastic stream X, satisfying P (X = 1) = P (X) = x.
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SC components: (a) bipolar multiplication, (b) mux-based

addition, and (c) APC-based addition.

For example, the bit-stream 1100101110 contains six 1’s
in a ten-bit stream, so it represents a number P (X =
1) = 6/10 = 0.6. In bipolar format, a real number
can be represented by stochastic bit-stream X satisfying
2P (X = 1) − 1 = 2P (X) − 1 = x, thus 0.6 can be repre-
sented by 1101011111. The motivation of using stochastic
computing is that it greatly simplifies the involved com-
puting elements, which offers an immense design and op-
timization space. In this paper, the bipolar format is
adopted because the input signals and weights can be both
positive and negative. In SC, stochastic bit-streams can
be generated efficiently using random number generators
(RNGs) [37] or effective RNG sharing methods like the one
proposed in [38].

• SC Multiplication . The multiplication in SC do-
main can be easily performed by an XNOR gate for the
bipolar format. Figure 6-(a) depicts the bipolar mul-
tiplication process of c = ab by XNOR gate which is
c = 2P (c = 1) − 1 = 2(P (A = 1)P (B = 1) + P (A =
0)P (B = 0))− 1 = (2P (A = 1)− 1)(2P (B = 1)− 1) = ab.

• SC Addition . The objective of addition in SC domain
is to calculate the summation of 1’s of input stochastic bit-
streams. Figure 6-(b)(c) show two widely used hardware
implementations for SC addition: mux-based addition and
approximate parallel counter (APC)-based addition. For
the former structure, a bipolar addition is calculated as
c = 2P (C = 1) − 1 = 2( 1

2
P (A = 1) + 1

2
P (B = 1)) −

1 = 1

2
(2P (A = 1) − 1) + 1

2
(2P (B = 1) − 1)) = 1

2
(a +

b). On the other hand, the APC uses parallel counter to
count the total number of 1’s among all input bit-streams
and outputs a binary number [39]. The mux-based design
has a simple structure and is suitable for addition with a
small number of inputs, but exhibits inaccuracy when the
number of inputs becomes large. The APC-based design is
very accurate and is suitable for a large number of inputs,
at the expense of more complicated circuit structure.

III. SC-Based DCNN Designs

Motivated by the prior works [19, 20] on SC-based DC-
NNs, we choose effective SC-based designs for the key op-
erations in DCNNs as summarized in the following (also
shown in Figure 7):

1. We choose APC-base addition (together with XNOR-









TABLE II

Hardware performance comparison results on the resource sharing scheme of the fully-connected layer with different

lengths for weight storage. (SN: Stochastic Number)

Weight Storage 32-bit SN 64-bit SN 128-bit SN 512-bit SN 1024-bit SN
Structure Shared Unshared Shared Unshared Shared Unshared Shared Unshared Shared Unshared

Power(mW ) 24.67 428.97 26.10 430.40 28.96 433.26 46.13 450.43 69.02 473.31
Energy(nJ) 2071.51 2196.31 2191.63 2203.64 2431.86 2218.29 3873.26 2306.18 5795.14 2423.37
Area(um2) 18410 38860 18875 39324 19804 40254 25379 45829 32814 53263

TABLE III

Application-level accuracy of the LeNet-5 DCNN vs. length

of weight bit-streams at the last fully-connected layer.

bit-stream length 32 64 128 256 512 1024
accuracy 99.04% 99.04% 98.94% 98.95% 99.00% 99.01%

accuracy. The widely used configuration of LeNet-5 struc-
ture is 784-11520-2880-3200-800-500-10, and SC-based DC-
NNs are evaluated with the MNIST handwritten digit im-
age dataset which contains 60,000 training data and 10,000
testing data. Parameters of key hardware circuitry are
obtained by using CACTI [40] for SRAM-based memo-
ries and synthesized using Synopsys Design Compiler for
logic circuits. Parameters on DWM technology are inhered
from [41], including the DWM reading/writing circuitry.

First we compare the hardware performance in terms of
area and power consumption of the whole LeNet-5 DCNN
with different memory technologies and different weight
storing formats (binary or stochastic). When the weights
are stored in 7-bit binary numbers, the area and power con-
sumption of using different types of memories are almost
the same, because the DFFs and SNGs in the network dom-
inate under this scenario. However, when the weights are
stored in stochastic numbers and stored with DWMs, the
area and power consumption reduce compared with the
binary-based cases. The amounts of reductions are less
compared with Table 1 because the SC-based computation
blocks, e.g., inner product, pooling, activation function, are
accounted for in Figure 11 and remain unchanged. More-
over, benefiting from the highly compact cell size of DWMs
and high capacity, the area almost does not increase with
the increase of stored bits. As for the power consump-
tion shown in Figure 11-(b), the power consumption using
SRAMs dramatically increases with the increasing of stor-
ing bits, but the power consumption of using DWMs and
stochastic numbers only increases very insignificantly.

As explained in the previous sections, the calculation
imprecisions in the (last) fully-connected layers have rela-
tively insignificant impact on the overall application-level
accuracy. For testing, we test different lengths of weight
bit-streams (using stochastic numbers) in the last fully-
connected layer from 32 to 1024 (assuming an input bit-
stream length of 1024) and the overall application-level ac-
curacy of the LeNet-5 DCNN structure. Table 2 illustrates
the testing results, which validate the observation as the
motivation of our resource sharing scheme. Similarly, a
length of weight bit-stream of 256 will yield a high-enough
overall accuracy when applied to all the fully-connected

layers of LeNet-5.
Finally, we conduct experiments to test the hardware

performance, including power, energy, and area, on the
resource sharing scheme of the fully-connected layer us-
ing DWM for weight storage. Table 3 provides the results
of the whole fully-connected layer at different lengths for
weight storage. It can be observed that the resource shar-
ing scheme can reduce the area by up to 52.6% and reduce
the power consumption by 17.35× compared with the case
without resource sharing. The main results of such gains
in area and power/energy efficiencies are due to the smaller
size of APC (and APC-based inner product block) as well
as the sharing of DWM reading/writing circuitry.

VI. Conclusion

In this paper, we adopt a novel technology of non-volatile
Domain-Wall Memory (DWM), which can achieve ultra-
high density, to replace SRAM for weight storage in SC-
based DCNNs. We proposed the first comprehensive archi-
tecture and optimization framework of DW-CNN by devel-
oping an optimal scheme of memory type, precision, and
organization, as well as whether to store binary or stochas-
tic numbers. We achieve a desirable small size and energy
efficient SC-based DCNN while maintaining a very high
application-level accuracy.
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