
FFT-Based Deep Learning Deployment in Embedded
Systems

Sheng Lin1∗, Ning Liu1∗, Mahdi Nazemi2, Hongjia Li1, Caiwen Ding1, Yanzhi Wang1, and Massoud Pedram2

1Dept. of Electrical Engineering & Computer Science, Syracuse University, Syracuse, NY, USA
2Dept. of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

1{shlin,nliu03,hli42,cading,ywang393}@syr.edu,2{mnazemi,pedram}@usc.edu

Abstract—Deep learning has delivered its powerfulness in
many application domains, especially in image and speech recog-
nition. As the backbone of deep learning, deep neural networks
(DNNs) consist of multiple layers of various types with hundreds
to thousands of neurons. Embedded platforms are now becoming
essential for deep learning deployment due to their portability,
versatility, and energy efficiency. The large model size of DNNs,
while providing excellent accuracy, also burdens the embedded
platforms with intensive computation and storage. Researchers
have investigated on reducing DNN model size with negligible
accuracy loss. This work proposes a Fast Fourier Transform
(FFT)-based DNN training and inference model suitable for
embedded platforms with reduced asymptotic complexity of both
computation and storage, making our approach distinguished
from existing approaches. We develop the training and inference
algorithms based on FFT as the computing kernel and deploy
the FFT-based inference model on embedded platforms achieving
extraordinary processing speed.

I. INTRODUCTION

Recently deep learning has outstood from traditional ma-
chine learning techniques in many application areas, especially
in image and speech recognition [1], [2]. The excellence of
deep learning has also resulted in explorations of several
emerging real-world applications, such as self-driving systems
[3], automatic machine translations [4], drug discovery and
toxicology [5]. The deep learning is based on the structure of
deep neural networks (DNNs), which consist of multiple layers
of various types and hundreds to thousands of neurons in each
layer. Recent evidence has revealed that the network depth is of
crucial importance to the success of deep learning, and many
deep learning models for the challenging ImageNet dataset
are sixteen to thirty layers deep [1]. Deep learning achieves
significant improvement in overall accuracy by extracting
complex and high-level features at the cost of considerable
up-scaling in the model size.

In the big data era and driven by the development of
semiconductor technology, embedded systems are now be-
coming an essential computing platform with ever-increasing
functionalities. At the same time, researchers around the world
from both academia and industry have devoted significant
efforts and resources to investigate, improve, and promote the
applications of deep learning in embedded systems [6]. Despite
the advantages in DNN recognition accuracy, the deep layered
structure and large model size of DNNs also increase com-
putational complexity and memory requirement. Researchers
are faced with the following challenges when deploying deep
learning models on embedded systems: (i) Confined by the
communication bandwidth of embedded systems, which are
usually mobile terminals, it is still challenging to download
large-size DNN models, even which can be offline-trained in
data centers. (ii) The large model size of deep learning also

*S. Lin and N. Liu contributed equally to this work.

imposes stringent requirements on the computing resources and
memory size of embedded systems.

Motivated by these challenges, it is intuitive to implement a
reduced-size deep learning model with negligible accuracy loss.
In fact, the state-of-the-art DNNs are often over-parameterized,
hence the removal of redundant parameters in the deep learning
models, if performed properly, will produce similar overall ac-
curacy as the original models [1]. Encouraged by this discovery,
various deep learning model compression approaches have been
investigated [6]–[10], including weight precision reduction,
network pruning, weight matrix factorization, etc. In this work,
we propose a Fast Fourier Transform (FFT)-based DNN training
and inference model suitable for embedded systems due to
reduced asymptotic complexity of both computation and storage.
Our approach has obvious advantages over existing works on
deep learning model compression e.g., [6], [8], [9] in that
those approaches result in an irregular network architecture
that increases training and inference computation time, while
our approach facilitates computation. Please also note the our
proposed framework is distinct from the prior work of using
FFT for convolutional layer acceleration by LeCun et al. [11],
because this prior work can only achieve convolutional layer
acceleration instead of simultaneous compression. We develop
the training and inference algorithms based on FFT as the
computing kernel and deploy the FFT-based inference model
on embedded platforms. Experimental test results demonstrate
that our model provides the optimization in different languages
and achieve a significant improvement.

II. RELATED WORK

Over the past decade, a substantial number of techniques
and strategies have been proposed to compress neural network
size. Weight pruning [6] is a well-known effective approach,
in which many weights with values of 0 are pruned to
achieve high compression ratio. Other techniques such as
threshold setting [6], biased weight decay [9], etc., could be
integrated to the weight pruning procedure. Another simple
and popular approach to DNN model compression is the low-
rank approximation of the weight matrix [12]. To overcome
the potential high accuracy loss after low-rank approximation,
[13] proposed to perform fine-tuning for the post-factorization
of low-rank weight matrices to retain accuracy . Lowering the
presentation precision of weights is also an straightforward
technique to reduce both the model size and computation cost
of DNNs. A fixed-point implementation was explored to replace
the original floating-point models [14]. Furthermore, designs
with ultra-low precision weights, such as binary (-1 / +1) or
ternary (-1 / 0 / +1) representation were proposed [15], [16].
By exploring the local and global characteristics of the weight
matrix, weight clustering was proposed to reduce the number
of weights linearly [17]. In addition, with the aid of gradients
clustering in the training phase, the accuracy loss incurred by
the weight clustering can be negligible [6].

Some recent works adopted structured weight matrices in

a
rX

iv
:1

7
1
2
.0

4
9
1
0
v
1

[c

s.
L

G
]

 1
3
 D

e
c
 2

0
1
7

TABLE I. PLATFORMS UNDER TEST AND THEIR SPECIFICATIONS.

Platform Android Primary CPU Companion CPU CPU Architecture GPU RAM (GB)

LG Nexus 5 6 (Marshmallow) 4 × 2.3GHz Krait 400 - ARMv7-A Adreno 330 2
Odroid XU3 7 (Nougat) 4 × 2.1GHz Cortex-A15 4 × 1.5GHz Cortex-A7 ARMv7-A Mali T628 2
Huawei Honor 6X 7 (Nougat) 4 × 2.1GHz Cortex-A53 4 × 1.7GHz Cortex-A53 ARMv8-A Mali T830 3

In order to standardize the evaluation process on all
platforms, the airplane mode is switched on to eliminate
telecommunication overhead; all other running applications
are closed to ensure they do not affect runtime; and the device
is plugged in to avoid performance throttling applied by a
platform’s governor. Though this is the standard setup, we will
study the performance of inference process in situations where
the device is running on its battery.

B. MNIST

MNIST dataset [29] is a handwritten digits dataset which
includes 28×28 greyscale images with 60,000 images for
training and 10,000 images for testing. The original images in
the MNIST dataset are resized using a bilinear transformation,
and such transformation is used for both training and testing.
Various neural network architectures are explored for each
dataset and a few of them are presented in this paper.

For the MNIST dataset, two different neural network
architectures are evaluated. In the first architecture (Arch. 1),
the input layer consists of 256 neurons that represent the resized
MNIST images. The next two layers comprise of 128 neurons
each and are based on block-circulant matrix based FC layers.
Finally, the last layer is a softmax layer that consists of 10
neurons representing the ten possible predictions for the digits.
The second architecture (Arch. 2) has 121 neurons in the
input layer, 64 neurons in the two hidden layers, and similar to
Arch. 1, a softmax layer as the output layer. Table II summarizes
the runtime of each round of inference process using these
architectures and on various mobile platforms.

TABLE II. CORE RUNTIME OF EACH ROUND OF INFERENCE FOR

RESIZED MNIST IMAGES.

Architecture Implementation Accuracy (%)
Runtime (µs per image)

Nexus 5 XU3 Honor 6X

Arch. 1
Java 95.47 359.6 294.1 256.7

C++ 95.47 140.0 122.0 101.0

Arch. 2
Java 93.59 350.9 278.2 221.7

C++ 93.59 128.5 119.1 98.5

Based on the results summarized in Table II, the C++ imple-
mentation is about 60-65% faster than the Java implementation.
One of the reasons for this superior performance is related to
memory limitations and management policy in Android. While
applications written in C++ have an unlimited heap size, Java
applications are restricted to platform-specific heap sizes. As a
result, a constraint is imposed on the amount of data that an
application written in Java can deal with at each instance of
time.

Another potential reason that may explain the considerable
performance difference between the two implementations is
the overhead due to switching from Java to C++ and vice versa.
Because the OpenCV library is written in C++, it needs to covert
data from C++ data types to Java data types whenever the Java
API is used. We believe that these conversions do not affect
the runtime significantly, but can cause certain difference in
performance across the two implementations.

Considering different architectures mentioned in Table II,
one can observe that going from the smaller network to a bigger
network increases the accuracy by about 2% while it increases
the memory required for storing parameters by a factor of about
two and increases the runtime of Java and C++ implementations
by about 2% and 9%, respectively. It should be noted that when
the device is running on its battery, the runtime will increase by
about 14% in the Java implementation, but remains unchanged
in the C++ implementation.

C. CIFAR-10

The CIFAR-10 [30] dataset contains 32×32 color images
from 10 classes, where there are 50,000 training images
and 10,000 testing images. The structure of deep neural
network can be denoted as 128x3x32x32-64Conv3-64Conv3-
128Conv3-128Conv3-512F-1024F-1024F-10F (Arch. 3). Here
128x3x32x32 represents that (i) the batch size is 128; (ii) the
number of input channel is 3, (iii) and the feature size of input
data is 32x32. In addition, 128Conv3 indicates that 128 3x3
convolutional filters are used in the convolutional layer. In
addition, 512F or 10F means that the number of neurons in
the FC layer is 512 or 10, respectively. In addition, both the
original and compressed models are trained with learning rate
0.001 and momentum 0.9. In this network architecture, the first
two convolutional layers are traditional convolutional layers (no
block circulant, which is treated as preprocessing similar to the
IBM TrueNorth paper [31]). Based on the results summarized
in Table III, the C++ implementation is about 130% faster than
the Java implementation.

TABLE III. CORE RUNTIME OF EACH ROUND OF INFERENCE PROCESS

FOR CIFAR-10 IMAGES.

Architecture Implementation Accuracy (%)
Runtime (µs per image)

XU3 Honor 6X

Arch. 3
Java 80.2 21032 19785

C++ 80.2 8912 8244

D. Comparison Results on Performance and Accuracy

In this section, we provide comprehensive comparison
results on MNIST, CIFAR-10, and IBM TrueNorth [31], [32].
Our test platform consists of one or two qual-core ARM, while
the IBM TrueNorth includes 4,096 ASIC cores, which is around
500-1000 times more than our testing platform. In Fig. 5,
compared with IBM TrueNorth results on MNIST [32], our
model performs 10× faster than IBM TrueNorth with a little
accuracy reduction on the best device result. The accuracy
for IBM TrueNorth is 95% and the runtime is 1000µs per
image on MNIST. Compared with IBM TrueNorth results on
CIFAR-10 [31], with 500-1000 times less cores, our model
performs 10× slower than IMB TrueNorth. The accuracy for
IBM TrueNorth is 83.41% and the runtime is 800µs per image.
We can see that the later work [31] in 2016 on CIFAR-
10 is optimized more efficiently compared with the former
work [32] in 2015. Although our mobile phone based framework
achieves lower performance compared with IBM TrueNorth
on CIFAR-10, it is still reasonably good result considering the

10
1

10
2

10
3

10
4

10
5

Performance (μs/image)

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

IBM-TN (CIFAR-10)

IBM-TN (MNIST)

Our Method (CIFAR-10)

Our Method (MNIST)

Fig. 5. Performance vs. accuracy results comparison on the MNIST and
CIFAR-10 benchmarks.

dramatic difference in computational resources. These results
have demonstrated the effectiveness of the proposed framework.

VI. CONCLUSIONS

This paper presented a design optimization framework for
Fast Fourier Transform-based deep neural network inference on
embedded system. The proposed approach results in significant
reduction in storage requirement for model parameters and
improves runtime without affecting accuracy significantly. Our
implementation on ARM-based embedded systems achieves
runtime improvement on image classification tasks compared
to IBM TrueNorth.

VII. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
funding awards CNS-1739748 and CNS-1704662.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Acoustics, speech and signal processing
(icassp), 2013 ieee international conference on. IEEE, 2013, pp. 6645–
6649.

[3] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An
empirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

[4] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[5] R. Burbidge, M. Trotter, B. Buxton, and S. Holden, “Drug design by
machine learning: support vector machines for pharmaceutical data
analysis,” Computers & chemistry, vol. 26, no. 1, pp. 5–14, 2001.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[7] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan,
“Sc-dcnn: Highly-scalable deep convolutional neural network using
stochastic computing,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2017, pp. 405–418.

[8] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
“Optimal brain damage.” in NIPs, vol. 2, 1989, pp. 598–605.

[9] L. Y. Pratt, Comparing biases for minimal network construction with
back-propagation. Morgan Kaufmann Pub, 1989, vol. 1.

[10] M. Nazemi, S. Nazarian, and M. Pedram, “High-performance FPGA
implementation of equivariant adaptive separation via independence
algorithm for Independent Component Analysis,” in Application-specific
Systems, Architectures and Processors (ASAP), 2017 IEEE 28th Inter-
national Conference on. IEEE, 2017, pp. 25–28.

[11] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” arXiv preprint arXiv:1312.5851, 2013.

[12] M. Denil, B. Shakibi, L. Dinh, N. de Freitas et al., “Predicting parameters
in deep learning,” in Advances in Neural Information Processing Systems,
2013, pp. 2148–2156.

[13] J. Chung and T. Shin, “Simplifying deep neural networks for neuro-
morphic architectures,” in Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[14] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, 2015, pp. 1131–1135.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,
2016.

[16] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights+ 1, 0, and- 1,” in Signal Processing Systems (SiPS),
2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

[17] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[18] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for small-
footprint deep learning,” in Advances in Neural Information Processing
Systems, 2015, pp. 3088–3096.

[19] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F.
Chang, “An exploration of parameter redundancy in deep networks
with circulant projections,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2857–2865.

[20] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26–35.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[22] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel,
W. W. Lang, G. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch,
“What is the fast fourier transform?” Proceedings of the IEEE, vol. 55,
no. 10, pp. 1664–1674, 1967.

[23] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[24] V. Pan, Structured matrices and polynomials: unified superfast algo-
rithms. Springer Science & Business Media, 2012.

[25] L. Zhao, S. Liao, Y. Wang, Z. Li, J. Tang, and B. Yuan, “Theoretical
properties for neural networks with weight matrices of low displacement
rank,” international conference on machine learning, pp. 4082–4090,
2017.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[27] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proceedings of the 23rd ACM international conference
on Multimedia. ACM, 2015, pp. 689–692.

[28] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[29] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[30] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[31] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch
et al., “Convolutional networks for fast, energy-efficient neuromorphic
computing,” Proceedings of the National Academy of Sciences, p.
201604850, 2016.

[32] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in Neural Information Processing Systems, 2015, pp. 1117–
1125.

