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TRIMMED SERENDIPITY FINITE ELEMENT
DIFFERENTIAL FORMS

ANDREW GILLETTE AND TYLER KLOEFKORN

ABSTRACT. We introduce the family of trimmed serendipity finite element dif-
ferential form spaces, defined on cubical meshes in any number of dimensions,
for any polynomial degree, and for any form order. The relation between
the trimmed serendipity family and the (non-trimmed) serendipity family de-
veloped by Arnold and Awanou [Math. Comp. 83 (2014), pp. 1551-1570] is
analogous to the relation between the trimmed and (non-trimmed) polyno-
mial finite element differential form families on simplicial meshes from finite
element exterior calculus. We provide degrees of freedom in the general setting
and prove that they are unisolvent for the trimmed serendipity spaces. The
sequence of trimmed serendipity spaces with a fixed polynomial order r pro-
vides an explicit example of a system described by Christiansen and Gillette
[ESAIM:M2AN 50 (2016), pp. 883-850], namely, a minimal compatible finite
element system on squares or cubes containing order r — 1 polynomial differ-
ential forms.

1. INTRODUCTION

The “Periodic table of the finite elements” [8] identifies four families of polyno-
mial differential form spaces: P A, P.A¥ Q- A* and S,.A*. The families P A*
and P,.A* define finite element spaces on n-simplices while Q- A* and S,A* define
finite element spaces on n-dimensional cubes. In this paper, we present a fifth fam-
ily, S;” A¥ that is closely related to but distinct from the serendipity family S.A* [5].
In particular, the relationships between the families S;” A¥ and S.A* are analogous
to the relationships between P~ A* and P,.A*.

We first define the S A spaces as

S;Ak = TflAk + HST,1Ak+1,

where x denotes the Koszul operator. The S;” A* spaces nest in between serendipity
spaces via the inclusions:
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The exterior derivative d makes S;”A* into a cochain complex and the associated
sequence

0-R=S A S A= 5 STA" 5 STA" =0

is exact. The spaces in the above sequence have minimal dimension for n = 2 or
n = 3 in the following sense: the sequence is a minimal compatible finite element
system on n-cubes that contains P,_;A* for each k. All the results just mentioned,
as well as others identified in this paper, hold true if P is put in place of S and
the spaces are taken over n-simplices instead of n-cubes. Since P;”A* spaces have
been called trimmed polynomial spaces, we refer to the S~ A* spaces as trimmed
serendipity spaces.

We describe the trimmed serendipity family of finite elements using the language
of finite element exterior calculus (FEEC) [6,7]. The FEEC framework has also
been used to describe the famous elements of Nédélec [21,22], Raviart-Thomas [23],
and Brezzi-Douglas-Marini [11], as well as the more recently defined elements of
Arnold and Awanou [4,5]. Here, we show how the FEEC framework can also
describe the recently defined AC, elements on squares of Arbogast and Correa [2],
the Sy, elements on squares and cubes of Cockburn and Fu [17], and the virtual
element serendipity spaces VEM S,{ rr_1 Of Beirao da Veiga, Brezzi, Marini, and
Russo [10]. A detailed comparison to these newer elements is given at the end of
Section 2. Two key features of our approach that distinguish it from related papers
are: (i) a generalized definition of degrees of freedom suitable for any r > 1, n > 1
and 0 < k < n; and (ii) the extensive use of tools from exterior calculus, allowing
generalization to arbitrary dimension n and instant coordination with other results
from FEEC.

Christiansen and Gillette [14] raised the question of a minimal compatible finite
element system on n-cubes containing P,_;A* and computed the number of degrees
of freedom that such a system would need to associate to the interior of an n-cube,
0O,. While we do not use the harmonic extension approach of [14] to construct
the S A* spaces, we do recover the expected degree of freedom counts associated
to each piece of the cubical geometry. We state the dimension of S A*(0,) for
1<n<40<k<n,and 1 <r <7in Table 1.

The spaces S, A'(03) and S,”A?(03) are of potentially great interest to the
computational electromagnetics community as they can be used in H/(curl)- and
H (div)-conforming methods on meshes of affinely-mapped cubes. Their dimensions
satisfy dim S, A(03) < dim S, A'(03) and dim S, A%(03) < dim S, A%(03) as well
as dimS-AY(O3) < dim @ A'(03) and dimS;-A?(03) < dim @, A?(J3), with
equality only in the the case r = 1. Hence, a significant savings in degrees of freedom
should be possible, compared to tensor product and even serendipity methods. At
the end of Section 4, we present an example illustrating the reduction in the degrees
of freedom in the context of a mixed method for Poisson’s problem.

The S;”A*(0,) elements of most immediate relevance to applications are those
for small values of n and . We now examine some of these cases in greater detail,
using a mix of exterior calculus and vector calculus notation. Formal definitions of
the notation and generalized formulae using exclusively exterior calculus notation
are given in Sections 2—4 and a description of how to convert between vector and
exterior calculus notation is given in Appendix A.
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do dq [ ]
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FIGURE 1. Element diagrams for Sy A¥(0y) and S; A*(Os),
shown as subcomplexes of the deRham complex for [s. Each dot
or arrow in the diagrams indicates a degree of freedom associated
to that piece of the geometry (vertex, edge, or interior).

The spaces S, A¥(J). The element diagrams in Figure 1 indicate the associa-
tion of degrees of freedom to portions of the square geometry for Sy A¥((Jy) and
S5 A*(Oz). The degrees of freedom for S,” A'(0y) are

U —> /u 1 p, p € Pr_1(e), e an edge of Oy with unit tangent ,
e

w— | u 7. Pe [Pr_s(02)]* ® grad H, 1 A°(0Oy).
2
The notation grad H,_;A°(0y) above should be interpreted as the vector proxies
for the exterior derivative applied to homogenous polynomials of degree r — 1 in
two variables. Observe that if we exclude only the degrees of freedom associated to
grad H,_1A°(0y), we are left with the degrees of freedom for the regular serendipity
space S,_1 A1 ().

The spaces S, A¥(;). Moving to cubes, element diagrams for the S, A*(03)
spaces are shown in Figure 2. In these figures, degrees of freedom associated to
vertices, edges, or faces of the cube are shown on the front face only while the
number of degrees of freedom associated to the interior of the cube are indicated
by +X. Looking only at the front face degrees of freedom in Figure 2 for k =
0,1,2, we see exactly the same sequence as shown in the top row of Figure 1,
reflecting the fact that the S AF(J,) spaces have the trace property. We also
observe that Sy A°(3) = S;A%(03) and S, A3(03) = S1A3(03). Further, the
lowest order spaces also coincide with the tensor product differential form spaces,
ie., Sy A*(O;) = Q7 AR(O3) for k =0,1,2,3.
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+0 do +0 dq +3 do +4
: E—— . E— . —
grad . curl oo div
Sy A%(Os) Sy AN (Os) Sy A?(0s) Sy A%(0s)
dim = 20 dim = 36 dim = 21 dim =4

FIGURE 2. S, A¥(0y) for k = 0,1,2,3. Degrees of freedom on a
representative face are shown, along with a count of +X for the
number of degrees of freedom associated to the interior of the cube.

The degrees of freedom for S,” A'(J3) are

u—> /u 4 p, p € Pr_1(e), e an edge of (s with unit tangent ,
e

e /f(u x @) B, P [Pros(f)) @ grad 1,1 A%(f),

f a face of O3 with unit normal 7,
u—s [ u-p,  pe[Prs5(0s)]® @ curl H,_sA(Os).

As in the n = 2 case, we observe that removing the degrees of freedom associated
to grad H,_1A°(f) and curl H,_3A'(03) leaves only the degrees of freedom for
Sr—lAl(D3)'

The degrees of freedom for S, A?(J3) are

U — /u -7 p, p € Pr_1(f), f a face of O3 with unit normal 7,
f

ur— [ w-p,  pe[Pr_3(0s)]® @ grad H,_1A°(Os).
Os

Again, excluding the degrees of freedom associated to grad H,._1A°(0J3), we are left
with the degrees of freedom for S,_;A%((J3).

The remainder of the paper is organized as follows. In Section 2, we review
relevant background and notation from finite element exterior calculus and compare
the trimmed serendipity elements to other elements in the literature. In Section 3,
we prove various properties of the S;” AF(R™) spaces, including a formula to compute
their dimension. In Section 4, we state a set of degrees of freedom and prove they are
unisolvent for S;” A¥(0J,,). We also explain and establish minimality in the context
of compatible finite element systems. Finally, we summarize the key results of
our work and give an outlook on the future directions they suggest in Section 5.
Appendix A provides a detailed description of the relation between exterior calculus
and vector calculus notation in the context studied here.
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2. NOTATION AND RELATION TO PRIOR WORK

We use the same notation as Arnold and Awanou [5] and will now review the
relevant definitions to aid in comparison to prior work. Let o € N™ be a multi-index
and let o be a subset of {1,...,n} consisting of k distinct elements o(1),...,0(k)
with 0 < k < n. The form monomial x“dx, is the differential k-form on R™ given
by
(2.1) rdr, = (271 25? xy") drsy A AN dTg .

The degree of z%dx, is |a| := > ; a;. The space of differential k-forms with
polynomial coefficients of homogeneous degree r is denoted H,A*(R™). A basis for
this space is the set of form monomials such that |«| = r and |o| = k. The exterior
derivative d and Koszul operator « are maps
d: HAFRY) = Hp g AFTHRY) ke HpAF(R™) — My AFHRY).
In coordinates, they are defined on form monomials by
(2.2) d(z%dz,) '—i aiadx- ANdxgy A+ ANdz
. o) = v 81’1 % o(1) o(k)>
k . —_—
(2.3) k(z%dxy) = Z ((—1)”‘137“:100(1-)) droay N Ndxgyy A= N dxgy).
i=1
The notation cﬁt,(\z) indicates that the term is omitted from the wedge product. We

will make frequent use of the homotopy formula in this context [6, Theorem 3.1],
which is also called Cartan’s magic formula:

(2.4) (dk + kd)w = (r + k)w, w € HA"R").
As shown in [6, equation (3.10)], it follows that
(2.5) H AFR™) = kM, APTHRY) @ dH,  APTHRT).

The space of polynomial differential k-forms of degree at most r is
T
(2.6) PAF(RY) = D H;AF(R™).
j=0

The definitions of d and x extend linearly over P,A*. As a consequence,
(2.7) P, AR (R™) = kP, AFTHR™) @ dP, 1 AP (R™).

Observe that if w € P.A¥(R") can be written as both an image of x and as an
image of d, then w = 0.
The “trimmed” space of polynomial differential k-forms of degree at most r is

(2.8) PrARR?) := P AFR"Y) @ kH,_ AFTH(R™).

The relation of the P.A*(R™) and P,” A¥(R") spaces to the well-known Nédélec [21,
22], Raviart-Thomas [23], and Brezzi-Douglas-Marini [11] elements on simplices is
described in the work of Arnold, Falk and Winther [6,7] and summarized in the
“Periodic table of the finite elements” [§].

An essential precursor to the finite element exterior calculus framework just
described is the work of Hiptmair [19], in which the spaces P,” A¥ were introduced
under different notation. In place of the Koszul operator, Hiptmair uses a potential
mapping, k., which satisfies the formula d(ka(w)) + ka(dw) = w, similar to (2.4)
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but without the factor of (r + k). The mapping k, is defined in terms of a point
a inside a star-shaped domain whereas the Koszul operator implicitly chooses the
origin as a reference point. Since there is no true inverse for the d operator, using
k4 in place of k could provide some additional insight, however, we have found the
K operator to be quite natural for characterizing the structure of polynomial finite
element differential form spaces.

To build the serendipity spaces on n-dimensional cubes, we need some additional

definitions. Let o* denote the complement of o, ie., c* := {1,...,n} — 0. The
linear degree of x“dx, is defined to be
(2.9) ldeg(z%dz,) :=#{i€o” : a; =1},

Put differently, the linear degree of z®dx, counts the number of entries in « equal
to 1, excluding entries whose indices appear in o. Note that if £k = 0, then 0 = @
and there is no “exclusion” in the counting of linear degree. Likewise, if k = n,
then o* = @ and ldeg(z“dz,) = 0 for any «. The linear degree of the sum of two
or more form monomials is defined as the minimum of the linear degrees of the
summands.

The subset of H,A*(R™) that has linear degree at least ¢ is denoted

(2.10) Ho AF(R™) := {w € H,A*R") | ldeg w > 1} .
A key building block for both the serendipity and trimmed serendipity spaces is
(2.11) TANF(R™) := " kHpqr 1 AFTH(R™).

1>1

The following proposition gives a simple and useful characterization of 7, AF(R™).

Proposition 2.1 ([5, Proposition 3.1]). The space JF(R") is the span of km for
all (k + 1)—form monomials with degm > r and degm — ldeg m <r — 1.

Note that every element in J7,.A*(R") lies in the range of k. Using this fact, we
develop some basic results about 7, A*(R™) that will be useful in our development
of the S A* spaces. In the proof of [5, Theorem 3.4], it is shown that

(2.12) T-AF(R™) € P AFR™) + T 1 A¥(R™).
We can exclude images by d from the right side, yielding
(2.13) TAFR™) € kPAPTLRY) + 1 AR (RD),

Further, by (2.4), we have that (dx + xd)J,.A¥(R") = J,A*(R™). Since xk = 0, we
have dxJ,A¥(R") = 0, and thus

(2.14) kdJ.AF(R™) = J,AF(R™).
The space of serendipity differential k-forms of order r is given by
(2.15) S AF(R™) = P AFR™) @ J,A¥R") @ dJ, 1 AF1(R™).

The fact that this sum is direct is proven in [5]. Note that the second summand
vanishes when k = n, since A"*1(R") = 0 while the third summand vanishes when
k =0, since A=! = 0 by definition. Given 2%dz, € S, AF(R"), the degree property
from [5, Theorem 3.2] ensures that

(2.16) deg(z“dxy) < r+n—k—0og and deg(z®dz,)—ldeg(z“dz,) < r+1—~0dko,

where d;; denotes the Kronecker delta function.
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The serendipity spaces satisfy an inclusion property [5, Theorem 3.4]:
(2.17) S AF(R™) C S AF(R™),
and a subcomplex property [5, Theorem 3.3]:
(2.18) dS, 1 APHR™) € S AR(R™).
They also satisfy a containment property with respect to s, namely,
(2.19) kS,_1AF(R") C S, AFTH(R™).

The proof is a direct consequence of (2.7), (2.14), and (2.15).

The S, A¥(R™) spaces can be collected into a cochain complex with decreasing
r, which we denote by S,_,A®. The resulting sequence, as well as those for P,._,A*®
and P, A°, augmented by R in front of the first term, are all exact. Written out,
these are

(2.20) 0>R->SA S A -0 58S A 5 S A" =0,
(2.21) 0-R—=PA =P A= - =P A" S P A" 0,
(2.22) 0—-R—=P A= P A — ... 5 PA"1 S P A" 0.

All the above sequences can serve as finite element subcomplexes of the deRham
complex for a domain. Such subcomplexes help guide the selection of pairs of spaces
for mixed finite element methods that have guaranteed stability and convergence
properties.

Comparison to prior and contemporary work. As mentioned in the intro-
duction, there has been a recent spate of research into conforming finite elements
on meshes of n-dimensional cubes. The S,A¥(R") family was defined first in the
H'-conforming (k = 0) case in [4] and then for any 0 < k < n in [5]. The relation
of the S, A*(R?) elements to the Brezzi-Douglas-Marini [11] elements on rectangles
is described in [5] and by the “Periodic table of the finite elements” [8]. The re-
lation between the trimmed and non-trimmed serendipity families is described by
Lemma 3.4 below. For 0 < k < n, we will see that dim S;” A¥(R,,) < dim S, A*(R,,),
indicating that the trimmed and non-trimmed serendipity families are truly distinct.

By converting from exterior caclulus to vector calculus notation, we can identify
the relation of the S A*(R™) spaces to finite element spaces defined in recent work
by Arbogast and Correa [2] and by Cockburn and Fu [17]. Both works examine
various families of elements, and each work presents one family that is essentially
the same as the trimmed serendipity elements, as explained in the following propo-
sitions. Note that both sets of authors use k to indicate polynomial degree, but we
have changed the notation to r to match the conventions of finite element exterior
calculus. We use the notation [J,, to denote the cube [—1,1]™ C R™.

Proposition 2.2. Define the pair of spaces (Vio, Wihe) C H(div,Os) x L?(0y)
as in [2]. Let rot V7, denote the application of the rot operator to all the vectors
in V7, which has the effect of rotating each vector in the field by w/2. Then,
interpreted as differential forms via the flat operator, (rot V', W} ) is identical
to (8,1 AY(Og), S, A%(02)).
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Proposition 2.3. The sequence of spaces denoted SQDj(K) in [17, Theorem 3.3],
interpreted as differential forms via the flat operator, is identical to the sequence

ST:LlAO(Dg) — S;+1A1(|:|2) — S;+1A2(|:|2).
Further, the sequence denoted SEﬁ in [17, Theorem 3.6], is identical to the sequence
S, A°(03) = S, AN (O3) = S, A%(O3) = S, A% (O3).

Detailed proofs of both propositions are given in Appendix A. We can now make
a precise statement about the novelty of the trimmed serendipity spaces. The spaces
S7A%(0O,) can be recognized as differential form analogues of (i) the mixed finite
element method presented in [2] when applied to affinely-mapped square meshes (as
opposed to general quadrilateral meshes), and (ii) the second of the four families of
elements on squares and cubes presented in [17]. For n > 4, the trimmed serendipity
spaces are entirely new to the literature, modulo the fact that the k =0and k =n
cases reduce to the non-trimmed serendipity spaces as described in Lemma 3.4.

Further comparison can be made in regard to degrees of freedom. We define
degrees of freedom for S;”A¥((J,,) in equation (4.1) and prove they are unisolvent
for S”A*(0,) in Theorem 4.2. The degrees of freedom given by Arbogast and
Correa [2] are slightly different, in that they are indexed in part by vectors of
polynomials that vanish on certain edges of [y, whereas our degrees of freedom are
indexed by spaces of polynomial differential forms without regard to the basis used
to define them. The spaces of Cockburn and Fu [17] are not equipped with degrees
of freedom and so no comparison is possible in this case. Finally, we mention the
virtual element space VEM S{i rr—1, recently defined in work by Beirao da Veiga
et al. [10]. The number of degrees of freedom for this space appears to agree with
the number of degrees of freedom for S, ;A'(0z) in the case of a square, the
main difference being a vector calculus treatment of indexing spaces in place of the
differential form terminology used here. Since the virtual element method does not
employ spaces of local basis functions, further comparison between the methods is
a larger question for future work.

3. THE S, A* SPACES

We define the trimmed serendipity spaces for » > 1, k > 0 by
(3.1) STAR(R™) := S, 1 A¥(R") + kS, AFFL(R™).
The trimmed serendipity spaces share many analogues with the trimmed polynomial

spaces, as we now establish. Throughout, we fix the top dimension to be n > 1 and
omit the notation (R™), except when it is needed for clarity.

Theorem 3.1 (Inclusion property). Let n,r > 1, and 0 < k < n. Then

(3.2) SAF C S A C S Ak

Proof. The first inclusion is immediate from (3.1). For the second inclusion, the
inclusion property (2.17) implies that S, A* C S,.;1A*. Hence we only need to show
that kS, ATt C S, 1A*. Decomposing xS.A**! by (2.15), we have kP, A*1 C
PT+1AI€ - SrJrlAk, erAkJrl =0, and, by (214), I{djr+1Ak = errlAk - ST+1Ak7
thus completing the proof. (Il
Theorem 3.2 (Subcomplex property). Let n,r > 1, and 0 < k <n. Then

(3.3) dS; AF ¢ S AL
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Proof. Using (3.2) and (2.18), we have dS,”A¥ C dS,A* C S,_1AFL C S AFFL
]

We now develop a direct sum decomposition of S;” A¥ whose proof is straightfor-
ward by virtue of an analogous decomposition of S,A¥.

Theorem 3.3 (Direct sum decomposition). Let n,r > 1, and 0 < k < n. Then
S7A%, as defined by (3.1), can also be written as the direct sum

(3.4) S, A =PoAY @ T AR @ dg AR
Further, any element w € S A can be written as w = da+r3, where da € S, A*

and kB € S.A¥. In particular, o € P.A*1 @ J.A1 and B € P, 1A @
2121 Hr—i—l—l,lAkJrl-

Proof. First expand (3.1) via (2.15). Since x? = 0, we have
Sy AP = (PoiAf @ J AP @ dT, AR 4 (5P AR @ kd T AR).

By (2.14), we can replace kdJ,.A* by J.A*. Further, by (2.13), applied to the
Jv_1AF term and re-ordering, we now have

SN =P AP+ kP AT AR+ dT A

The first two terms summands give P,_1A* + kP,._1A**!1 = P~AF which estab-
lishes (3.4) as a summation formula.

We now show that (3.4) is direct. Observe that P A* = kP, AFHL @ dP, AFL,
with directness of the sum following from the observation after (2.7) that 0 is the
only polynomial differential form in the image of both « and d. Therefore, the
intersection of kKP,_1A*T! 4+ 7. A with dP.A* +dJ,.A*=1 is {0}. Now, elements of
KPr_1AFt! are of degree at most r while elements of J,A* are of degree at least
r + 1. Similarly, elements of dP,A* are of degree at most 7 — 1 while elements of
dJ,A*~1 are of degree at least r. Hence both pairs are direct sums and (3.4) is
established.

For the last statement, again consider the direct sum P A* = xP,._ A @
dP,A*~1. Given w € S A, we can thus write w = da + k3 such that da €
dP, A* 1@ dJ. A" and kB € kP,_1A*T1 @ J,A*. We have dP,A* 1@ dJ,. A1 C
Pr_1AF @ dT. AT € S,_1AF and kP, 1A @ J.AF c P AR @ J.AF C S, AF, as
seen from (2.15). O

Lemma 3.4. Letn,r > 1.
(i) S A% =S,AY,
(il) S;A™ =S,1A7,
(i) S Ak 4 dS, 1A = S, A*.
Proof. For (i), note that P, A = kP,_1A! by (2.7) and kdJ,.A° = J,.A° by (2.14).

We decompose S AF according to (3.1) and then decompose the summands ac-
cording to (2.15), yielding

S7AY =8, A+ kS, 1A
= (ProaA® + T aA°) + (kP 1A' + kd T, A°)
= PA” + J,_1A” + J,.A°.
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By (2.12), J,_1A° € P.A° + J,.AY and so S”A°(R"?) = P, A° + J,.A° = S, A°. Part

(ii) is an immediate consequence of (3.1), since there are no (n + 1)-forms on R™.
For (iii), we have S, A* C S,A* by (3.2) and dS,; 1A~ C S,.A* by the sub-

complex property (2.18). For the reverse containment, decompose the spaces as

dS, 1 AF 7Y = dP, AP+ d T AR
Sy AR =P A+ J, AR+ dT AT+ P AR+ kd T AR

Observe that P, AF = dP, AF "1 @ kP, AF by (2.5) and (2.6), J,A* = kd T, A*
by (2.14), and dJ,,1A*~! appears as a summand for dS,,1A*~!. Thus, by (2.15),
S, AF C STAF +dS, AR O

Theorem 3.5 (Exactness). Let n,r > 1. The sequence
0R—=-S A =S A = S A" STA" =0
s exact.

Proof. By Lemma 3.4, part (i), we can rewrite the beginning of the sequence as
0—-R—SA =S A= ...,

The sequence is exact at S,.A” since the incoming and outgoing maps at S,.A° are
the same as those in (2.20), which is exact. For k > 1, we will show that

S;AFTE 5 STAF o ST AR

is exact at S;”A* directly.
Let w € S A* and assume dw = 0. Using (3.4), write w = Zle w;, where

w1 € Pv"_—lAka w2 € j’rAk, w3 € djrAk_l.

Thus d(ws) = 0 and d(w; + wz) = 0. Since w; has maximum polynomial degree r
and wo has minimum polynomial degree r + 1, we see that d(w;) = d(w2) = 0.
Recall from (2.22) that P, A® is exact. Thus, there exists u; € P, A*"! C
S, Ak=1 such that d(u;) = wy (in particular, x(w;) with an appropriate coefficient
suffices). Since wy € J-AF, we can write wy = ko for some polynomial k + 1-form
t2. By hypothesis, d(kuz) = d(w2) = 0, but d is injective on the range of x by
(2.4). Therefore, ks = wy = 0. Also, since ws € dJ,A*~!, we can write w3 = dus,
where p3 € J,AF"1 € ST A*L by (3.4). Setting p := py + p3 € ST AL, we have
dp = w. (]

The S;~ A* spaces also have a trace property analogous to the S, A* spaces. Recall
that the trace of a differential k-form on a codimension 1 hyperplane f C R" is
the pullback of the form via the inclusion map f < R™. Let z%dz, be a form
monomial as in (2.1) and let f be the hyperplane defined by z; = ¢ for some fixed
1 <7 < n and constant ¢. Then

0, i € o,

(x%|z,=c) dxy, @€ 0.

try(z%dz,) = {

Theorem 3.6 (Trace property). Let n,r > 1,0 < k <n and let f be a hyperplane
of R™ obtained by fixing one coordinate. Then

(3.5) try S AF(R™) € S AR(f).
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Proof. We use the result of [5, Theorem 3.5] and techniques from its proof to derive
the result. For a fixed constant ¢ € R, set f = {z € R” : 21 = ¢}. Using (3.4), we
need to show that the traces of P, A¥(R"), J.A*(R"), and d 7, A*~1(R") lie in

Sr_Ak(f) = SrflAk(f) + Ks'rflAk-i_l(f) = 'PriflAk(f) @ jrAk(f) D djrAk_l(f)-
By [6, Section 3.6], try P,_; A¥(R™) C P,_,;A*(f) and by [5, Theorem 3.5],
try dJ, AP HRY) = dtry T APTHR™) € dS. AT (f) € oo AR (f).

It remains to show that try J.A*(R") C S A*(f). Let m be a (k + 1)—form
monomial m with degm > r and degm — ldeg m < r — 1. By Proposition 2.1, it
suffices to show that try km € S A¥(f). Without loss of generality, we will write

7
m = x2%dz, = 272" dz,,

where o := a — (a1,0,---,0). Now, as in the proof of [5, Theorem 3.5, we break
into cases according to whether or not 1 € 0. If 1 ¢ o, we define z by

try km =try K (x‘flxa'dxc,> =K (calxa'dxc,) =: KZ.

If degkz < 7, then Kz € P, A*(f) € S, A¥(f) and we are done. So we presume
degrz > r + 1, whence degz > r. If a; # 1, degz < degm and ldeg z =
ldeg m. If oy = 1, degz = degm — 1 and ldeg z = ldeg m — 1. Either way,
degz — ldeg 2 < degm — ldeg m < r — 1. Thus, kz € J.A*(f) C S A*(f),
by the characterization of J,A*(f) from Proposition 2.1 and by the direct sum
decomposition (3.4), respectively.

Keeping m as above, we now address the case 1 € . Define w by

’
a1+1xoz

tryem==%c dr, =:w,

where 7 C {2,3,...,n}, and {1}Ur = 0. The sign of w depends on the parity of the
number of permutations required to reorder o(1),--- ,o(k+1) into 1,7(1),--- , 7(k).
If degw < 7, then w € P._1AF(f) € S A*(f). So we presume degw > 7.

We will show that dkw, xkdw € S7AF(f), which by (2.4) implies that w €
S Ak(f). Note that ldeg w = ldeg m, since 1 € o, and degw < degm by definition
of o/. Thus, degw — ldeg w < degm — ldeg m < r — 1. By Proposition 2.1,
kw € J-A*71(f) and thus dew € dJ.A*"1(f) C S A*(f).

We split into cases one last time based on the inequality degw > r. If degw = r,
then degrdw < r and we have kdw € P, A*(f) C S7AR(f). If degw > r, we
have degdw > r and degdw = degw — 1 < degm — 1. Since d either preserves
the linear degree of a form monomial or decreases it by one, we have ldeg dw >
ldeg w — 1 =1deg m — 1. Thus degdw — ldeg dw < degm — ldeg m < r — 1. Again
by Proposition 2.1, kdw € J.A*(f) C S;AR(f). O

We now compute the dimension of S;”A¥(R,) from the direct sum decomposi-
tion (3.4). The computation of dim S,A*(R™) in [5] does not rely on its direct sum
decomposition (2.15) and, in particular, no formula for dim 7,.A*(R"™) is provided.
We now derive such a formula. We use dim X and |X| interchangeably to denote
the dimension of X as a vector space over R.

Lemma 3.7. Fizn>1. Forr > 1,0 <k <n, we have
k

(3.6) dim 7, A*(R") = > (-1)" (A - B),

=0
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L min{n,\_(Ti%/QJ'i'k_i} 2n7d n r—d-+2k—1 d
- d=k—1 d a e |
r+1 -
n+j—1 n
B := )
> (6

Proof. Observe that
dS,A¥ = AP, A* & dJ,A* = dP,_1 A" & d T, AF.

where

Since d is injective on the range of k, we have |dxP,_jA¥*1| = |kP,_1A**| and
|dJ-A¥| = |J.A¥|. Now, recall from (2.20) that S,_,A* is exact. Thus,
(3.7) S, A¥| = |dS, A¥| + [dS, 1 AP

= "‘flpr—lAkJr” + |s7TAk‘ + |’€7DTAk| + |~7r+1Ak71|-
By (2.6) and [6, Equation (3.14)], we have
T kA s 1
P AR+ [Pt AR = 37 (kAR 4 ey AR = Y (” +j ) (Z)

§=0 §=0
Define j,j := |J-A*(R™)| and f,j := jrk + jri1k—1 for ease of notation. Using
(3.7) and the formula for |S,.A*(R™)| given in [5], we have

(3.8)

S A¥| — (|KPrAR] + |KPr_1 AFTY))

min{n,|r/2]+k}

> E) - (500

J

fr,k

We can write j,  as the telescoping sum

k
(3.9) Jrk = Z(_l)ifr-'ri,k—i-
=0
Using (3.9) with (3.8), we produce the formula in (3.6). O

Theorem 3.8. Fixn,r > 1 and 0 < k <n. Then
(3.10)  dim S AF(R™) = dim P,” A*(R™) + dim J,A*(R") + dim J, A" "1 (R™).

Further, each summand in (3.10) has a closed-form expression in terms of binomial
coefficients depending only onn, k, and r.

Proof. Again, since d is injective on the range of , we have |dJ,.A*~1| = | . AF~1].
Using this with (3.4), we can write

|SeAM = [PEAY + [T AR + [dT AT = [PAR] + [ T:AR] + |7, A5

From [6,7], we have

ok (rEn\[(r+k—1
oy = (T ()

We have the requisite expressions for |7.A*| and |7, A¥~!| from Lemma 3.7. O
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TABLE 1. Dimension of S,?Ak(Dn) for1<n<4,0<k<n,and
1 <r <7, computed using Theorem 3.8.

k|r=1 2 3 4 5) 6 7

n=2 0 4 8§ 12 17 23 30 38
17 26 37 50 65
10 15 21 28

N —
—
[
w o
D

n=3 0 8§ 20 32 50 74 105 144
1 1236 66 111 173 255 360
2 6 21 45 82 135 207 301
3 1 4 10 20 35 56 84
n=4 0 16 48 80 136 216 328 480
1 32 112 216 392 656 1036 1563
2 24 96 216 422 746 1227 1910
3 8§ 36 94 200 375 644 1036
4 1 5 15 35 70 126 210

We use Theorem 3.8 and Lemma 3.7 to compute the dimension of S~ A*(0,,)
for1<n<4,0<k<n,and 1 <r <7 and report the results in Table 1.

4. DEGREES OF FREEDOM, UNISOLVENCE, AND MINIMALITY

We now state and count a set of degrees of freedom associated to S A*(0,).
The degrees of freedom associated to a d-dimensional subface f of [J,, are

(4.1) u+— /(tff WAG,  qEP_aaiy— 1 AF(f) © dM_aa_iy 1 AT,
f

for any k < d < min{n, |r/2] 4+ k}. Observe that the first summand of the indexing
space is the indexing space for S,._; A*(f), reflecting the fact that S7A* 5 S, A¥.
The sum is direct since d?‘lr_g(d_k)_;,_lAd_k_l C Hr_g(d_k)Ad_k. The dimension of
P.A*(R™) is given (see, e.g., [6]) by

(4.2) dim P, AF(R") = (: i Z) (7“ z k) .

Applying (4.2), we have that

. . r—d+2k—1\(r—d+k—1
dlmlpr72(d7k)71Ad M) = (r—d—!—k—l)( d—k )

It is shown in [6, Theorem 3.3] that

dim dH, 1 AFH(R™) = dim kM, AF(R") = <n ’ ]:> (r —]: : I 1)’
n— _
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and thus

_ o r—d+2k\ (r—d+k—1
dim dH,—za42r41 A7 l(f):< k )( d—k—1 )

Note that when k = d, we have dH,1A7(f) = d(0) = 0, so the dimension is zero.
-1

The above formula remains valid if we interpret " 1 as 0. There are 2”*d(g)

d-dimensional faces of [J,, so the total number of degrees of freedom in (4.1) is

Inin{ngj/QJ"Fk}Qndn T—d+2k—1 T—d+k_1
Z d r—d+k—1 d—Fk
r—d+2k\ (r—d+k—-1
(4.3) +( k )( d—k—1 ))

To prove that the degrees of freedom in (4.1) are unisolvent for S,” A*(0,,) we will
need to consider the subspace of S;”A¥((J,,) that has vanishing trace on 0(J,,. For
this, we will use the notation

S, AG(On) = {we S A¥O,) : tryw =0 for every (n — 1)-subface of O, }.
The next result is the analogue of [5, Proposition 3.7] for the S, A¥([J,,) family.
Lemma 4.1. Ifw € S7A§(0,,) and

(44) / w /\p = 07 pe Pr72(n7k:)flAn_k(Dn)a
Dn
(4.5) / wAdh =0, h € Hy—om—ry1 A" 1 (On),
O,
then w = 0.

Proof. Let w € S Ak. By the subcomplex property (3.3), we have that dw €
S7AF*TL. Recalling the definition S A*! = S, ;AP 4+ kS, A*+2 and the fact
that d is injective on the range of &, we have that dw € S,_; A1, a non-trimmed
serendipity space. Let f be any (n— 1)—face of OJ,, and recall that d commutes with
try. Thus, try dw = dtry w = 0, meaning dw € Sr,lA]gH.

By Stokes’ theorem, we have

/dw/\,uz:l:/ w A dp, pe A"RFHO,).
Dn

n

Suppose pt € Py_a(n_k)+1 A" 7! so that
d,u/ € PT*Q(nfk)flAn_k S dHT*Q(nfk)JrlAn_k_l'

By (4.4) and (4.5), [w A du vanishes for all such p and by the above equation
J dw A p vanishes for all such p as well. Thus, by [5, Proposition 3.7] with r and k
replaced by r — 1 and k + 1, respectively, we have dw = 0.

By Theorem 3.3, we can write w = da + k3, where da € S,_1A* and k3 € S, A*.
Since dw = 0 and d is injective on the range of x, we must have k38 = 0. Thus
w = da € S,_1A*. Since (4.4) holds, we can apply [5, Proposition 3.7] with r
replaced by r — 1 to conclude that w = 0. ]
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We can now establish unisolvence in the classical sense, namely, that an element
u € 87 AF is uniquely determined by the values of the degrees of freedom applied
to u.

Theorem 4.2 (Unisolvence). If u € S A¥(0,) and all the degrees of freedom in
(4.1) vanish, then u = 0.

Proof. We use induction on n. The base case n = 1 is trivial. Let w € S, A*(0,)
such that all the degrees of freedom in (4.1) vanish. On a face f of dimension n—1,
tryw € S A¥(f) by the trace property (3.5). Since all the degrees of freedom for
tryw vanish, tryw = 0 by the inductive hypothesis. Thus, w € S, A§(0,). By
Lemma 4.1, w = 0. ]

The careful combinatorial argument carried out in [5] to establish unisolvence for
the S, A* spaces and their associated degrees of freedom is essential to the proof of
unisolvence for the S~ A¥ spaces just given, as it is invoked at the end of the proof
of Lemma 4.1. Notably, our proof did not require the dimension of S, A*(0,,) to
equal the associated number of degrees of freedom as a hypothesis. We examine
this point further in the discussion of future directions at the end of the paper and
in Appendix B.

We now turn to the topic of the minimality of the S;” A* spaces. For this, we will
employ the theory of finite element systems, developed and applied by Christiansen
and collaborators in [12-16]. We will not redefine the full framework here as we are
interested only in a very specific context, similar to the examples studied in [14].

We have shown that the S A* spaces have the subcomplex and trace properties
in Theorems 3.2 and 3.6, respectively. These properties ensure that the collection of
spaces {S,7A%(0,),...,S,A"(0,)} constitute a finite element system, for any fixed
n,r > 1. Since the associated augmented co-chain complex for this sequence was
shown to be exact in Theorem 3.5, the system is said to be locally exact. Whenever
unisolvence holds in the sense established in Theorem 4.2 and the number of degrees
of freedom equals the dimension of the associated trimmed serendipity spaces in
the sequence, the system is said to admit extensions and be compatible. In such
cases, we can apply the following result, specialized to the case of cubical meshes.

Lemma 4.3 ([14, Corollary 3.2]). Suppose that A is a finite element system on O,
and that B is a compatible finite element system containing A. Suppose that
(4.6) dim BY(0,) = dim A5 (0,) + dim H*™! (A5(0,.)) .
Then B is minimal among compatible finite element systems containing A.

In (4.6), H**1 (A3(0,)) denotes the k + 1 homology group of the system Ag); the
subscript 0 again indicates vanishing trace on all n — 1 dimensional subfaces. Note

that the system Ay need not be locally exact and hence need not have vanishing
homology. We can compute the dimension of the homology group by

dim (H**! (A5(0,))) = dim (kerd : Af™ — AF+?) — dim(dAf).
We apply the lemma as follows.

Theorem 4.4 (Minimality). For n = 2 and n = 3, the system S, A*(0,) is a
minimal compatible finite element system containing Pr.—1A*(0,,).

Remark 4.5. Theorem 4.4 is stated as applying only to dimensions n = 2 and n = 3,
however, it holds in any setting for which the number of degrees of freedom equals
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the dimension of the associated trimmed serendipity spaces. This includes at least
all r values up to 100 for n = 4 and n = 5. We discuss this point further in Section 5
and Appendix B.

Proof. We set A¥(0,,) := P,_1A¥(0,) and B* = S, A¥(0,,) and show that Lemma
4.3 applies. Note that P,._1A*(0d,) is a non-compatible finite element system as
it satisfies the subcomplex and trace properties but is not locally exact. We have

already discussed why S A*(0J,,) is a compatible finite element system and shown
that P,_1A*(0,) c S7A*(0,). By [14, Proposition 4.5],

dim P, _1A§(0,) = dim P, _oggn g1 A" F(3n).
In the proof of [14, Lemma 4.13], it is shown that
dim H* (P.AH(0,)) = dim kH, 1op 2,1 A" FTH(T,).

By [6, Theorem 3.3],

dim 6H, 4 ok—on 1 A" (O, = dim dH,qon—2, A" F(0,).
Replacing r by » — 1 and k£ by k£ + 1, we have

dim H* (P, 1A (0,)) = dim dH, o201 A" F7H(O,).
Applying Theorem 4.2, we have

dim S A§(0,,) = # of degrees of freedom associated to the interior of [,
= dimlpr72(n7k)flAn_k(Dn) + d’Hr72(n7k)+1An_k_1(Dn)
= dim P, AL(O,) + dim B* (P,A5(0,)) .

Therefore, Lemma 4.3 applies and minimality is proved. O

We close this section with an examination of the computational benefit that
using a minimal compatible finite element system can provide by comparing the use
of trimmed serendipity elements in place of regular serendipity or tensor product
(Nédélec) elements for a simple problem. Consider the standard mixed formulation
of the Dirichlet problem for the Poisson equation on a cubical domain Q C R3:
Given f, find u € H(div,Q) and p € L?(Q) such that:

(4.7 / u-v= / divv p, v € H(div,Q),
Q Q

(4.8) /Qdivuqz/ﬂf q, q € L*(Q).

We remark that (4.7)—(4.8) is one instance of the Hodge Laplacian problem studied
in finite element exterior calculus [6,7] and its analysis serves as the foundation
for many applications, such as the movement of a fluid through porous media via
Darcy flow [3], diffusion via the heat equation [9], wave propagation [18], and various
non-linear partial differential equations.

A finite element method for (4.7)—(4.8) is determined by selecting finite-dimen-
sional subspaces A7 C H(div,Q) and Aj C L?(€2) and solving the problem: find
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TABLE 2. Comparison of dimension counts for a single cube el-
ement among pairs of tensor product, serendipity and trimmed
serendipity spaces suitable for a mixed finite element formulation
of the Poisson problem.

| 1Q7 A%+ QA IS A2+ (S, 1A |STAY + |57 AY

1 6+1 =7 18+1 =19 6+1 =7
2 36+8 =44 39+4 =43 2144 =25
3| 108427 =135 72+10 =82 45+10 =55
41 240464 =304 | 120420 = 140 82420 =102

u;, € A7 and pj, € Aj such that:
(49) / up - vp = / div vy, Ph, Vp € Ai,
Q

Q
(4.10) / divuy g, = / f an, qn € A‘z.
Q Q

Supposing that  is meshed by cubes, we compare three choices for the pair
(A7,A3) with at least O(h") decay in the approximation of p, u, and divu in the
appropriate norms: tensor product elements (Q; A2, Q; A?), serendipity elements
(S,A2,8,_1A3), and trimmed serendipity elements (S,”A?,S,”A3). We report the
number of degrees of freedom associated to a single mesh element in Table 2. As is
evident from the table, the trimmed serendipity elements require the fewest degrees
of freedom of any of the three choices. Notably, the trimmed serendipity choice uses
the same number of degrees of freedom as the tensor product elements in the lowest
order case (r = 1) while using strictly fewer than either of the other choices in all
other cases.

5. SUMMARY, OUTLOOK, AND FUTURE DIRECTIONS

In this paper, we have defined spaces of trimmed serendipity finite element dif-
ferential forms on n-dimensional cubes and demonstrated how their relation to the
non-trimmed serendipity spaces are, in all essential ways, analogous to the relation
of the trimmed and non-trimmed polynomial differential form spaces on simplices.
Accordingly, it is natural to treat them as a “fifth column” of the “Periodic table
of finite elements” [8]. The ease with which the trimmed serendipity spaces arise
in the exterior calculus setting echoes the fact that instances of their vector cal-
culus analogues have been discovered from the related but distinct frameworks of
Arbogast and Correa [2] and Cockburn and Fu [17], as detailed in Appendix A.

A minor point mentioned after the proof of Theorem 4.2 hints at an important
direction for future research. While we have shown that the degrees of freedom
given in (4.1) are unisolvent for S A¥(0J,,), this only establishes that the number
of degrees of freedom is greater than or equal to the dimension of S A*(0,).
Using Mathematica, we verified that formula (4.3) and the closed-form expression
for dim S A*(0,,) from Theorem 3.8 are in fact equal for 1 <n < 5,1 < r < 100,
and 0 < k < n, covering many more than the cases of practical relevance to modern
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applications. In the cases n = 2 and n = 3, we also confirmed by direct proof that
the spaces have the equal dimension for any r; these proofs appear in Appendix B.

A more promising approach toward the same goal is to construct a basis for
S7AE(O,), count its dimension, and sum over subfaces of [J,,. Such an approach
is used by Arbogast and Correa [2] in their study of mixed methods on quadrilat-
erals, but extending it to hexahedra, or even just to cubes, introduces significant
additional subtleties regarding the linear independence of spanning sets of specific
sets of polynomial differential forms. We plan to explore this approach in future
work, not only to establish this particular equality, but also to provide a practical
computational basis so that the trimmed serendipity spaces can begin to see their
benefits realized in practical application settings.

APPENDIX A. TRIMMED SERENDIPITY SPACES IN VECTOR CALCULUS NOTATION

To characterize the relationship between the trimmed serendipity spaces of dif-
ferential forms and finite element families described in traditional vector calculus
notation, we will need some additional notation. First we recall classical notation
for spaces of polynomials and polynomial vector fields as used in [2]. Let P, de-
note the space polynomials of degree at most 7 and P, the space of homogeneous
polynomials of degree exactly . The number of variables (typically two or three)
is implied from context. For n = 2, define

_— z1p| -
xP, := span { L@p} 1 péeE IP’T} .

The above definition extends to n = 3 by using x3p as the third component of the
vector. For n = 2, define a “2D curl” operator on a scalar field w as the gradient
operator followed by a rotation of 7/2 clockwise, i.e.,

0 1} {811}/8%] [ ow/0x,

= [ Soufon)

Thus, we recover the statement div curl w = 0 for any w € C2.

To convert a vector field to its corresponding differential form, we use the flat
operator, b, following the conventions of Abraham et al. [1]; see also Hirani [20].
Given a scalar field w on R2, there is an associated 0-form w’ := w and an asso-
ciated 2-form w’ := wdzidzs. It will be clear from context whether w” should be

V1

interpreted as a 0-form or a 2-form. Given a vector field v = [vz] on R?, define

curl w :=rot Vw = [_1 0] [Ow/0x

v? := vidzy + vadzs and rot (vb) = (rot v)b. In R3, given a scalar field w on R3,
there is an associated 0-form w”
Given a vector field

:= w and an associated 3-form w’ := w dridrodrs.

on R3, the associated 1-form is defined by v? := vidxy + vedxs + v3drs and the
associated 2-form by v’ := vidzadrs — vadzides + vsdridrs. Again, the kind of
flat operator to be used will be obvious from context.

Proof of Proposition 2.2. The space AC’T(E) from [2] refers to a pair of spaces
(Vie, Whe) C€ H(div,E) x L?*(E), where E = Oy = [—1,1]? is the reference
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element. These spaces are defined to be
o =P2PexP. &S, and Wi :=P,.

Since L2(E) here corresponds to A%(C,) in finite element exterior calculus notation,
we observe that (WAC)b = (IP’T) = P.A%*(0y). Further, we have P,A%(z) =
S-A?(0;), which is identical to S, ;A%(0;) by Lemma 3.4.

Turning to V7, observe that (]P’E)b = P,.A*(0z). Note that rot is an automor-
phism on P,A'(Jy), i.e., rot P, A (0s) = P,.A*(0z). Using x and y in place of
and xo and omitting “span” notation for ease of reading, we also see that

5\ _ zpl| S 1) wp | . 51\
rot (XPT) = ({rot L}p] :pE IF’T}) = <{ {—xp} :pé€E Pr}>
={—rpdady : p€H,A(O2)} = kH,A"(Oy).
~\D
Hence, we have rot (IP’% o XPT) =P, AN Oz) & kH-A(0g) = P A (Os).

The space S, is a space of “supplemental” vectors that satisfy certain conditions
described in [2]. Foremost, the space S, satisfies the containment

STCCurl(IF’T_,_l@span{:z:iyj it =r+2, 1§i,j§r+1}),

Further, the elements of S, are required to have normal components on [Js that are
polynomials of degree r. The authors present the following basis for S, for r» > 1:

basis for S, = {curl(z" (1 — 2?)y), curl(zy" (1 —y*))}
:{{ "1 —x)? } [ ((r—l)’”2 (r+1) )]}
—y((r=1)a"2—(r+1)z")]’ =11 —9?)
=: {61,652}

Looking at the homogeneous degree r + 1 part of 1, we see that

r+1 b
~b b r+1 r b
Ul_[(r—i—l)ﬂy] +vi=z""dr 4 (r+ Da"ydy + v’.

Applying rot to both sides, we have that
rot 65 = (r 4+ 1)a"ydz — 2" dy + rot v’ = dk(a"y dz) + rot v°.

Note that dr(x"y dr) € deH, 41 1A (O2) = dJp 1A% (02)" and rot v € P.AY(Oy).
Hence, rot 65 € dJ,11A°(0s) + P,AYOz) C S, A (0s) and similarly, rot 6% €
S, ;1A' (Oz). Observe that rot 6% and rot &5 are linearly independent and have
distinct, non-zero projections onto dJ,;1A%(0z). Thus, given a basis {vy,..., V. }
for P2 @ xP,, the set {V1,...,Vm, 01,02} is a basis for V7, and the set

{rotvi,...,rot v’  rot 5, rot 65}

is a basis for S ; A*(0z). This proves Proposition 2.2.

!Recall that #,. (A*(R™) = 0 if £ > min(r, n—k); the relevant case here is £ > min(r,2—1) = 1.
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Proof of Proposition 2.3. We now turn to the paper by Cockburn and Fu [17].
Rather than restate all their definitions, we translate their notation to the Arbogast-
Correa notation or finite element exterior calculus notation as we analyze their
spaces. First, we look at the sequence SET(K ) from their Theorem 3.3. Applying
the flat operator to the first space, we get

b
(fPT_H(a?,y) ® 5Hr2f1) =Pr11A°(02) & (span {J:y“Ll,a;’”Jrly})b =S, 11 A ().

Recall, by Lemma 3.4, that S, 11 A°(0z) = S, ;A°(0z). The second space is written
as a direct sum of three components. Applying the flat operator to each, we find
that

(Pr(x,y)) = PrA (D),
(x X Cﬁr(x,y))b = (rot XIFT)b = kH,A%(Oy),

(V&Hffl)b = (spanV {zy" ', xr+1y})b = span {dr(xy"dy), dr(z"ydz)}
= diH, 110 (Os) = d T 1 A°(Oy).
By the direct sum decomposition (3.4), we recognize that
PoA (O) @ kM, A (Os) & dJ 1A% (O2) = P A @ dJr 1A% (0r) = Sy AN (o),

since J,41A'(0z) = {0}. For the third space, taking the b operator for 2-forms,
we have (fPr(a:,y))b = P,A?(0;) = S, ;A?*(0z). This proves the first statement of
Proposition 2.3.

The second statement of Proposition 2.3 can be established similarly. We state
all the equivalencies first, then provide some details for the subtler cases:

(A.1) (Tr+1 @0 T+1) = Sr+lA (Os),
~ b

(A.2) (Pr 0 x x P 0 VRN, @3BV, ) = S7,A (D),
~ 3.7 b

(A.3) (P 0xPr 0V x6EY,) =S573,A%(0y),

(A.4) () = 8,1, A°(Os).

The first and last statements are straightforward. For the 1-form case, (A.2), we
first recognize that

<fPT @ x X fh)b = PAY(O).

b b
We now claim that (V(;Hffl) = dJ,+1A°(03). Tt suffices to show that (6Hf_f1>

= Jr+1A%(03). The space 6H, T’+1 is defined as the span of polynomials of the form
zyz"t! or foTH(y, z), where fPTH(y, z) denotes homogeneous polynomial of degree
r+1 in variables y and z only, or of similar forms with the variables permuted. We
have
Tr1A°(03) = M1, 1A (Os) ® 6Hy 420" (O3).

We can write H,;11A'(03) as the span of elements of the form zpdy or xpdz
for any p € j%(y,z), or of similar forms with the variables permuted. Observe
that kxpdy = zyp and kapdz = xzp, both of which belong to xﬂsr(y,z) -
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b
5Hr3fl. By similar analysis, after permuting variables, we have that (5HT3+11) D

kHr+11AY(O3). Next, the space H,422A(0s) is spanned by the set {z"yz dx,
xy"zdy, vyz" dz}. Taking k of this set we get {a"Tlyz, xy" iz, xy2" 1}, estab-

b
lishing that (5Hf+11) D kHy422AM(0s). Since applying the flat operator to the

elements of the spanning set for JHffl produces a spanning set for J,.411A°(03),
we have established the claim.

b
Finally, we show that (5Ef+11) = Jr+1AY(03). The space 5E§f1 is defined as

the span of elements of the form a@n(y,z)(yv,z — zVy) or of two similar forms,

with the variables permuted. Let p € P,.(y, 2), i.e., p is a homogeneous polynomial
of degree r in variables y and z only. Observe that

(@p(yVz — 2Vy))" = ap(ydz — 2 dy) = —k(apdydz) € KHy411A%(0s).

Since £H,11,1A%(03) is spanned by form monomials that can be written as
k(xp dydz) and similar form monomials with the variables permuted, we have that

b
<5E§f1) = £Hry11A%(03) = T AN (Os).

The last equality follows from (2.11), since any element of A?((J3) has linear degree
at most 1. By (3.4), we have established (A.2). The final equality, (A.3), can be
confirmed by similar analysis.

APPENDIX B. PROOFS OF DIMENSION EQUALITY

We now prove that the number of degrees of freedom defined for the trimmed
serendipity elements is equal to the dimension of the corresponding polynomial
differential form space for n = 2 and n = 3. In our experience, all intuition for the
cardinalities of these sets comes from the geometry of the n-cubes to which they
are associated more so than the algebra of binomial coefficients required for their
computation. Additional cases beyond those proved here can easily be checked
using Mathematica or similar software, as we have done for n = 4 and n = 5 for
1 <r <100.

Let DOF(r, k,n) denote the number of degrees of freedom associated to S, A¥(0J,,);
its value is defined by the formula (4.3). Recall that dim S, A*(0,) can be com-
puted using (3.10) and that dim 7,A*(0,,) can be computed using Lemma 3.7.

Remark B.1. In the following proofs, we adopt the convention:

(B.1) (Z) _ (Z) if n > k,

0 ifn <k.

This convention is strictly for notational convenience as we frequently encounter
summations whose upper index limit depends on r. For instance, the term (ng)
appears in an expression for DOF(r,0,2) only when r > 4. By our convention,
this summand is 0 when r = 1, whereas converting it to the polynomial %Q(PB)
and evaluating at r = 1 gives a value of 1. Hence, we will only convert binomial
coeflicients to functions when doing so preserves the value according to the above

convention. As we will see, this approach simplifies the presentation of the proofs.

Proposition B.1. For k =0,1,2, DoF(r, k,2) = dim S;” A*(0,).
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Proof. We start with k = 0. Expanding (4.3), we get

DOF(r,0,2) = 4+ 4(r — 1) + (T;2>.

Note that our convention (B.1) applies to the third term in the sum, corresponding
exactly to the summation index going from d = 0 to d = min{2, |r/2]}. By (3.4),
we have that S, A°(0z) = P,A%(0z2) & J,,A°(0z); the term dJ,A~! is the empty
set. Using (3.11) and Lemma 3.7, we compute

Prvel= (57

|7,A%(Oy)| =4+ 4(r — 1) + ( )Z]+1

(B.2) —4+40r—1)+ ( ) (r )

Our convention (B.1) again applies to the term ( 22) and again it appears in the
summation only when r > 4. Adding the formulae for |7,.A°(0y)| and |P,- A°(0y)],
we recover exactly the formula for DOF(r, 0, 2).

Now we turn to k = 1. Expanding (4.3), we get

4, r=1,
r24+2r+2, r>2.

DOF(r, 1,2) = {

The cases are due to the fact that min{2, |r/2| + 1} = 1, for » = 1, and 2, for
r > 2. We have S;AY(Oz) = PoAYOz) @ J,AY(Os) & dJ,-A°(02). Recall that
|dT-A°(0)| = |J,-A°(02)], for which we already have a formula from the k = 0
case. Again using (3.11) and Lemma 3.7, we can compute

(B.3) |P-ANOy)| = (r 4+ 2)7,

FAN R (Hg) —2<r;2> +2<g) } (7«51).

Similar to the & = 0 case, the term 2(;) only appears for r > 2 and the term — (7;1)
only appears for r > 3, in accordance with our convention (B.1). Converting the
binomial coefficients to functions is still valid for any » > 1. By doing so and

simplifying, we find that

(B.4) |7, AN (Os)] = 0.

This was expected, given the general fact pointed out in [5, Equation (15)] that
JTAk(R")zo fork=nork=n-—1.

Thus, we just have to add (B.2) and (B.3) to compute the dimension of S,” A(s).
When r = 1, we find that dim S; A}(Oz) = 4. For r > 2, converting to functions
is valid; doing this and simplifying yields r2 + 2r + 2, recovering the formula for
DOF(r,1,2).

Finally we turn to the case k = 2. Expanding (4.3), we get

DOF(1,2,2) = (:fi) = (r; 1).
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Note that J.A%(0z) = 0, since a 2-form in n = 2 cannot be an image of x, so

S7AY(0y) = PrA%(0s) @ J-AY(Os). We have [PrA%(0,)] = (") from (3.11)

and |7,A*(0z)| = 0 from (B.4), completing the proof. O

Proposition B.2. For k=0,1,2,3, DOF(r, k,3) = dim S, A*(03).

Proof. We begin by again recalling the observation from [5, Equation (15)] that
JTAk(R")zo fork=nork=n-1.

This allows the following simplifications of the decomposition (3.4) for the spaces
inn=3:

(Os) = P A%(Os) @ J,A°(0s),
Sr_Al (D?)) = Pr Al Dd) 5% jrAl(Dd) 3] djrAO(D3)7
(Os) O3) ® dJ,A'(O3),

Since |d 7, A¥(O3)| = |7,A*(0O3)|, we only need to expand the formula from Lemma
3.7 for dim 7, A¥(O3) for k = 0 and k = 1 to be able to compute the dimensions of
all the spaces. We find that

4 ifr=1,
|7 A°(O3)| = £ 10 if r =2,
3(r+1) ifr>3,
and
2 ifr=1
LAL(Os)] = ’
T2 (Cs)l {3r if 7> 2.

Using the formula for [P A¥(03)| from (3.11) and the above, we can produce
formulae for |S;”A*(0z)| for each k. We write out the formulae for k = 1 in detail
as it is the most elaborate:

12, 36 if r =1, 2, respectively,
(B.5) IS AN (Os) =
7’<T—;3> +3r+3(r+1) ifr>3.

Similarly, we can compute the degree of freedom count using (4.3) to produce
formulae for DOF(r, k, 3) for each k. In the case k = 1, we get
(B.6)
12, 36 ifr=1, 2, resp.,
DOF(r, 1,3) = r—3
6r2+12+(r—2)< ) ) +(r—1)(r—3) ifr>3.

In the case r > 3, we convert the binomial coefficients in (B.5) and (B.6) into
polynomials and simplify, producing § + % + 9743 from each, thereby confirming
the equality of the dimensions. The remaining cases k = 0, k = 2, and k = 3 are
confirmed similarly. ]
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