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ABSTRACT

In this paper, we present a model to obtain prior knowledge for organ localization in CT thorax images using three dimen-

sional convolutional neural networks (3D CNNs). Specifically, we use the knowledge obtained from CNNs in a Bayesian

detector to establish the presence and location of a given target organ defined within a spherical coordinate system. We

train a CNN to perform a soft detection of the target organ potentially present at any point, x = [r,θ ,φ ]�. This probability

outcome is used as a prior in a Bayesian model whose posterior probability serves to provide a more accurate solution to

the target organ detection problem. The likelihoods for the Bayesian model are obtained by performing a spatial analysis

of the organs in annotated training volumes. Thoracic CT images from the NSCLC–Radiomics dataset are used in our

case study, which demonstrates the enhancement in robustness and accuracy of organ identification. The average value

of the detector accuracies for the right lung, left lung, and heart were found to be 94.87%, 95.37%, and 90.76% after the

CNN stage, respectively. Introduction of spatial relationship using a Bayes classifier improved the detector accuracies to

95.14%, 96.20%, and 95.15%, respectively, showing a marked improvement in heart detection. This workflow improves

the detection rate since the decision is made employing both lower level features (edges, contour etc) and complex higher

level features (spatial relationship between organs). This strategy also presents a new application to CNNs and a novel

methodology to introduce higher level context features like spatial relationship between objects present at a different

location in images to real world object detection problems.
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1. INTRODUCTION

The physical mechanisms driving many medical imaging techniques pose non-negligible risks to the patient. In the case

of diagnostic X-ray computed tomography, the acquisition of increasingly detailed anatomical information–such as con-

trast ratio, field of view, and signal-to-noise ratio–comes at the cost of increased exposure to DNA damaging ionizing

radiation. This cost of acquisition has been the subject of study for some time as the balance between actionable infor-

mation and the potential detriment to the patient required for its retrieval remains a subject of active investigation.1–4

Consequently, imaging protocols are often situationally adapted to reduce acquisition time and radiation dose, which

results in reduced field of view, inconsistent setup geometry, poor contrast, and motion/acquisition artifacts.5 Such vari-

ability across acquisition protocols has driven the need for organ identification/segmentation algorithms that are robust to

such widely varying sources of noise.

The field of supervised machine learning has focused on solving the general problem of model approximation by means

of parameter estimation from large sets of labeled example data–commonly referred to as training data. Furthermore,

special care taken to ensure that such models avoid learning noise patterns in the training data has led to the development

of very effective noise rejection techniques. Consequently, machine learning has become a valuable tool in the develop-

ment of computer vision techniques involving the classification of noisy images.6 These attributes make machine learning

derived models highly attractive for organ identification, localization, and segmentation within noisy diagnostic CT image

volumes.

The primary challenge in applying machine learning based techniques to the biomedical imaging domain, however, is

the difficulty of acquiring adequately large and diverse labeled training datasets such that the resulting learned models
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are appropriately general—i.e. not overfit to the data.7, 8 Obtaining such a large and diverse training dataset requires the

involvement of expert clinicians as well as computational experts with appropriate HIPPA certification and/or clinical col-

laborators willing to perform patient deidentification.9 Although, the scale of data required can be dramatically reduced

through the application of augmentation techniques, which simulate relevant realistic, common deformations; thereby

effectively amplifying the amount of training data available.10

In recent years, convolutional neural networks (CNNs) have exhibited markedly improved performance over state of the

art algorithms in the task of image classification.10 Typically once trained, these networks are used to assign a categorical

class label to a candidate image. Such architectures learn extractors for image features that best provide separability

between classes, with each subsequent network layer encoding a progressively higher level pattern. For instance the first

layer may detect edges, a second layer may detect patterns formed by connections between edges, and a third layer may

recognize objects formed using those patterns.11 Applications of CNNs to medical image segmentation and classification

problems have successfully demonstrated the segmentation of organs at risk (OAR) in the head and neck region for

radiology treatment planning,12 identification of lung structure in chest radiographs,13 and the delineation of the urinary

bladder.14

In this paper, we introduce a method for increasing the robustness of a CNN classifier designed to detect thoracic organs

by imposing a model that enforces local spatial context. Due to the limited availability, quantity, diversity, and clean-

liness of labeled CT training data volumes, the accuracy of the CNN classifier may suffer; resulting in incorrect class

labels at certain anatomical sites. We therefore use the CNN output only as a means for constructing a Bayesian prior

that indicates a location in space where the target organ may be present with a given probability. The final categorical

probability for a site is obtained as a posterior after imposing the known spatial distribution between neighboring organs

as likelihood information.

The remaining sections are organized as follows. Section 2, discusses the methods used in this study. Here, insight is

provided regarding the network architecture and adopted training procedure used for the presented experiments. Section 3

presents the results obtained in our training and testing phases. Finally, a brief discussion and future research suggestions

are presented in Section 4.
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Figure 1: Model Workflow Overview. (top) Model Training. In addition to training the CNN in the traditional fashion,

spatial likelihood distributions are constructed for each labeled organ with respect the other labeled organs. (bottom)

Organ Classification. The CNN is provided a subvolume, V , taken from the full thoracic CT volume and produces an

organ class probability. This class probability is fed to the Bayes classifier layer as a prior, which is then reevaluated

given the evidence provided by the likelihood distribution constructed during training to produce the final volume label T .

2. METHODS

2.1 Convolutional Neural Network Architecture

The convolutional neural network described here is used to obtain the probability that a subvolume extracted from a full

thoracic CT volume contains a specific organ, namely the left lung, right lung, or heart. From here on, we shall refer to
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these subvolumes as potential volumes of interest (VOIs). As shown in Figure 2, the employed CNN architecture consists

of an input layer, which accepts a VOI, immediately followed by a 3D convolution (CONV) layer, which uses a 3×3×3

kernel. Immediately following this convolution layer is a rectified linear unit (ReLU) layer implementing the activation

function f (x) = max(0,x), which serves to introduce element wise non-linearity into the network.15 Following the ReLU

layer is a max pooling (POOL) layer, which serves to employ a simple means of spatial downsampling. This three layer

sequence consisting of CONV→ ReLU→ POOL is repeated two more times, as shown in Figure 2, for a total of nine

layers immediately following the input layer.

Immediately following the initial nine layers implementing convolution and max pooling are three fully connected hidden

layers using the ReLU activation function. As shown, dropout is performed throughout the hidden layers in an attempt

to mitigate overfitting to the training data.8 The output derived from these final dense layers is a vector containing the

probability of detecting the target organ within the VOI fed to the input layer. This vector is used as a categorical prior to

a Bayesian classifier, which forms the final layer of the network.

The Bayesian classier serves to compute the posterior probabilities of the VOI belonging to the various organ classes

using a Gaussian likelihood distribution describing the spatial relationship between the target organ and a reference organ.

The details of this Bayesian classifier are covered in depth in Section 2.5. Figure 1 illustrates the overall workflow.
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Figure 2: 3D CNN Network Graph. Our CNN consists of three 3D convolution and max pooling units. After subse-

quent dropout and flattening, the output from these higher layers are fed to a fully connected layer where dropout (p = 0.25)

is employed throughout to avoid possible overfitting. Class probabilities are produced at the output of the CNN, which

are subsequently used as prior probabilities to the Bayesian classification layer.
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2.2 CNN Training

Training was performed using data from The Cancer Imaging Archive (TCIA). Specifically, the TCIA NSCLC–Radiomics

thoracic CT dataset was used, which consists of 422 thoracic CT volumes each from a different non-small cell lung can-

cer (NSCLC) patient. Figure 3 shows a 3D isosurface rendering of a random CT volumes from this dataset. VOIs con-

taining the heart (HT), right lung lobe (RL), and the left lung lobe (LL) were manually extracted from these volumes and

labeled by hand. CNN detectors were then trained to identify the presence of these organs within an arbitrarily selected

volume of interest from any given thoracic CT volume. Given the limited training data of 422 thoracic CT volumes, data

augmentation was performed to mitigate overfitting. For this purpose, we developed a uniform cubic B-spline based data

augmentation methodology that serves to emulate anatomical variation representative of population variance and differing

respiration state. Given this augmented training data, CNN training was performed using the stochastic gradient descent

optimizer provided by TensorFlow.16

Figure 3: Example Thoracic CT Volume. (left) A randomly selected thoracic scan from the TCIA NSCLC–Radiomics

dataset used in this study. Isosurface rendering with alpha channeling for visualization. (right) VOIs containing the target

organs LL = Left lobe, RL = Right Lobe, HT = Heart.

2.3 Volume of Interest (VOI) Extraction

The main objective of this operation is to extract a sub-volume that encapsulates the target organ. Cuboid VOIs,

V = [vx,vy,vz,vl ,vd ,vh]
�, are identified in the thoracic CT volume, I, such that V ⊂ I where [vx,vy,vz] represents the point

at the front-top-left corner of V in Cartesian coordinates. Similarly, [vl ,vd ,vh] represents the length, depth, and height of

V . An identified VOI, V , is assigned a label, t ∈ T = {RL, LL, HT, NONE}, depending on the target organ contained: right

lung, left lung, heart, or nothing, respectively. Additionally, each VOI, V , is associated with a point, x = [r,θ ,φ ]� defined

within a spherical coordinate system, which is related to the Cartesian coordinate system by the transform:
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where x, y and z are the coordinates of the VOI center in the Cartesian system with respect to image origin x0 = [0,0,0]�

i.e., top left corner of the first frame in the image volume:
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Figure 4 illustrates the positioning of V at point, x, in the coordinate axes.
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Figure 4: Inter–VOI relationship in spherical space. The spatial relationship between VOIs is defined by the vector

di j. The probability of finding a VOI with a specific label at a location relative to another VOI is described by a Bayesian

likelihood computed using the labeled training data.

(a) Visualization of VOI with motion vector field. (b) Augmentation visualization.

Figure 5: Data Augmentation. (a) The motion vector fields are generated to describe realistic variations in breathing

patterns and size/shape. (b) Warped slices (right) show the variations introduced by our augmentation protocol applied to

the original slices (left).

2.4 Improving Training Using Data Augmentation

The TCIA NSCLC-Radiomics dataset consists of 422 thoracic CT volumes. To compensate for this small number of

true samples as well as the lack of physical diversification naturally found in larger human populations, a new method of

augmentation was developed. In this method, elastic deformations are applied to training CT volumes in order to generate

an augmented dataset more capable of training a CNN that maintains generality.10

Using this new method, augmentation of the original NSCLC thoracic CT volumes was achieved by employing elastic
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deformations parameterized by the uniform cubic B-spline basis. This same deformation model is routinely solved to

recover intra-patient respiratory motion as well as inter-patient anatomical mappings as they apply to a variety of clinical

applications.17 Consequently, employing this model allows for the realistic simulation of common anatomical variations

in the anatomy found across more representative patient populations—such as heart size and the respiratory state of

the lungs at the time of image acquisition. Figure 5 illustrates this data augmentation process. The resulting augmented

volumes shown in Figure 5(b) were obtained using the Plastimatch18 open-source medical image computation software.

2.5 Improving Detection Using Spatial Relationship Analysis

Any two VOIs, Vi and Vj encapsulating target organs determined by their labels, ti and t j are associated to points

xi = [ri,θi,φi]
� and x j = [r j,θ j,φ j]

�, respectively, during VOI extraction. Considering that xi and x j are two points in a

spherical coordinate system, a vector di j can be established between them as:

di j = dr r̂+dθ θ̂ +dφ φ̂ (3)

where dr is the magnitude of the vector in the direction of unit vector, r̂. We define vector di j as the spatial relationship

between Vi and Vj. Image volumes comprising the training set are used to establish the probability of finding a target

organ at xi with respect to another at x j. The Gaussian distribution describing this relationship is used as the likelihood in

the final Bayesian classification layer of our network.

2.6 Bayes Classifier

The naive Bayes classifier is used as a final amended layer to our CNN. The implementation is straightforward. As de-

scribed in Section 2.1, the class prior P(T = t) required by the Bayes classifier is obtained as the output from the previous

fully connected layers in the network shown in Figure 1. This prior probability is then used in conjunction with the
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Figure 6: Training Accuracy vs epoch with non–augmented data. The variation of accuracy over 15 epochs of training

for (a) the left lung, (b) the right lung, and (c) the heart. Notice how the accuracy changes are significant in the first few

epochs.
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marginal likelihood P(di j|t), which is easily obtained from the known spatial separation between organs in the training

data. Applying the classic Bayes Rule for an arbitrary VOI, Vi, located at point, xi in space:

P(t|di j) =
P(di j|t)P(t)

P(di j)
(4)

where the class prior probability, P(t), is simply the probability that V belongs to the class T = t. This is obtained by

supplying V to the input layer of the CNN illustrated in Figure 1, which produces P(T = t) at its output. The marginal

likelihood P(di j|t), or evidence as some call it, is the probability of Vi existing spatially at point xi given that it belongs

to the class T = t. As previously mentioned, this can be computed from the training examples by using VOIs labeled as

belonging to class T = t. The term P(di j) is a measure of how probable it is for Vi to exist at any relative point Di j given all

possible labels T . Finally, the posterior probability P(t|di j) provides the probability that Vi belongs to the class T = t given

new evidence that it exists at point Di j = di j within the CT volume relative to Vj. It should be noted that since the point di j

is taken in relation to another organ whose location is believed to be known with a high probability, there exists unique a

Bayesian model for each such Vj “anchor organ.”

3. RESULTS

The proposed CNN was characterized using the thoracic testing volumes obtained from the TCIA NSCLC dataset. Ten-

sorFlow16 was used to perform the characterization experiments on a machine equipped with dual HyperThreaded

3.2 GHz Intel Xeon Octo-Core E5-2630v3 processors, 512 GB DDR4 RAM, and dual NVIDIA GeForce GTX 980

GPUs.
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Figure 7: Loss vs epoch on non–augmented data. Categorical cross–entropy loss values are calculated after each epoch

of training and profiled over 15 epochs for our target organs specifically, (a) the left lung, (b) the right lung, and (c) the

heart. The loss value is expected to decrease since after each epoch of training the model performs better classification.
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Training and testing sets were formed by partitioning the 422 NSCLC thoracic CT volumes into 300 training volumes and

122 testing volumes. The accuracy obtained over 15 epochs of training for our CNN detectors is profiled in Figure 6. The

variation in loss function during training is also profiled and shown in Figure 7.

After partitioning, augmentation was performed to increase the training data from 300 volumes to 10,000 volumes and

testing data from 122 to 2500 volumes. Care was taken to assure that all 10,000 training volumes were derived from the

original 300 training-exclusive data volumes. Similarly, 2500 testing volumes were derived from 122 original testing-

exclusive data volumes. The accuracy and loss profiled over 15 epochs of training with augmented data are shown in

Figures 8 and 9 respectively.

Throughout characterization, the number of true positives (target VOIs with correctly classified organs), true negatives

(non-target VOIs correctly classified as NONE), false positives (non-target VOIs incorrectly classified as containing an

organ), and false negatives (target VOIs incorrectly classified as NONE) were collected. The performance of the organ

detector was measured in terms of sensitivity:

SN =
T P

T P+FN
(5)

specificity:

SP =
T N

FP+T N
(6)

and accuracy:
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Figure 8: Training Accuracy vs epoch on augmented data. The variation of accuracy over 15 epochs of training for (a)

the left lung, (b) the right lung, and (c) the heart. The accuracy changes are significant in the first few epochs for both

networks. The improved CNN does not exhibit signs of over–fitting unlike the typical CNN which exhibits 100% training

accuracy and much lower testing accuracy.

Proc. of SPIE Vol. 10574  105741X-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/9/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



AC =
T P+T N

T P+FN +FP+T N
(7)

These figures of merit are represented in the receiver operating characteristic (ROC) curves shown in Figure 10, which

illustrate the variation of a detector’s sensitivity as a function of its specificity. The area under these ROC curves (i.e. the

AUC) is an excellent measure of detector performance and is closer to one for systems performing accurate detection.

Figure 10 shows ROC curves for the various organ detectors both with and without the Bayesian classification layer.

These curves demonstrate that the lungs classify with high accuracy and specificity. Additionally, in the low false positive

rate region of the heart (∼1% to 3%), the Bayesian model provides a substantial increase in true positive rate, sometimes

as high as a 47 percentage point improvement, without sacrificing specificity. This improvement in detector performance

is further demonstrated by Table 1, which compares the AUC for each organ detector with and without the Bayesian layer.

As shown, a statistically significant improvement is seen for each organ as a result of the Bayesian layer; of these the

heart exhibits a substantial AUC improvement, increasing from 0.9076 to 0.9515.

4. CONCLUSIONS AND DISCUSSION

This research concerns the integration of contextual information into a CNN model designed to assign categorically

defined organ labels to subvolumes within a thoracic CT image volume. This has been achieved through the addition of a

final Bayesian classification layer to the end of the CNN, which leverages contextual evidence to improve the accuracy of

organ class assignment to candidate subregions. Specifically, likelihood information modeling the probability of specific
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Figure 9: Loss vs epoch on augmented data. Categorical cross–entropy loss values are calculated after each epoch of

training and profiled over 15 epochs for our target organs specifically, (a) the left lung, (b) the right lung, and (c) the heart.

As, expected the loss value decreases after each epoch of training.
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Figure 10: ROC Curves for the detection of (a) the left lung, (b) the right lung, and (c) the heart. The bayes classifier

performs better than the CNN classifier indicated by increase in the AUC. The changes in the curve in towards the lower

FPR area indicate more true positives have been detected by bayes than CNN in the low sensitivity region which is rela-

tively a more relevant region to medical applications.
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Table 1: Area under ROC for organ detectors before and after employing spatial relationship evidence

ORGAN POST CNN POST CNN+BAYES

Left Lung Lobe 0.9487 0.9514

Right Lung Lobe 0.9537 0.9620

Heart 0.9076 0.9515

 x
i

CNN : 

P(T =HT) = 0.63

Bayes: 

P(T=HT) = 0.09

 x
j  x

k

 d
ij

 d
ik

Figure 11: An axial CT volume slice exhibiting the correction of a poor initial heart detection. The boxed region

is the cross section of a VOI identified by the raw CNN to contain the heart with 64% certainty. Using this as a class

prior for a Bayesian output layer with marginal likelihoods describing the relation of the heart with respect to the lungs

appropriately decreases this certainty from 64% to 9%.

organ classes existing at spatial locations in relation to one another is used to provide these improved posterior class

membership probabilities.

Experiments demonstrating the efficacy of the final Bayesian classification layer in the detection of the left lung, right

lung, and heart have shown the addition of the layer to be successful in reducing the false positive rate while increasing

the true positive rate. This effect is particularly pronounced in the detection of the heart, which exhibits an increase in

the true positive rate as large as 0.47 while maintaining a specificity as high as 0.97. Similar improvements are not seen

in the lungs as the standard CNN architecture already exhibits good detection using learned feature extractors alone,

operating with an AUC of ∼0.95 and ∼0.96 before and after the Bayesian layer respectively.

As demonstrated by Figure 11, it is reasonable to believe that the enriching effect of the Bayesian layer is more pro-

nounced when detecting the heart due to the relative similarity in Hounsfield units possessed by muscle tissue. In other

words, such tissues have roughly similar radiodensity, causing them to exhibit poorly pronounced contrast in X-ray CT

images (∼35–55 H.U.), which may cause more distinctive features to go unlearned by the CNN without a more robust

training dataset. However, this case of poor CNN heart classification serves to well exemplify the motivation behind the

employment of spatial relationship information in the Bayesian layer, which increases the area under the heart ROC curve

shown in Figure 10(c) from 0.9076 to 0.9515. As a result, false hypothesis such as erroneous heart classifications are

corrected and weak true heart classifications are reinforced by the employment of spatial proximity evidence.

This success in leveraging spatial anatomic relations among organs within the thorax provides a basis for improving auto-

matic detection of organs in diagnostic medical imaging setups that are non-standard, noisy, or otherwise challenging.
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