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Abstract— Learning from Demonstration (LfD) is a popu-
lar approach to endowing robots with skills without having
to program them by hand. Typically, LfD relies on human
demonstrations in clutter-free environments. This prevents the
demonstrations from being affected by irrelevant objects, whose
influence can obfuscate the true intention of the human or the
constraints of the desired skill. However, it is unrealistic to
assume that the robot’s environment can always be restructured
to remove clutter when capturing human demonstrations. To
contend with this problem, we develop an importance weighted
batch and incremental skill learning approach, building on a
recent inference-based technique for skill representation and
reproduction. Our approach reduces unwanted environmental
influences on the learned skill, while still capturing the salient
human behavior. We provide both batch and incremental
versions of our approach and validate our algorithms on a
7-DOF JACO2 manipulator with reaching and placing skills.

I. INTRODUCTION

Intelligent and cooperative robots must be capable of

adapting to novel tasks in dynamic, unstructured environ-

ments. This is a challenging problem to address; it requires a

robot to possess a diverse set of skills that may be difficult to

hand-specify or pre-program. Learning from demonstration

(LfD) has proven an effective tool in approaching such prob-

lems [1]. To acquire a desired skill, LfD approaches generally

involve learning a skill model from a set of demonstrations

provided by a human. The model can then be queried to

reproduce the skill in novel reproduction environments with

additional skill constraints. Common examples of constraints

include new start/goal states, or new obstacle configurations

that constrain the set of possible trajectories. LfD techniques

generally differ in the manner in which the skill is repre-

sented, learned, and reproduced.

Most prior LfD approaches [2], [3], [4], [5] are based on

the assumption that demonstrations can be performed in un-

cluttered, minimally constrained environments. The presence

of clutter in the demonstration environments can introduce

additional constraints on human demonstrations that are

unrelated to the target skill or the underlying human intent.

If unaccounted for, this can lead to suboptimal skill models.

However, restructuring the world to remove clutter is often

impractical, which limits the viability of such approaches.

In this work, we tackle the problem of learning skills

from a set of demonstrations, which can be partially or fully

influenced by the presence of obstacles (see Fig. 1).
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Fig. 1: A human is demonstrating a placing skill, which involves
placing the (red) cube from the (blue) bowl on the right in to one
of the three bowls on the left. The figure contrasts the demonstrated
trajectory (light blue), which is influenced by an obstacle (drawer)
in the environment, with the intended straight-line trajectory (dark
blue) in the absence of the obstacle.

To contend with obstacles during training, we present

importance weighted skill learning. Specifically, we adopt

and extend the inference-based view of skill reproduction as

proposed by Rana et al. [6] with Combined Learning from

Demonstration And Motion Planning (CLAMP). CLAMP

provides a principled approach for generalizing robot skills

to novel situations, including avoiding unknown obstacles

present in the reproduction environment. When reproducing

a desired skill, trajectories are generated to be optimal with

respect to the demonstrations while remaining feasible in the

given reproduction environment.

We extend CLAMP to utilize demonstrations from clut-

tered environments through importance weighted skill learn-

ing (see Fig. 2), which rates the importance of demonstration

trajectories while learning the skill model. We propose an im-

portance weighting function that assigns lower importance to

parts of demonstrations that are more likely to be influenced

by obstacles. We present batch and incremental versions of

our algorithm: batch learning is useful when the set of initial

demonstrations are sufficient for learning a reasonable skill

model, while incremental learning is useful in scenarios that

require refinement of the skill model as new demonstrations

in new environments become available.

We validate our approach on a 7-DOF JACO2 manipulator

with reaching and placing skills. In all the experiments,

we evaluate the approach by providing demonstrations in

cluttered environments and then changing the environments

for reproduction.

II. RELATED WORK

Many existing approaches to trajectory-based LfD address

the problem of avoiding obstacles in the reproduction sce-



Fig. 2: An overview of our approach. In the demonstration envi-
ronment, the human demonstrations and the associated importance
weights are collected. The trajectory prior acts as the skill model.
Conditioning this prior on the likelihood of events specified by the
reproduction scenario gives the posterior.

nario. Some approaches add obstacle avoidance in the skill

reproduction phase as a reactive strategy [7], [8], [9], while

others carry out motion planning or trajectory optimiza-

tion [10], [11], [12], [6]. In all these approaches, the skill

model is learned from demonstrations that are not affected by

obstacles. Any constraints or costs associated with obstacles

are typically present during reproduction only. However, in

an obstacle-rich environment, the demonstrations themselves

are likely to be influenced by the presence of obstacles,

which could have repercussions during skill reproduction.

There have been a few attempts to address the problem

of learning skills from demonstrations in cluttered environ-

ments. For example, [13], [14] learn a dynamic movement

primitive (DMP) as well as a coupling term for obstacle

avoidance from demonstrations. These approaches suffer

from two major problems. First, since DMPs follow a single

demonstration, they fail to learn potentially different ways

of executing the skill, thereby limiting its robustness in new

scenarios. Second, due to the reactive nature of the obstacle

avoidance strategy, the reproduced trajectory does not nec-

essarily preserve the shape of the motion in the presence of

obstacles. Ghalamzan et al. [15], proposed an approach based

on learning a cost functional from human demonstrations.

This cost functional is dependent on two components: the

deviation from the mean of the demonstrations, and the dis-

tance from obstacles in the environment. Parameters of both

these components are estimated from human demonstrations.

A major drawback of this approach is the assumption that

the mean of the demonstrations sufficiently expresses the

demonstrated skill. This assumption however stands invalid

for skills which can be executed in multiple ways and hence

requires a more expressive skill model.

Our proposed method is based on learning an underly-

ing stochastic dynamical system from demonstrations. De-

pending on the part of the state-space the robot lies in,

this dynamical system is able to generate different ways

of executing a learned skill. We make use of importance

weighting to discount the effect of obstacles that are present

when the demonstrations are provided. Specifically, the parts

of demonstrations in the vicinity of obstacles are penalized

to account for their deviation from the desired skill or the

human intention.

III. COMBINED LEARNING FROM DEMONSTRATION AND

MOTION PLANNING

We adopt the probabilistic inference view on learning

from demonstration which has been previously employed in

CLAMP [6].

A. Skill Reproduction as Probabilistic Inference

Skill reproduction using CLAMP is performed by maxi-

mum a posteriori (MAP) inference given a trajectory prior

and event likelihoods in the reproduction environment.

Trajectory Prior: The trajectory prior or the skill model

represents a distribution over robot trajectories. A trajectory

is defined as a finite collection of D-dimensional robot states

xi ∈ R
D at time ti, 0 ≤ i ≤ N . The prior is given by a

joint Gaussian distribution over the robot states,

p(x) ∝ exp{−
1

2
‖x− µ‖2K}, (1)

where,

x
.
= [x0,x1, . . . ,xN ]T

µ
.
= [µ(t0),µ(t1), . . . ,µ(tN )]T , K

.
= [K(ti, tj)]

∣

∣

ij,0≤i,j≤N
.

The prior enforces optimality by penalizing the optimal

trajectory on deviating from the mean of the prior during

inference. The trajectory prior is learned from demonstra-

tions.

Event Likelihood: The likelihood function encodes the

constraints in the skill reproduction scenario. The constraints

are represented as random events e that the optimal trajectory

should satisfy thus enforcing feasibility during inference

i.e. reproduction. These events, for example, may include

obstacle avoidance, or a new start/goal state or via-point.

The likelihood function is defined as a distribution in the

exponential family,

p(e|x) ∝ exp{−
1

2
‖h(x; e)‖2Σ}, (2)

where h(x; e) is a vector-valued cost function with covari-

ance matrix Σ. The reader is referred to [16], [6] for more

details on these likelihood functions.

MAP Inference: The desired optimal and feasible trajec-

tory that reproduces the skill is then given by,

x∗ = argmax
x

{

p(x|e)
}

= argmax
x

{

p(x)p(e|x)
}

. (3)

B. Trajectory Prior Formulation

It is assumed that in CLAMP that robot trajectories for a

desired skill are governed by an underlying linear stochastic

skill dynamics,

xi+1 = Φi+1xi + ui+1 +wi+1, wi+1 ∼ N (0,Qi+1),(4)

where Φi and ui are a time-varying transition matrix and

a bias term, respectively, and wi is additive white noise

with time-varying covariance Qi. The trajectory prior can be

generated by taking the first and second order moments of the

solution to this dynamics. This Markovian dynamics yields

an exactly sparse precision matrix (inverse covariance) [17],

[18] inducing structure in the trajectory prior in (1), which



enables efficient learning and inference. The problem of

learning the trajectory prior is equivalent to estimating the

underlying stochastic dynamics.

While learning the trajectory prior, CLAMP assumes all

available demonstrations are free from external influences,

and therefore captures the true human intent or skill con-

straints. However, in the presence of such influences, this

assumption no longer holds and the learned prior is subop-

timal.

IV. IMPORTANCE WEIGHTED SKILL LEARNING

In this section, we introduce importance weighting when

learning the prior to exclude the effects of unwanted influ-

ences during demonstrations. We seek to estimate the param-

eters of the skill dynamics model in (4) from demonstrations.

As a preliminary step, lets re-write (4) as follows,

xi+1 = Φ̃i+1x̃i +wi+1, wi+1 ∼ N (0,Qi+1) (5)

where,

x̃i =

[

1

xi

]

, Φ̃i+1 =
[

ui+1 Φi+1

]

We additionally define an importance weighting function as

w : R
d 7→ R. The importance weighting function should

give higher weights to robot states that are less likely to

deviate from the skill constraints or the true human intent.

While this importance weighting formulation can be used

in other contexts too, in this paper we define a specific

form of importance weighting to account for the influence of

unwanted obstacles in the demonstration environment. The

exact form of this environment-dependent obstacle weighting

function is presented in Section V.

A. Batch Skill Learning

Let’s assume the availability of K trajectory demon-

strations, with the kth demonstration defined as xk =
[xk

0 ,x
k
1 , . . . ,x

k
N ]T . For each discrete time interval (ti, ti+1],

the inputs are collected into a matrix X̃i = [x̃1
i , x̃

2
i , . . . , x̃

K
i ]

while the corresponding targets into a matrix Xi+1 =
[x1

i+1,x
2
i+1, . . . ,x

K
i+1]. Furthermore, the matrix Wi =

diag
(

w(x1
i ), w(x

2
i ), . . . , w(x

K
i )

)

defines a state-dependent

importance weight matrix.

The batch skill learning formulation seeks to find Φ̃i+1

and Qi+1, which minimize a regularized squared norm over

the provided demonstrations.

Φ̃∗
i+1,Q

∗
i+1 (6)

= argmin
Φ̃i+1,Qi+1

{

L(Φ̃i+1,Qi+1)

}

= argmin
Φ̃i+1,Qi+1

{

tr
(

Q−1

i+1
Ei+1WiE

T
i+1

)

+ λ‖Φ̃i+1‖
2
F

}

where Ei+1 = Xi+1−Φ̃i+1X̃i defines the error matrix, and

λ is a regularization coefficient.

The solution to the batch skill learning problem in (6) is

given by the weighted ridge regression estimate,

Φ̃∗
i+1 = XT

i+1WiX̃i

(

X̃iWiX̃
T
i + λI

)−1
, (7)

Q∗
i+1 =

1

z
E∗

i+1WiE
∗
i+1

T
, (8)

z =
tr(Wi)

2 − tr(WT
i Wi)

tr(Wi)
.

B. Incremental Skill Learning

The batch skill learning procedure assumes that there are

enough demonstrations available to learn an optimal skill

model. However, as more demonstrations are aggregated over

time, possibly in different environments, it is desirable to

refine the model since more data provides a better estimate

of the skill. To achieve this, we propose incremental weighted

skill learning.

Our incremental skill learning procedure is based on

Bayesian inference. In this formulation, we maintain a joint

probability distribution over the unknown skill dynamics

parameters. Every time a new demonstration is collected,

a posterior over the skill dynamics parameters is calculated

p(Φ̃i+1,Qi+1|D
1:k)

= p(Dk|Φ̃i+1,Qi+1)p(Φ̃i+1,Qi+1|D
1:k−1),

(9)

where D1:k = {{x̃1
i ,x

1
i+1}, {x̃

2
i ,x

2
i+1}, . . . , {x̃

k
i ,x

k
i+1}}.

At any stage, the mode of the posterior distribution provides

an estimate of the unknown parameters.

Skill Dynamics Distribution: The joint probability dis-

tribution over the unknown parameters Φ̃i+1 and Qi+1 is

given by

p(Φ̃i+1,Qi+1) = p(Φ̃i+1|Qi+1)p(Qi+1), (10)

where,

p(Φ̃i+1|Qi+1) = MN (Mi+1,Qi+1,Ri+1), (11)

p(Qi+1) = W−1(Vi+1, νi+1), (12)

MN refers to a matrix-normal distribution with matrix-

valued mean Mi+1 and covariances Qi+1 and Ri+1 for the

rows and columns respectively. W−1 refers to an inverse-

Wishart distribution with positive definite scale matrix Vi+1

and νi+1 degrees of freedom. Note that matrix-normal

and inverse-Wishart distributions are generalizations of the

normal and inverse-gamma distributions respectively to the

multivariate case.

Demonstration Likelihood: The likelihood of observing

the input-target pair from the kth demonstration under the

stochastic dynamics (5) is given by

p(Dk|Φ̃i+1,Qi+1)
.
= p(xk

i+1|x̃
k
i , Φ̃i+1,Qi+1) (13)

∝ exp

{

−
1

2
(wk

i Q
−1

i+1
eki+1e

k
i+1

T
)

}

.

where eki+1 = xk
i+1 − Φ̃i+1x̃

k
i and wk

i = w(xk
i ). Note that

the likelihood is scaled by the weight in order to incorporate

the importance weighting.



Skill Dynamics Inference: The skill dynamics parameters

after assimilation of k demonstrations is given by the mode

of the joint posterior distribution (maximum a posteriori),

Φ̃k
i+1,Q

k
i+1 = argmax

Φ̃i+1,Qi+1

{

p(Φ̃i+1,Qi+1|D
1:k)

}

. (14)

Due to the properties of matrix-normal and inverse Wishart

distributions, the mode of the joint distribution turns out to be

equivalent to the product of the modes of the two conditional

distributions [19],

Φ̃k
i+1 = argmax

Φ̃i+1

{

p(Φ̃i+1|Qi+1,D
1:k)

}

= Mk
i+1 (15)

Qk
i+1 = argmax

Qi+1

{

p(Qi+1|D
1:k)} =

1

νki+1
+D + 1

V k
i+1.

(16)

Furthermore, the parameters of the conditional distributions

are governed by the following update laws,

Rk
i+1 = wix̃ix̃

T
i +Rk−1

i+1

Mk
i+1 = (wixi+1x̃

T
i +Mk−1

i+1
Rk−1

i+1
)(Rk

i+1)
−1

V k
i+1 =

V k−1

i+1
+ wi(xi+1 −Mk

i+1x̃i)(xi+1 −Mk
i+1x̃i)

T

+ (Mk
i+1 −Mk−1

i+1
)Rk−1

i+1
(Mk

i+1 −Mk−1

i+1
)T

νki+1 = 1 + νk−1

i+1

The incremental learning procedure is initialized with a prior

joint distribution p(Φ̃i+1,Qi+1|φ). The Gaussian comonent

of the joint prior is selected to be the ridge regression

prior, that is, M0
i+1 = 0 and R0

i+1 = 1

α
I . The inverse

Wishart component is selected to be an uninformed prior,

with V 0
i+1 = 1

β
I and ν0i+1 = 1

β
. Here α and β are positive

scalars. In our implementation, we set α = β = 1010. Note

that smaller values of these scalars makes the prior too strict,

which restrains the skill model from fitting the data well.

V. ENVIRONMENT-DEPENDENT IMPORTANCE WEIGHTING

FUNCTION

In this section, we define the importance weighting func-

tion to enable skill learning from demonstrations, which may

be provided in the presence of obstacles in the environment.

The weighting function gives lower importance to the parts

of a demonstration which are more likely to be influenced

by the presence of an obstacle and therefore deviate from

the intent of the human.

We hypothesize that the parts of demonstrations closer to

obstacles are influenced by the obstacles and therefore fail

to satisfy the skill constraints. Conversely, partial trajectories

farther away from obstacles are more likely to satisfy the

skill constraints and should be given more importance. For

a given state xi, we define the importance weight to be

equivalent to the likelihood of staying collision-free [16]. For

this likelihood function, we first define a hinge loss function

c(xi) =

{

−d(xi) + ε d(xi) ≤ ε

0 d(xi) > ε
,

Fig. 3: An illustration of an importance weight function parame-
terized by ε = 3 and σobs = 1 (left) and a signed distance field
(right). The importance weight levels at 1 outside the danger area,
and decays down to zero inside with the slope governed by σobs.

where d(·) is the signed distance from the closest obstacle in

an environment and ε specifies the ‘danger area’ around the

obstacle. With this hinge loss, we assume that an obstacle

affects a state only when it is within the danger area around

the obstacle. Outside of this danger area, the obstacle has no

influence on the state. The importance weight itself is given

by a function in the exponential family,

w(xi) = exp

{

−
c(xi)

2

2σ2
obs

}

, (17)

where the parameter σobs dictates the rate of decay of the

importance weight for states within the ’danger area’. The

smaller the value of σobs, the faster the importance weight

will decay down to zero (see Fig 3).

VI. EXPERIMENTS

We evaluate the performance of our method on two

different skills1: 1) the reaching skill, and 2) the placing skill.

For both skills, a human provides multiple demonstrations

via kinesthetic teaching on a 7-DOF JACO2 manipulator. The

end-effector positions are recorded and the corresponding

instantaneous velocities are estimated by fitting a cubic

spline to each demonstration and taking its time derivative.

Furthermore, the demonstrations are also time-aligned using

dynamic time warping (DTW). To setup the trajectory prior

in (1), we define the robot states xi as the vector concate-

nation of instantaneous robot positions and velocities.

For the reaching skill, the goal is to reach an object from

different locations. Hence, all the demonstrations share the

same goal state while the initial state varies. In the absence of

any obstacles in the path, a demonstration follows a nearly

straight-line path to the goal. In the presence of obstacles

in the path, the demonstrations deviate from this desired

path in order to avoid collision with the obstacles. Fig. 4

shows the demonstration environment and the corresponding

demonstrations.

In order to learn the trajectory prior for this skill, we

use importance weighted skill learning, as described in

Section IV-A. The demonstrations reaching the target from

the uncluttered part of the environment represent the true

human intent. Therefore, we expect our trajectory prior to

be biased towards these demonstrations. Fig. 5 shows the

trajectory distributions (i.e. time-evolving state distributions)

1Accompanying video: https://youtu.be/03r8Tblhq7k



Fig. 4: Human demonstrations for the reaching skill. All demon-
strations reach the bowl from different initial positions in the
presence of three obstacles in the environment. Top: Snapshots of a
demonstrations avoiding the obstacles. Bottom: A 3-D plot showing
all the demonstrations and the obstacles.

(a) without importance weighting (b) with importance weighting

Fig. 5: Trajectory prior visualization for the reaching skill. The
blue line is the mean of the prior, and the blue shaded region shows
one standard deviation around the mean.

encoded in the trajectory priors learned with and without im-

portance weighting. The trajectory distributions are generated

by rolling out the stochastic skill dynamics in (5) with an

initial state distribution given by a Gaussian over the initial

demonstration states. The mean of the trajectory distribution

generated with importance weighting deviates less from the

intended straight-line path, exhibiting the true underlying

skill, as compared to the distribution without importance

weighting. To enable this, we empirically selected the pa-

rameters of the importance weight function in (17), such that

the parts of state-space likely to be under obstacle influence

can be successfully downplayed while learning the prior. A

value of ε = 0.3m and σobs = 0.01m provided sufficient

bounding region around the obstacles in most cases.

Fig. 6 shows multiple instances of reproduction for the

reaching skill. The skill is reproduced with (3) by con-

ditioning the learned trajectory prior on the likelihood of

starting from a desired initial state and the likelihood of

staying clear of arbitrarily placed obstacles. We show the

trajectories generated from two different initial states in three

different environments. When the obstacles are placed at the

same location as the demonstration phase or displaced, the

reproduced trajectories from the prior without importance

weighting take the longer path to the target around the

Fig. 6: Trajectories generated by conditioning the priors on two
initial positions in three different environments. Top-left: Environ-
ment without obstacles. Top-center: Environment with obstacles at
the same locations as demonstrations. Top-right: Environment with
obstacles displaced. Bottom: Trajectory executions on a real robot
in the obstacle-free environment.

obstacles. This is because the demonstrations on average took

a longer path while avoiding obstacles and the prior shown

in Fig. 5(a) forces the reproduced trajectories to exhibit a

similar behavior. For the same reasons, the deviant non-

smooth trajectories are also observed when no obstacles

are present in the vicinity of the robot in the reproduction

environment.

The placing skill involves placing an object at different

locations on a table. All the demonstrations start from the

same location since the object’s initial location is fixed.

The end state of the demonstration varies with the target

placement location. Initially there is an obstacle present in

the desired path, hence all the demonstrations go above the

obstacle causing them to be influenced. Fig. 7 (left) plots

the human demonstrations provided in this scenario. Since

only the influenced demonstrations are available at this stage,

the trajectory prior learned from these demonstrations also

encodes the influence of obstacles which is undesirable.

However, as the environment changes and more demonstra-

tions are available in a cleaner environment, as shown in

Fig. 7 (right), the prior is updated using the incremental

weighted learning procedure described in Section IV-B.

Fig. 8 shows the evolution of the prior as demonstrations

are assimilated. The prior initially enforces highly con-

strained motion causing the trajectories to avoid the obstacle

even when it is not present. As more demonstrations are

made available in an obstacle-free environment, the high

importance weight relative to the influenced demonstrations

enables adaptation to the desired underlying motion after

just three updates. On the other hand, when the importance

weighting is not considered in the incremental learning

procedure, the trajectory prior still exhibits the obstacle

influence even after all the demonstrations are incorporated.

This is shown in Fig. 9. The utility of the incremental

learning procedure is high in such scenarios. It is undesirable



Fig. 7: Human demonstrations for the placing skill in two different
environments. Left: Environment with a large obstacle influencing
the demonstrations. Right: Obstacle-free environment.

Fig. 8: Trajectory priors for the placing skill with importance
weighting. Top-left: Learned from first 3 demonstrations recorded
in the presence of obstacle. Top-right: Prior after assimilating
fourth demonstration in clean environment. Bottom-left: Prior after
assimilating fifth demonstration. Bottom-right: Final prior after all
the incremental updates.

Fig. 9: Trajectory priors for the placing skill without importance
weighting. Left: Learned after assimilating first 4 demonstrations.
Right: Final prior after all the incremental updates.

to keep all the demonstrations and re-learn the prior on arrival

of each new demonstration, since this can be both time-

consuming as well as memory-intensive.

VII. CONCLUSION

We have presented importance weighted skill learning,

which is a novel technique for learning skills from demon-

strations in cluttered environments and generalizing them to

new scenarios. Our importance weighting function associates

lower weights with parts of demonstrations that are likely

to collide with obstacles. We conjecture that demonstrations

which are in close proximity to obstacles are more suscepti-

ble to not satisfying the constraints of the skill being learned.

Hence, those demonstrations should be given lesser impor-

tance during the skill learning stage. Our learning approach is

also capable of incrementally updating and refining the skill

model to incorporate new demonstrations without the need to

relearn the model from scratch. Since our learning method is

based on extracting the underlying stochastic skill dynamics,

it does not share the same disadvantages as approaches that

assume a mean trajectory to encode the skill. Furthermore,

our reproduction method is capable of generalizing the skill

efficiently across various scenarios as demonstrated in the

experiments.
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