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Abstract

Researchers and water managers have turned to green stormwater infrastructure, such
as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to
reduce flooding, augment surface water supplies, recharge groundwater, and improve
water quality. It is increasingly clear that green stormwater infrastructure not only
controls stormwater volume and timing, but also promotes ecosystem services, which
are the benefits that ecosystems provide to humans. Yet, there has been little synthesis
focused on understanding how green stormwater management affects ecosystem
services. The objectives of this paper are to review and synthesize published literature
on ecosystem services and green stormwater infrastructure and identify gaps in
research and understanding, establishing a foundation for research at the intersection
of ecosystems services and green stormwater management. We reviewed 170
publications on stormwater management and ecosystem services, and summarized the
state-of-the-science categorized by the four types of ecosystem services. Major findings
show that: 1) most research was conducted at the parcel-scale and should expand to
larger scales to more closely understand green stormwater infrastructure impacts, 2)
nearly a third of papers developed frameworks for implementing green stormwater
infrastructure and highlighted barriers, 3) papers discussed ecosystem services, but less
than 40% quantified ecosystem services, 4) no geographic trends emerged, indicating
interest in applying green stormwater infrastructure across different contexts, 5) studies
increasingly integrate disciplines and should fuseengineering, physical science, and
social science approaches for holistic understanding, and 6) standardizing green
stormwater infrastructure terminology would provide a more cohesive field of study
than the diverse and often redundant terminology currently in use. We recommend that
future research provide metrics and quantify ecosystem services, integrate disciplines to
measure ecosystem services from green stormwater infrastructure, and better
incorporate stormwater management into environmental policy. Our conclusions
outline promising future research directions at the intersection of stormwater
management and ecosystem services.
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Introduction

Stormwater runoff provides ecosystem services, or benefits to people from the
environment, including soil moisture, interflow, baseflow, groundwater recharge, and filtration
of water through the environment (Roy et al. 2008; Burns et al. 2012; Barbosa et al. 2012;
Walsh et al. 2016). Urbanization and increased population density alter land cover and land
use, typically increasing impervious surfaces, such as asphalt, concrete, and buildings (Barbosa
et al. 2012). Conventional stormwater management directly routes runoff to nearby bodies of
water through storm drains, gutters, and underground systems, and is also known as gray
infrastructure. Gray stormwater infrastructure reduces ecosystems services from stormwater
(Roy et al. 2008) by reducing infiltration and groundwater recharge, and contaminating
stormwater as runoff over impervious surfaces picks up pollutants such as heavy metals,
suspended solids, nutrients, salts, oil and hydrocarbons (Tsihrintzis & Hamid 1997).

Additionally, climate change affects stormwater and urban runoff. For example,
snowfall is anticipated to shift to rainfall in mountain regions, resulting in increased winter
rainfall and runoff. Winter runoff is considered a hazard, whereas spring snowmelt runoff is
considered a water resources benefit (Knowles et al. 2006). Climate change may reduce
summer baseflow in rivers, despite wet winters (Null & Prudencio 2016). Also, inter-annual
variability is expected to increase with climate change (Thornton et al. 2014), leading to a re-
distribution of wet and dry years (Rheinheimer et al. 2016; Null & Viers 2013). Very wet water
years are likely to increase urban runoff and present changing conditions, and opportunities, for

green stormwater infrastructure.



Researchers and water managers have started to investigate the effectiveness of green
stormwater infrastructure, such as bioswales, retention and detention basins, rain barrels,
green spaces, wetlands, green roofs, permeable pavements, and deep infiltration wells to
reduce flooding, augment surface water supplies, recharge groundwater, and improve water
quality (Roy et al. 2008; Burns et al. 2012; Dhakal & Chevalier 2016). Green stormwater
infrastructure research increasingly shows that the benefits of stormwater management
transcend controlling runoff volume and timing, but also provide valued ecosystem services,
such as improved water quality, groundwater replenishment, recreation opportunities, and
creation of diverse habitats (Dhakal & Chevalier 2016; Vogel et al. 2015). Green stormwater
infrastructure may counter impacts from urbanization while also increasing natural capacity to
buffer for anticipated climate change (Barbosa et al. 2012; Pyke et al. 2011; Hamel et al. 2013;
Stephens et al. 2012).

Alternative stormwater management practices have a number of terms, including best
management practices, green infrastructure, low-impact development, managed aquifer
recharge, and stormwater harvesting (Vogel et al. 2015; Hoss et al. 2016). In this paper, we use
the terms ‘gray stormwater infrastructure’ for engineered systems that directly route
stormwater to downstream water bodies in urban or developed areas and ‘green stormwater
infrastructure’ for alternative stormwater management that generates both human and
ecosystem services (Keeley et al. 2013). We focus on green infrastructure implemented
specifically to manage stormwater.

Ecosystem services frameworks are increasingly used in research to categorize and

measure benefits that ecosystems provide to humans (Coutts & Hahn 2015). Ecosystem



services are generally categorized into four types: 1) provisioning, such as water supply and
production of food and energy, 2) regulating, such as temperature regulation and water
purification, 3) cultural, such as aesthetics and recreation, and 4) supporting, such as habitat for
aquatic and riparian species (Kopperoinen et al. 2014; Cameron & Blanusa 2016; Walsh et al.
2016; Burns et al. 2012). Through classifying stormwater research into an ecosystem services
framework, we can understand changes to ecosystem services from urbanization and quantify
benefits of shifting from gray to green stormwater infrastructure with anticipated global
environmental change. Figure 1 shows (a) ecosystem services related to stormwater in natural
environments and (b) how ecosystem services change due to urbanization coupled with climate
change. As shown in the figure, ecosystem services, such as water purification, water
infiltration, and groundwater storage are impaired in the urban environment from impervious

surfaces, exposure to urban pollutants, and gray stormwater infrastructure.



(a)

(b)

Figure 1 — (a) Ecosystem services related to stormwater in natural environments and (b) Environmental impacts from gray

stormwater infrastructure, urbanization, and climate change

To date, there has been no systematic review of research at the intersection of green
stormwater management and ecosystem services. The objectives of this paper are to 1) review
and synthesize published literature at the intersection of these topics and 2) identify knowledge

gaps that could better inform decisions and policies on green stormwater infrastructure for



ecosystem services. The synthesis provided will direct future stormwater management

research and aid researchers and policy-makers in managing stormwater sustainably.

Methods/Design

We searched primary literature publications in Thomson ISI Web of Science (1975 to
2017), Water Resources Abstracts (1967 to 2017), Sustainability Science Abstracts (1995 to
2017), and Scopus (1823 to 2017) databases that included the terms “stormwater” (or “storm
water”) and “ecosystem services”, as well as at least one green stormwater infrastructure term
anywhere in the text (Table 1). Researchers and managers use multiple terms for green
stormwater infrastructure. These include broad descriptions, such as green infrastructure and
low impact development, and specific types of infrastructure such as retention basins,
wetlands, and green spaces (Greenway 2015; Klimas et al. 2016a; Kopecka et al. 2017; Pataki et
al. 2011). Our search was inclusive of these terms as long as the publication focused on green
stormwater management and ecosystem services-related topics. The search returned 216
results from all four databases through October 2017, with 170 papers ultimately retained that
focus on green stormwater management and ecosystem services.

Following the search in the four databases, each article was reviewed and coded by the
category of ecosystem services it addressed, as well as sub-categories of ecosystem services
(Table 2). An article could address multiple ecosystem services types. We evaluated how the
articles quantified and discussed each of the four categories of ecosystem services to

understand benefits of green infrastructure, highlight categories that are under-represented in



the literature, and identify where further ecosystem services-stormwater management

research is needed.

Table 1 - Search terms

“stormwater” OR “storm water” AND

“ecosystem services” AND

Any of the following green
stormwater management-related
terms:

= ‘"green infrastructure"

= "managed aquifer recharge"

= "low impact development"

= "best management practices"

= "stormwater harvesting"

= ‘"stormwater capture"

= ‘"green roofs"

= "basins"

= wells"

= "rain barrels"

= "wetlands"

=  "ponds"

= "permeable pavement"

= "permeable surfaces"

= "pervious pavement"

= "pervious surfaces"

= "rain gardens"

= "tree boxes"

= "swales"

= "r-tanks"

= "underground vaults"

= ‘"green space"

= "sustainability"

= ‘"climate adaptation"

=  "management"




Results and Synthesis

The number of stormwater management publications that discuss ecosystem services
substantially increased since 2005, when the first paper on these topics was published (Figure
2). The number of stormwater papers on provisioning and regulating ecosystem services has
been increasing faster than publications on cultural and supporting ecosystem services (Figure
3). Table 2 categorizes the number of articles that discuss the four types of ecosystem services,
as well as the most prominent subcategories of ecosystem services. We synthesize each

category in the following four sections.
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Figure 2 - Number of stormwater-ecosystem services publications over time
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Figure 3 - Number of stormwater-ecosystem services publications over time by ecosystem service category



Table 2 - Number of articles by ecosystem service category and example references by subcategory

Number of ,
Category Publications Subcategories Example References
production of vegetation/biotic (Ackerman 2012; Gittleman et al. 2017; Mayer et al. 2012; Lovell & Taylor
L material for food and energy 2013; Berland et al. 2017; Russo et al. 2017)
Provisioning 119
services e s e & e (Lundy & Wade 2011; Voskamp & de Ven 2015; Shuster et al. 2007; Xue et
PPy & al. 2015; Guertin et al. 2015)
e (Adyel et al. 2016; Bhomia et al. 2015; Dagenais et al. 2017; Heintzman et
water purification
al. 2015)
climate regulation (Klimas et al. 2016b; Lundholm 2015; Verbeeck et al. 2014; Buckland-Nicks
Regulating 108 g et al. 2016; Gruwald et al. 2017)
Services (Berland & Hopton 2014; Guertin et al. 2015; Ishimatsu et al. 2017; Doherty
flood control
et al. 2014)
carbon sequestration (Merriman et al. 2017; McPherson et al. 2011; Bouchard et al. 2013; Kremer
g et al. 2015; Chen et al. 2014)
economic/cultural/social values (Kati & Jari 2016; Attwater & Derry 2017; Garcia-Cuerva et al. 2016; Kellogg
& Matheny 2006)
Cultural 46 . (Kandulu et al. 2014; Moore & Hunt 2012; Kremer et al. 2015; Ghermandi
Services recreation 2016)
education (Hassall 2014; Horsley et al. 2016; Larson 2010; McDuffie et al. 2015)
Supporting . . . (Hassall & Anderson 2015; Greenway 2015; Taylor & Lovell 2014; Attwater
Services 48 biodiversity and habitat & Derry 2017; Kopecka et al. 2017)
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Provisioning Services — Provisioning ecosystem services were the most common type of

ecosystem services discussed in stormwater management papers. Researchers often did not
explicitly use the term “provisioning”; however, the ecosystem services they describe fall under
this category. Studies on stormwater runoff and green stormwater infrastructure provisioning
services focused on water supply and the production of vegetation and biomass for energy,
food, and water (Ackerman 2012; Gittleman et al. 2017; Mayer et al. 2012; Taylor & Lovell
2014). Cities and urban areas generate water through stormwater detention (Lundy & Wade
2011). While stormwater in cities creates flooding and pollution, it is often now viewed as a
potential resource for water supply enhancement (/bid.).

More specifically, researchers and stakeholders are looking to green stormwater
management for climate resilient stormwater storage and supply (Voskamp & de Ven 2015;
Shuster et al. 2007). Climate change and urbanization have challenged water reliability, and
planning for sustainable water supply is increasingly pertinent (Xue et al. 2015). While interest
in and articles on provisioning ecosystem services have increased over the years, the studies
that quantify provisioning services, instead of simply mentioning that they exist, are few in
number. Most of the articles that examine provisioning services of green stormwater
infrastructure do so with discussions of the potential of green infrastructure to enhance
stormwater retention for infiltration and water supplies, as well as frameworks for
implementation (Voskamp & de Ven 2015). Some develop approaches, or identify strategies
and challenges by outlining case studies (Guertin et al. 2015). For example, Guertin et al. (2015)

applied a tool to simulate green infrastructure to maximize water supply on the neighborhood-
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scale in a semi-arid region, identifying multiple scenarios for green infrastructure
implementation.

Researchers highlighted the significant effects of vegetation and biotic production on
streamflow and runoff generation (Berland et al. 2017; Starry et al. 2011; Verbeeck et al. 2014).
Berland et al. (2017) outlined the role of urban trees in stormwater management, emphasizing
that trees are significantly connected to urban hydrology and can increase infiltration of
stormwater. Lastly, researchers studied the provisioning of food from green stormwater
infrastructure (Russo et al. 2017). This research identified ecosystem services of sustainably
managing stormwater, showing that water management, food security, and community
development from edible urban greenery and gardens are inter-related.

Regulating Services — This category closely followed provisioning services in frequency of

articles (Figure 3, Figure 4). Regulating services of stormwater are sometimes quantified for
flood control, water purification, climate regulation, and carbon sequestration from green
infrastructure (Berland & Hopton 2014; Ishimatsu et al. 2017; McPherson et al. 2011; Gao et al.
2015). Researchers such as Gao et al. (2015) modeled water quality improvement and flood
mitigation from green stormwater management at the city-scale and found positive results.
However, the majority of studies assessed the performance of a single type of green
infrastructure, such as green roofs, rain gardens, or stormwater ponds at the parcel-scale to
capture and treat stormwater runoff. Smaller scale experiments provided support for nutrient
attenuation, flood control, and microclimate mitigation ecosystem services of green
stormwater management (Adyel et al. 2016; Wardynski et al. 2012). Multiple studies have

investigated the capabilities of green infrastructure to capture and store carbon as well
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(Merriman et al. 2017; McPherson et al. 2011; Bouchard et al. 2013; Kremer et al. 2015; Chen
et al. 2014). These studies quantified carbon sequestration through carbon accumulation rates,
carbon storage potential of vegetation and soil, and similar metrics. Overall, they support
carbon sequestration from green infrastructure, with nuances from differing vegetation types
and soil conditions (/bid.).

Interestingly, researchers noted tradeoffs between regulating ecosystem services and
provisioning services, as well as tradeoffs between different regulating services (Kuoppamaki et
al. 2016; Nocco et al. 2016). Kuoppamaki et al. (2016) highlighted that green roofs reduce
runoff volume but also expose runoff to more nutrients. Nocco et al. (2016) found tradeoffs
between daytime evaporative cooling and nutrient reduction from rain gardens. These scholars
argue that regulating services related to green stormwater infrastructure are more nuanced
than provisioning services, and require attention to site-specific characteristics, like plant
communities, land uses, and soil quality.

Cultural Services — Of the 170 articles reviewed, 46 publications discussed cultural

services related to stormwater management (Figure 3). Several researchers conducted surveys
and interviews with stakeholders, residents, officials, and decision-makers, on the perceptions
and values of ecosystem services from green stormwater infrastructure (Kati & Jari 2016; Welsh
& Mooney 2014). Overall, the interviews provided insight into the potential strategies and
obstacles of green stormwater infrastructure by user group. Kati & Jari (2016) found differences
in values held by residents, managers, and politicians. For example, residents expressed
attachment to a park as green infrastructure because it holds cultural value, while managers

expressed negative values toward the park. They argued that research should further
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understand these differences and find mutual values for future collaborative planning (Ibid.).
Welsh & Mooney (2014) surveyed a community and interviewed experts, concluding that
increasing green infrastructure implementation has potential to improve community cohesion
and resiliency on top of environmental benefits of green stormwater infrastructure. The
cooperation of residents toward a common goal of improving ecosystem services in their
community led to this social cohesion (Welsh & Mooney 2014). Other researchers concluded
that participants’ willingness to pay for green infrastructure is linked to perceived aesthetics, as
well as improved hydrologic function and water quality (MacDonald et al. 2015; Londono
Cadavid & Ando 2013). Some scholars viewed perceived social values as an avenue to support
and incorporate green space and infrastructure in urban areas (Attwater & Derry 2017;
Ghermandi 2016). Property values increase from green stormwater infrastructure, particularly
near green spaces installed to manage stormwater (Mazzotta et al. 2014).

Educational and recreational values from green infrastructure were discussed in the
literature, with most authors asserting that green infrastructure, such as urban ponds, offer
education and recreation services, and consequently improve community welfare (Hassall
2014; Kandulu et al. 2014). Individual perceptions of these services, as well as the potential of
recreation and education, were sometimes measured (Wilson 2012; McDuffie et al. 2015;
Kremer et al. 2015). An example study, conducted by Wilson (2012), found that individuals hold
views that are more positive when green stormwater infrastructure includes recreation and
educational opportunities.

Supporting Services — The majority of the research on supporting services of green

stormwater management was centered on biodiversity and habitat provided by green
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infrastructure (Hassall & Anderson 2015; Greenway 2015). With altered landscapes leading to
habitat and biodiversity loss, the main argument was that green infrastructure preserves viable
species’ populations needed to support ecosystem processes, diversity, and consequently other
ecosystem services (Taylor & Lovell 2014; Attwater & Derry 2017; Kopecka et al. 2017).
However, few researchers quantified the impacts of green stormwater management on
supporting services for specific habitats and species. Greenway (2015) showed that constructed
stormwater wetlands provide habitat for macroinvertebrates and measured biodiversity with
species richness as a metric. While studies link green space biodiversity to human well-being,
researchers recognized that biodiversity preservation is more nuanced than merely
implementing green infrastructure (Kopecka et al. 2017; Hassall & Anderson 2015). They
recommended more thorough examination of potential ecosystem services and limitations of

green stormwater infrastructure for conservation (Dagenais et al. 2017; Mitsova et al. 2011).

Discussion
Major Findings

We identified six major findings that summarize the state of research at the
intersection of green stormwater management and ecosystem services. These are discussed in
turn below. First, most of the experiments and studies on green stormwater management were
conducted at the parcel-scale (Zolch et al. 2017; Buckland-Nicks et al. 2016; Wardynski et al.
2012; Adyel et al. 2016). While implementation of green stormwater infrastructure at small
scales suggests improvements to provisioning, regulating, cultural, and supporting ecosystem

services, more research is warranted at the watershed-scale to quantify regional-scale effects.
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Watershed-scale modeling provides an appropriate method to upscale parcel- and
neighborhood-scale results (Feng et al. 2016; Garcia-Cuerva et al. 2016; McDonough et al. 2016;

Wu et al. 2013).

Second, 49 of the publications (29%) included frameworks or approaches for
implementing green stormwater management and highlighted barriers to implementation.
Frameworks were developed for different cities and regions, and focused on facilitating
decision-making and spatial planning of green stormwater management (Carter & Fowler 2008;
Chaffin et al. 2016; Dhakal & Chevalier 2016; Hoang & Fenner 2016; Lundy & Wade 2011;
Perales-Momparler et al. 2015; Schuch et al. 2017; Shuster & Garmestani 2015). Authors
developed frameworks based on literature reviews and case studies, and they centered their
approaches on using green stormwater infrastructure to mitigate for lost ecosystem services
from urbanization, adapt to climate change, or integrate multiple ecosystem services into
stormwater management (/bid.). Several of the frameworks emphasized barriers to
implementing green stormwater infrastructure. They attributed jurisdictional overlap and
insufficient incentives for partnerships between the different groups and individuals as barriers
to green stormwater management (Shuster & Garmestani 2015; Chaffin et al. 2016; Dhakal &
Chevalier 2016). Different groups also had fragmented responsibilities and interests that
conflict, which in turn creates barriers for organized management (Perales-Momparler et al.
2015; Hoang & Fenner 2016). Some authors point to inertia and lack of financial and political
support as an additional barrier to green stormwater infrastructure (Carter & Fowler 2008;

Shuster & Garmestani 2015).
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Third, only 39% of publications quantified ecosystem services from green stormwater
management (Figure 4). Many papers summarized general relationships, or assumed
relationships, between green stormwater infrastructure and ecosystem services. Regulating
services were most often quantified, with diversity in the metrics used, such as carbon
accumulation and phosphorus accretion (Merriman et al. 2017; Bhomia et al. 2015). The other
three categories of ecosystem services were rarely quantified. Quantifying changes to
ecosystem services from green stormwater infrastructure is a needed direction for the future to

inform and improve green stormwater design, decision-making, planning, and implementation.

number of publications
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Figure 4 - Number of publications that quantify ecosystem services related to stormwater management

A fourth finding is that there were no significant geographic patterns of research on

green stormwater management and ecosystem services. Research has been conducted in a
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variety of places and climates, including Australia, France, the United States, and China (Schuch
et al. 2017; Maillard & Imfeld 2014; Bhomia et al. 2015; Moore & Hunt 2012; Yang et al. 2015;
Gao et al. 2015). However, there is a lack of research at the intersection of ecosystem services
and green stormwater management in developing regions and countries. This finding indicates
that multiple researchers are interested in and are investigating the potential of green
stormwater infrastructure to provide ecosystem services. While this is a promising finding,
future research should investigate whether green stormwater infrastructure provides

ecosystem services differently across cultural, socioeconomic, and sociopolitical settings.

Fifth, studies increasingly integrate engineering, physical sciences, and social sciences in
their research questions. The ecosystem services approach to evaluating green stormwater
management lends itself to interdisciplinary research. Nevertheless, research that incorporates
all three of these disciplines are limited in number, with several of the publications coming from
urban planning and landscape architecture venues (Dagenais et al. 2017; Hoang & Fenner 2016;
Horsley et al. 2016; McPherson et al. 2011; Yang et al. 2013). Further examination of multiple
ecosystem services in a single study would also progress the literature. The maintenance and
delivery of one ecosystem service happens in relation to other ecosystem services, and
therefore, these connections between ecosystem services should be studied. In a similar vein,
different combinations of green stormwater infrastructure may be more suitable than relying
on one type alone. Cities likely will benefit from implementing green infrastructure throughout
their watershed, which should be explored in future research.

Sixth, overlapping and redundant green stormwater infrastructure terminology is an
impediment to research discovery. We searched for 25 unique terms in addition to
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“stormwater” and “ecosystem services” (Table 1). It was necessary to search for individual
types of green stormwater infrastructure, like stormwater ponds, rain gardens, or green roofs
for comprehensive review (Monaghan et al. 2016; Moore & Hunt 2011; Olguin et al. 2017;
Rumble & Gange 2017; Starry et al. 2011; Squier et al. 2014; Chaffin et al. 2016; Gittleman et al.
2017). Similarly, many terms overlap somewhat, such as green infrastructure, green space, and
low impact development (Cizek 2014; Klimas et al. 2016b; Mayer et al. 2012). While these
terms are not completely redundant, they obscure search results. In addition, there is no
consensus on the spelling of stormwater, with some researchers writing it as a single word,
some as a hyphenated word, and some as two words. Most articles wrote stormwater as a
single word and following this norm will facilitate future literature searches. We also
recommend authors include a catchall term such as ‘green stormwater infrastructure’ as a

search keyword for a cohesive body of literature.

Future Research Directions for Managing Ecosystems Services with Green Stormwater

Infrastructure

Through organizing existing green stormwater infrastructure literature into the four
categories of ecosystem services, we identified research gaps in all categories. First, many
researchers referred qualitatively to the ecosystem services offered by green stormwater
infrastructure, and few researchers quantified the value or impact of those benefits.. Also,
existing studies typically focus on one type of ecosystem service; however, utilizing an
ecosystem services framework encourages multi-disciplinary research for green stormwater

management (Lundy & Wade 2011). Finally, lack of policy and institutional support for green
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stormwater infrastructure to provide ecosystem services was a barrier mentioned in papers in
all categories of ecosystem services. With the remainder of the discussion, we outline three
main directions for future research at the intersection of stormwater management and
ecosystem services: 1) quantifying ecosystem services, 2) integrating engineering,
environmental, and social criteria into stormwater management, and 3) integrating stormwater
management and water policy.

Quantifying ecosystem services is rarely done but is needed to better understand the
extent to which green stormwater infrastructure may enhance or degrade ecosystem services.
Ecosystem services are sometimes monetized (Costanza et al. 1997), but need not be
economically valued to be measured. ldentifying metrics to measure ecosystem services will
allow researchers and stormwater managers to reduce undesirable impacts of stormwater, like
erosion and water quality degradation, while enhancing ecosystem services from green
stormwater infrastructure. Measuring specific ecosystem services from green stormwater
infrastructure will inform decisions about stormwater management in varying climates, regions,
and for different design objectives. Figure 5 illustrates the contribution of quantifying
ecosystem services from green infrastructure to management decisions. By evaluating the
guantity, location, and timing of ecosystem services from green infrastructure alternatives,
decision-makers are better primed for implementing stormwater management plans to meet

desired stormwater ecosystem services.
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Goals: minimize undesirable stormwater impacts

and maximize green stormwater infrastructure benefits

®* Managed aquifer recharge

=  Green roofs

= Retention and detention basins
= Wells

®  Rain barrels

®  Wetlands

Green stormwater management alternatives

Permeable pavement
Rain garden

Tree boxes

Swales

R-tanks

Green spaces

Green stormwater infrastructure ecosystem services
(example metrics)

Provisioning

(m?/mo)

= \Water supply and storage

Regulating

=  Flood control (m3/s, flood
hours)

Water purification (kg of

= Food and energy (kg, KWhrs)

Cultural -

= Economic/cultural/social -
values (property values,
number of user groups)

pollutants removed)
Climate regulation (°C)

Carbon sequestration (C
density accumulation values)

. . Supporting
= Recreation and education
(recreation and school field = Biodiversity and habitat

days)

(species #, ha of habitat)

Management decisions

Quantity
Location

Timing

of each stormwater
management alternative in
watersheds for desired benefits

Figure 5 — Connection between quantifying green stormwater infrastructure ecosystem services and management decisions
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We provide example metrics to measure all categories of ecosystem services in Table 3.
Green stormwater infrastructure research could be expanded to measure surface and
groundwater supply, and the effects of urbanization and climate change on these services
(Dillon et al. 2009a; Dillon et al. 2009b; Maliva 2014). Quantifying possible tradeoffs between
increasing aquifer storage and introducing water quality contaminants to groundwater is a
needed direction to quantify competing ecosystem services. Similarly, measuring the effects of
green stormwater infrastructure design for water purification and stream temperature
management is warranted, especially at the watershed- or regional-scale for spatial planning
purposes. While considerable research has evaluated perceptions and values of ecosystem
services from green stormwater infrastructure, cultural components of ecosystem services
should be measured in future research. This could include change in property values from
proximity to green stormwater projects (Mazzotta et al. 2014) or recreational metrics, such as
number of boatable days in rivers (Ligare et al. 2012). Research on supporting services of
stormwater management is least often studied. Green stormwater infrastructure could focus
on biodiversity as an umbrella goal for resiliency of several ecosystem services in the urban

setting (Connop et al. 2016).
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Table 3 - Ecosystem services - stormwater management research subareas and example metrics to quantify ecosystem services from green stormwater infrastructure

Category Future Research Subareas Example Metrics to Quantify Ecosystem Services
Population growth and water supply reliability Water volume, cubic meters per month (m3/mo)
Provisioning
Services
Water storage and climate adaptation Groundwater recharged, m3/mo, or aquifer water level, m
o Temperature and contaminant change, AC, or dollars per pound of
Water quality improvement taminant d,/Ib C
Regulating contaminant removed,
Services e Reduction in flood discharge magnitude, m3/s, or reduction in flood
Flood mitigation .
duration (hours)
- . . Residents’ willingness to pay for aesthetics and recreational
Pricing strategies for cultural services " .
opportunities from green stormwater infrastructure, S
Cultural
Services .
Property value change from proximity to green stormwater
Revenue and property values .
infrastructure, $
Biodiversity Number of species, count
Supporting
Services

Perceptions of resource managers and residents

Statistical analyses on managers’ and residents’ perceptions of
species and habitats, chi-square statistic
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Secondly, integrating engineering, social, and environmental criteria is needed to
identify the most appropriate and effective stormwater infrastructure, and to evaluate
synergies between disciplines for holistic stormwater decision-making and management (Hale
et al. 2015). Engineering criteria are the basis for infrastructure and technological solutions.
Environmental criteria maintain ecosystem functions of interest. Social criteria highlight
economic, political, and cultural values, perceptions, and barriers to implementation. Figure 6
shows examples of these intersections. Our review showed that provisioning and regulating
ecosystem services received more attention than other ecosystem services, but were typically
evaluated one at a time (Gittleman et al. 2017; Mogollon et al. 2016; Griffin et al. 2014). These
studies offer initial findings that support green stormwater management to maintain ecosystem
services, but future research could provide a deeper investigation of green infrastructure

through evaluating research questions about multiple types of ecosystem services.
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Figure 6 - Examples of engineering, environmental, and social criteria

Finally, we encourage scholars to quantify the social, economic, environmental, and
policy benefits of green stormwater infrastructure so that green stormwater management can
be integrated into environment-related policy. Stormwater governance in the U.S. is
decentralized, which creates barriers from jurisdictional overlap or lack of mandate and
authority in managing stormwater (Freeman 2000; Armstrong 2015; Shuster & Garmestani
2015; Chaffin et al. 2016; Dhakal & Chevalier 2016). By further integrating and explicitly
addressing stormwater management research, stakeholders and decision-makers can be better
informed to implement effective and resilient management practices. Here we briefly mention
four policy routes that have potential to support the investigation and implementation of

sustainable stormwater practices in the US. Similar opportunities exist globally.
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First, Total Maximum Daily Load (TMDL) plans, which are required for contaminated
water bodies by the Clean Water Act (Elshorbagy et al. 2005), are an example method of
further incorporating green stormwater management into environmental-related policy. Plans
set limits on acceptable pollutant loads and outline needed changes to reduce contaminant
loads. As the ecosystem services of green stormwater infrastructure for managing nutrients are
measured, and as tradeoffs between enhancing water supply and water quality impacts are
guantified, green stormwater infrastructure could be a direct method to attain TMDL targets.
Many TMDL plans have been designated for impaired water bodies across the U.S. with
recommendations for best management practices, including green stormwater infrastructure.
However, little research has been conducted on the extent to which green stormwater
infrastructure would need to be implemented to attain TMDL targets. Also, one component of
the ESA is to address nonpoint source pollution, which is a significant part of stormwater
runoff. Section 9 of the ESA requires protection of habitat for endangered fish and wildlife
species. This, in turn, opens up legal possibilities to monitor and regulate nonpoint source
pollution by increasing infiltration, water storage, and nutrient uptake through green
stormwater infrastructure (Tzankova 2013). Local- and state-level groundwater policy regulates
and allocates groundwater. These policies may support groundwater recharge and water
quality control from stormwater management (Kubasek & Silverman 2005). Finally, researchers
are increasingly studying the influence of green stormwater infrastructure on human health
(Vogel et al. 2015). Current research is connecting ecosystem services to human health and

well-being in urban environments (/bid.), leading to more research on the linkages between
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green infrastructure and ecosystem services. Public health concerns could encourage the
implementation of green stormwater management (Coutts & Hahn 2015).
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