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Abstract 

Researchers and water managers have turned to green stormwater infrastructure, such 

as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to 

reduce flooding, augment surface water supplies, recharge groundwater, and improve 

water quality. It is increasingly clear that green stormwater infrastructure not only 

controls stormwater volume and timing, but also promotes ecosystem services, which 

are the benefits that ecosystems provide to humans. Yet, there has been little synthesis 

focused on understanding how green stormwater management affects ecosystem 

services. The objectives of this paper are to review and synthesize published literature 

on ecosystem services and green stormwater infrastructure and identify gaps in 

research and understanding, establishing a foundation for research at the intersection 

of ecosystems services and green stormwater management. We reviewed 170 

publications on stormwater management and ecosystem services, and summarized the 

state-of-the-science categorized by the four types of ecosystem services. Major findings 

show that: 1) most research was conducted at the parcel-scale and should expand to 

larger scales to more closely understand green stormwater infrastructure impacts, 2) 

nearly a third of papers developed frameworks for implementing green stormwater 

infrastructure and highlighted barriers, 3) papers discussed ecosystem services, but less 

than 40% quantified ecosystem services, 4) no geographic trends emerged, indicating 

interest in applying green stormwater infrastructure across different contexts, 5) studies 

increasingly integrate disciplines and should fuseengineering, physical science, and 

social science approaches for holistic understanding, and 6) standardizing green 

stormwater infrastructure terminology would provide a more cohesive field of study 

than the diverse and often redundant terminology currently in use. We recommend that 

future research provide metrics and quantify ecosystem services, integrate disciplines to 

measure ecosystem services from green stormwater infrastructure, and better 

incorporate stormwater management into environmental policy. Our conclusions 

outline promising future research directions at the intersection of stormwater 

management and ecosystem services. 
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Introduction 

Stormwater runoff provides ecosystem services, or benefits to people from the 

environment, including soil moisture, interflow, baseflow, groundwater recharge, and filtration 

of water through the environment (Roy et al. 2008; Burns et al. 2012; Barbosa et al. 2012; 

Walsh et al. 2016).  Urbanization and increased population density alter land cover and land 

use, typically increasing impervious surfaces, such as asphalt, concrete, and buildings (Barbosa 

et al. 2012). Conventional stormwater management directly routes runoff to nearby bodies of 

water through storm drains, gutters, and underground systems, and is also known as gray 

infrastructure. Gray stormwater infrastructure reduces ecosystems services from stormwater 

(Roy et al. 2008) by reducing infiltration and groundwater recharge, and contaminating 

stormwater as runoff over impervious surfaces picks up pollutants such as heavy metals, 

suspended solids, nutrients, salts, oil and hydrocarbons (Tsihrintzis & Hamid 1997). 

Additionally, climate change affects stormwater and urban runoff.  For example, 

snowfall is anticipated to shift to rainfall in mountain regions, resulting in increased winter 

rainfall and runoff.  Winter runoff is considered a hazard, whereas spring snowmelt runoff is 

considered a water resources benefit (Knowles et al. 2006).  Climate change may reduce 

summer baseflow in rivers, despite wet winters (Null & Prudencio 2016).  Also, inter-annual 

variability is expected to increase with climate change (Thornton et al. 2014), leading to a re-

distribution of wet and dry years (Rheinheimer et al. 2016; Null & Viers 2013).  Very wet water 

years are likely to increase urban runoff and present changing conditions, and opportunities, for 

green stormwater infrastructure.  
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Researchers and water managers have started to investigate the effectiveness of green 

stormwater infrastructure, such as bioswales, retention and detention basins, rain barrels, 

green spaces, wetlands, green roofs, permeable pavements, and deep infiltration wells to 

reduce flooding, augment surface water supplies, recharge groundwater, and improve water 

quality (Roy et al. 2008; Burns et al. 2012; Dhakal & Chevalier 2016). Green stormwater 

infrastructure research increasingly shows that the benefits of stormwater management 

transcend controlling runoff volume and timing, but also provide valued ecosystem services, 

such as improved water quality, groundwater replenishment, recreation opportunities, and 

creation of diverse habitats (Dhakal & Chevalier 2016; Vogel et al. 2015). Green stormwater 

infrastructure  may counter impacts from urbanization while also increasing natural capacity to 

buffer for anticipated climate change (Barbosa et al. 2012; Pyke et al. 2011; Hamel et al. 2013; 

Stephens et al. 2012).  

Alternative stormwater management practices have a number of terms, including best 

management practices, green infrastructure, low-impact development, managed aquifer 

recharge, and stormwater harvesting (Vogel et al. 2015; Hoss et al. 2016).  In this paper, we use 

the terms ‘gray stormwater infrastructure’ for engineered systems that directly route 

stormwater to downstream water bodies in urban or developed areas and ‘green stormwater 

infrastructure’ for alternative stormwater management that generates both human and 

ecosystem services (Keeley et al. 2013). We focus on green infrastructure implemented 

specifically to manage stormwater.  

Ecosystem services frameworks are increasingly used in research to categorize and 

measure benefits that ecosystems provide to humans (Coutts & Hahn 2015). Ecosystem 
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services are generally categorized into four types: 1) provisioning, such as water supply and 

production of food and energy, 2) regulating, such as temperature regulation and water 

purification, 3) cultural, such as aesthetics and recreation, and 4) supporting, such as habitat for 

aquatic and riparian species (Kopperoinen et al. 2014; Cameron & Blanusa 2016; Walsh et al. 

2016; Burns et al. 2012). Through classifying stormwater research into an ecosystem services 

framework, we can understand changes to ecosystem services from urbanization and quantify 

benefits of shifting from gray to green stormwater infrastructure with anticipated global 

environmental change. Figure 1 shows (a) ecosystem services related to stormwater in natural 

environments and (b) how ecosystem services change due to urbanization coupled with climate 

change. As shown in the figure, ecosystem services, such as water purification, water 

infiltration, and groundwater storage are impaired in the urban environment from impervious 

surfaces, exposure to urban pollutants, and gray stormwater infrastructure.  
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Figure 1 – (a) Ecosystem services related to stormwater in natural environments and (b) Environmental impacts from gray 

stormwater infrastructure, urbanization, and climate change 

 

To date, there has been no systematic review of research at the intersection of green 

stormwater management and ecosystem services. The objectives of this paper are to 1) review 

and synthesize published literature at the intersection of these topics and 2) identify knowledge 

gaps that could better inform decisions and policies on green stormwater infrastructure for 

(b) 

(a) 
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ecosystem services.  The synthesis provided will direct future stormwater management 

research and aid researchers and policy-makers in managing stormwater sustainably.  

 

Methods/Design 

We searched primary literature publications in Thomson ISI Web of Science (1975 to 

2017), Water Resources Abstracts (1967 to 2017), Sustainability Science Abstracts (1995 to 

2017), and Scopus (1823 to 2017) databases that included the terms “stormwater” (or “storm 

water”) and “ecosystem services”, as well as at least one green stormwater infrastructure term 

anywhere in the text (Table 1). Researchers and managers use multiple terms for green 

stormwater infrastructure. These include broad descriptions, such as green infrastructure and 

low impact development, and specific types of infrastructure such as retention basins, 

wetlands, and green spaces (Greenway 2015; Klimas et al. 2016a; Kopecka et al. 2017; Pataki et 

al. 2011). Our search was inclusive of these terms as long as the publication focused on green 

stormwater management and ecosystem services-related topics.  The search returned 216 

results from all four databases through October 2017, with 170 papers ultimately retained that 

focus on green stormwater management and ecosystem services.   

Following the search in the four databases, each article was reviewed and coded by the 

category of ecosystem services it addressed, as well as sub-categories of ecosystem services 

(Table 2). An article could address multiple ecosystem services types. We evaluated how the 

articles quantified and discussed each of the four categories of ecosystem services to 

understand benefits of green infrastructure, highlight categories that are under-represented in 
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the literature, and identify where further ecosystem services-stormwater management 

research is needed. 

Table 1 - Search terms 

“stormwater” OR “storm water” AND 

“ecosystem services” AND 

Any of the following green 

stormwater management-related 

terms: 

▪ "green infrastructure" 

▪ "managed aquifer recharge" 

▪ "low impact development" 

▪ "best management practices" 

▪ "stormwater harvesting" 

▪ "stormwater capture" 

▪ "green roofs" 

▪ "basins" 

▪ "wells" 

▪ "rain barrels" 

▪ "wetlands" 

▪ "ponds" 

▪ "permeable pavement" 

▪ "permeable surfaces" 

▪ "pervious pavement" 

▪ "pervious surfaces" 

▪ "rain gardens" 

▪ "tree boxes" 

▪ "swales" 

▪ "r-tanks" 

▪ "underground vaults" 

▪ "green space" 

▪ "sustainability" 

▪ "climate adaptation" 

▪ "management" 
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Results and Synthesis 

The number of stormwater management publications that discuss ecosystem services 

substantially increased since 2005, when the first paper on these topics was published (Figure 

2). The number of stormwater papers on provisioning and regulating ecosystem services has 

been increasing faster than publications on cultural and supporting ecosystem services (Figure 

3).  Table 2 categorizes the number of articles that discuss the four types of ecosystem services, 

as well as the most prominent subcategories of ecosystem services. We synthesize each 

category in the following four sections. 

 

 

Figure 2 - Number of stormwater-ecosystem services publications over time 
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Figure 3 - Number of stormwater-ecosystem services publications over time by ecosystem service category
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Table 2 - Number of articles by ecosystem service category and example references by subcategory 

Category 
Number of 

Publications 
Subcategories Example References 

Provisioning 

Services 
119 

production of vegetation/biotic 

material for food and energy 

(Ackerman 2012; Gittleman et al. 2017; Mayer et al. 2012; Lovell & Taylor 

2013; Berland et al. 2017; Russo et al. 2017) 

water supply and storage 
(Lundy & Wade 2011; Voskamp & de Ven 2015; Shuster et al. 2007; Xue et 

al. 2015; Guertin et al. 2015) 

Regulating 

Services 
108 

water purification 
(Adyel et al. 2016; Bhomia et al. 2015; Dagenais et al. 2017; Heintzman et 

al. 2015)  

climate regulation 
(Klimas et al. 2016b; Lundholm 2015; Verbeeck et al. 2014; Buckland-Nicks 

et al. 2016; Gruwald et al. 2017) 

flood control 
(Berland & Hopton 2014; Guertin et al. 2015; Ishimatsu et al. 2017; Doherty 

et al. 2014) 

carbon sequestration 
(Merriman et al. 2017; McPherson et al. 2011; Bouchard et al. 2013; Kremer 

et al. 2015; Chen et al. 2014) 

Cultural 

Services 
46 

economic/cultural/social values 
(Kati & Jari 2016; Attwater & Derry 2017; Garcia-Cuerva et al. 2016; Kellogg 

& Matheny 2006) 

recreation 
(Kandulu et al. 2014; Moore & Hunt 2012; Kremer et al. 2015; Ghermandi 

2016) 

education (Hassall 2014; Horsley et al. 2016; Larson 2010; McDuffie et al. 2015) 

Supporting 

Services 
48 biodiversity and habitat 

(Hassall & Anderson 2015; Greenway 2015; Taylor & Lovell 2014; Attwater 

& Derry 2017; Kopecka et al. 2017) 
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Provisioning Services – Provisioning ecosystem services were the most common type of 

ecosystem services discussed in stormwater management papers. Researchers often did not 

explicitly use the term “provisioning”; however, the ecosystem services they describe fall under 

this category. Studies on stormwater runoff and green stormwater infrastructure provisioning 

services focused on water supply and the production of vegetation and biomass for energy, 

food, and water (Ackerman 2012; Gittleman et al. 2017; Mayer et al. 2012; Taylor & Lovell 

2014). Cities and urban areas generate water through stormwater detention (Lundy & Wade 

2011). While stormwater in cities creates flooding and pollution, it is often now viewed as a 

potential resource for water supply enhancement (Ibid.).  

More specifically, researchers and stakeholders are looking to green stormwater 

management for climate resilient stormwater storage and supply (Voskamp & de Ven 2015; 

Shuster et al. 2007). Climate change and urbanization have challenged water reliability, and 

planning for sustainable water supply is increasingly pertinent (Xue et al. 2015). While interest 

in and articles on provisioning ecosystem services have increased over the years, the studies 

that quantify provisioning services, instead of simply mentioning that they exist, are few in 

number. Most of the articles that examine provisioning services of green stormwater 

infrastructure do so with discussions of the potential of green infrastructure to enhance 

stormwater retention for infiltration and water supplies, as well as frameworks for 

implementation (Voskamp & de Ven 2015). Some develop approaches, or identify strategies 

and challenges by outlining case studies (Guertin et al. 2015). For example, Guertin et al. (2015) 

applied a tool to simulate green infrastructure to maximize water supply on the neighborhood-
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scale in a semi-arid region, identifying multiple scenarios for green infrastructure 

implementation. 

Researchers highlighted the significant effects of vegetation and biotic production on 

streamflow and runoff generation (Berland et al. 2017; Starry et al. 2011; Verbeeck et al. 2014). 

Berland et al. (2017) outlined the role of urban trees in stormwater management, emphasizing 

that trees are significantly connected to urban hydrology and can increase infiltration of 

stormwater. Lastly, researchers studied the provisioning of food from green stormwater 

infrastructure (Russo et al. 2017). This research identified ecosystem services of sustainably 

managing stormwater, showing that water management, food security, and community 

development from edible urban greenery and gardens are inter-related. 

Regulating Services – This category closely followed provisioning services in frequency of 

articles (Figure 3, Figure 4). Regulating services of stormwater are sometimes quantified for 

flood control, water purification, climate regulation, and carbon sequestration from green 

infrastructure (Berland & Hopton 2014; Ishimatsu et al. 2017; McPherson et al. 2011; Gao et al. 

2015). Researchers such as Gao et al. (2015) modeled water quality improvement and flood 

mitigation from green stormwater management at the city-scale and found positive results. 

However, the majority of studies assessed the performance of a single type of green 

infrastructure, such as green roofs, rain gardens, or stormwater ponds at the parcel-scale to 

capture and treat stormwater runoff. Smaller scale experiments provided support for nutrient 

attenuation, flood control, and microclimate mitigation ecosystem services of green 

stormwater management (Adyel et al. 2016; Wardynski et al. 2012). Multiple studies have 

investigated the capabilities of green infrastructure to capture and store carbon as well 
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(Merriman et al. 2017; McPherson et al. 2011; Bouchard et al. 2013; Kremer et al. 2015; Chen 

et al. 2014). These studies quantified carbon sequestration through carbon accumulation rates, 

carbon storage potential of vegetation and soil, and similar metrics. Overall, they support 

carbon sequestration from green infrastructure, with nuances from differing vegetation types 

and soil conditions (Ibid.). 

Interestingly, researchers noted tradeoffs between regulating ecosystem services and 

provisioning services, as well as tradeoffs between different regulating services (Kuoppamaki et 

al. 2016; Nocco et al. 2016). Kuoppamaki et al. (2016) highlighted that green roofs reduce 

runoff volume but also expose runoff to more nutrients. Nocco et al. (2016) found tradeoffs 

between daytime evaporative cooling and nutrient reduction from rain gardens. These scholars 

argue that regulating services related to green stormwater infrastructure are more nuanced 

than provisioning services, and require attention to site-specific characteristics, like plant 

communities, land uses, and soil quality. 

Cultural Services – Of the 170 articles reviewed, 46 publications discussed cultural 

services related to stormwater management (Figure 3). Several researchers conducted surveys 

and interviews with stakeholders, residents, officials, and decision-makers, on the perceptions 

and values of ecosystem services from green stormwater infrastructure (Kati & Jari 2016; Welsh 

& Mooney 2014).  Overall, the interviews provided insight into the potential strategies and 

obstacles of green stormwater infrastructure by user group. Kati & Jari (2016) found differences 

in values held by residents, managers, and politicians. For example, residents expressed 

attachment to a park as green infrastructure because it holds cultural value, while managers 

expressed negative values toward the park. They argued that research should further 
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understand these differences and find mutual values for future collaborative planning (Ibid.). 

Welsh & Mooney (2014) surveyed a community and interviewed experts,  concluding that 

increasing green infrastructure implementation has potential to improve community cohesion 

and resiliency on top of environmental benefits of green stormwater infrastructure. The 

cooperation of residents toward a common goal of improving ecosystem services in their 

community led to this social cohesion (Welsh & Mooney 2014). Other researchers concluded 

that participants’ willingness to pay for green infrastructure is linked to perceived aesthetics, as 

well as improved hydrologic function and water quality (MacDonald et al. 2015; Londono 

Cadavid & Ando 2013). Some scholars viewed perceived social values as an avenue to support 

and incorporate green space and infrastructure in urban areas (Attwater & Derry 2017; 

Ghermandi 2016).  Property values increase from green stormwater infrastructure, particularly 

near green spaces installed to manage stormwater (Mazzotta et al. 2014). 

Educational and recreational values from green infrastructure were discussed in the 

literature, with most authors asserting that green infrastructure, such as urban ponds, offer 

education and recreation services, and consequently improve community welfare (Hassall 

2014; Kandulu et al. 2014). Individual perceptions of these services, as well as the potential of 

recreation and education, were sometimes measured (Wilson 2012; McDuffie et al. 2015; 

Kremer et al. 2015). An example study, conducted by Wilson (2012), found that individuals hold 

views that are more positive when green stormwater infrastructure includes recreation and 

educational opportunities.  

Supporting Services – The majority of the research on supporting services of green 

stormwater management was centered on biodiversity and habitat provided by green 
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infrastructure (Hassall & Anderson 2015; Greenway 2015). With altered landscapes leading to 

habitat and biodiversity loss, the main argument was that green infrastructure preserves viable 

species’ populations needed to support ecosystem processes, diversity, and consequently other 

ecosystem services (Taylor & Lovell 2014; Attwater & Derry 2017; Kopecka et al. 2017). 

However, few researchers quantified the impacts of green stormwater management on 

supporting services for specific habitats and species. Greenway (2015) showed that constructed 

stormwater wetlands provide habitat for macroinvertebrates and measured biodiversity with 

species richness as a metric. While studies link green space biodiversity to human well-being, 

researchers recognized that biodiversity preservation is more nuanced than merely 

implementing green infrastructure (Kopecka et al. 2017; Hassall & Anderson 2015). They 

recommended more thorough examination of potential ecosystem services and limitations of 

green stormwater infrastructure for conservation (Dagenais et al. 2017; Mitsova et al. 2011). 

 

Discussion 

Major Findings 

 We identified six major findings that summarize the state of research at the 

intersection of green stormwater management and ecosystem services. These are discussed in 

turn below. First, most of the experiments and studies on green stormwater management were 

conducted at the parcel-scale (Zölch et al. 2017; Buckland-Nicks et al. 2016; Wardynski et al. 

2012; Adyel et al. 2016). While implementation of green stormwater infrastructure at small 

scales suggests improvements to provisioning, regulating, cultural, and supporting ecosystem 

services, more research is warranted at the watershed-scale to quantify regional-scale effects.  
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Watershed-scale modeling provides an appropriate method to upscale parcel- and 

neighborhood-scale results (Feng et al. 2016; Garcia-Cuerva et al. 2016; McDonough et al. 2016; 

Wu et al. 2013).  

Second, 49 of the publications (29%) included frameworks or approaches for 

implementing green stormwater management and highlighted barriers to implementation. 

Frameworks were developed for different cities and regions, and focused on facilitating 

decision-making and spatial planning of green stormwater management (Carter & Fowler 2008; 

Chaffin et al. 2016; Dhakal & Chevalier 2016; Hoang & Fenner 2016; Lundy & Wade 2011; 

Perales-Momparler et al. 2015; Schuch et al. 2017; Shuster & Garmestani 2015). Authors 

developed frameworks based on literature reviews and case studies, and they centered their 

approaches on using green stormwater infrastructure to mitigate for lost ecosystem services 

from urbanization, adapt to climate change, or integrate multiple ecosystem services into 

stormwater management (Ibid.). Several of the frameworks emphasized barriers to 

implementing green stormwater infrastructure. They attributed jurisdictional overlap and 

insufficient incentives for partnerships between the different groups and individuals as barriers 

to green stormwater management (Shuster & Garmestani 2015; Chaffin et al. 2016; Dhakal & 

Chevalier 2016). Different groups also had fragmented responsibilities and interests that 

conflict, which in turn creates barriers for organized management (Perales-Momparler et al. 

2015; Hoang & Fenner 2016). Some authors point to inertia and lack of financial and political 

support as an additional barrier to green stormwater infrastructure (Carter & Fowler 2008; 

Shuster & Garmestani 2015).  
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Third, only 39% of publications quantified ecosystem services from green stormwater 

management (Figure 4). Many papers summarized general relationships, or assumed 

relationships, between green stormwater infrastructure and ecosystem services. Regulating 

services were most often quantified, with diversity in the metrics used, such as carbon 

accumulation and phosphorus accretion (Merriman et al. 2017; Bhomia et al. 2015). The other 

three categories of ecosystem services were rarely quantified. Quantifying changes to 

ecosystem services from green stormwater infrastructure is a needed direction for the future to 

inform and improve green stormwater design, decision-making, planning, and implementation. 

 

 

Figure 4 - Number of publications that quantify ecosystem services related to stormwater management 
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variety of places and climates, including Australia, France, the United States, and China (Schuch 

et al. 2017; Maillard & Imfeld 2014; Bhomia et al. 2015; Moore & Hunt 2012; Yang et al. 2015; 

Gao et al. 2015). However, there is a lack of research at the intersection of ecosystem services 

and green stormwater management in developing regions and countries. This finding indicates 

that multiple researchers are interested in and are investigating the potential of green 

stormwater infrastructure to provide ecosystem services. While this is a promising finding, 

future research should investigate whether green stormwater infrastructure provides 

ecosystem services differently across cultural, socioeconomic, and sociopolitical settings.  

Fifth, studies increasingly integrate engineering, physical sciences, and social sciences in 

their research questions. The ecosystem services approach to evaluating green stormwater 

management lends itself to interdisciplinary research. Nevertheless, research that incorporates 

all three of these disciplines are limited in number, with several of the publications coming from 

urban planning and landscape architecture venues (Dagenais et al. 2017; Hoang & Fenner 2016; 

Horsley et al. 2016; McPherson et al. 2011; Yang et al. 2013).  Further examination of multiple 

ecosystem services in a single study would also progress the literature. The maintenance and 

delivery of one ecosystem service happens in relation to other ecosystem services, and 

therefore, these connections between ecosystem services should be studied. In a similar vein, 

different combinations of green stormwater infrastructure may be more suitable than relying 

on one type alone. Cities likely will benefit from implementing green infrastructure throughout 

their watershed, which should be explored in future research.  

Sixth, overlapping and redundant green stormwater infrastructure terminology is an 

impediment to research discovery.  We searched for 25 unique terms in addition to 
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“stormwater” and “ecosystem services” (Table 1).  It was necessary to search for individual 

types of green stormwater infrastructure, like stormwater ponds, rain gardens, or green roofs 

for comprehensive review (Monaghan et al. 2016; Moore & Hunt 2011; Olguin et al. 2017; 

Rumble & Gange 2017; Starry et al. 2011; Squier et al. 2014; Chaffin et al. 2016; Gittleman et al. 

2017). Similarly, many terms overlap somewhat, such as green infrastructure, green space, and 

low impact development (Cizek 2014; Klimas et al. 2016b; Mayer et al. 2012).  While these 

terms are not completely redundant, they obscure search results. In addition, there is no 

consensus on the spelling of stormwater, with some researchers writing it as a single word, 

some as a hyphenated word, and some as two words. Most articles wrote stormwater as a 

single word and following this norm will facilitate future literature searches.  We also 

recommend authors include a catchall term such as ‘green stormwater infrastructure’ as a 

search keyword for a cohesive body of literature. 

Future Research Directions for Managing Ecosystems Services with Green Stormwater 

Infrastructure 

Through organizing existing green stormwater infrastructure literature into the four 

categories of ecosystem services, we identified research gaps in all categories.  First, many 

researchers referred qualitatively to the ecosystem services offered by green stormwater 

infrastructure, and few researchers quantified the value or impact of those benefits..  Also, 

existing studies typically focus on one type of ecosystem service;  however, utilizing an 

ecosystem services framework encourages multi-disciplinary research for green stormwater 

management (Lundy & Wade 2011). Finally, lack of policy and institutional support for green 
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stormwater infrastructure to provide ecosystem services was a barrier mentioned in papers in 

all categories of ecosystem services. With the remainder of the discussion, we outline three 

main directions for future research at the intersection of stormwater management and 

ecosystem services: 1) quantifying ecosystem services, 2) integrating engineering, 

environmental, and social criteria into stormwater management, and 3) integrating stormwater 

management and water policy.   

Quantifying ecosystem services is rarely done but is needed to better understand the 

extent to which green stormwater infrastructure may enhance or degrade ecosystem services. 

Ecosystem services are sometimes monetized (Costanza et al. 1997), but need not be 

economically valued to be measured. Identifying metrics to measure ecosystem services will 

allow researchers and stormwater managers to reduce undesirable impacts of stormwater, like 

erosion and water quality degradation, while enhancing ecosystem services from green 

stormwater infrastructure. Measuring specific ecosystem services from green stormwater 

infrastructure will inform decisions about stormwater management in varying climates, regions, 

and for different design objectives. Figure 5 illustrates the contribution of quantifying 

ecosystem services from green infrastructure to management decisions. By evaluating the 

quantity, location, and timing of ecosystem services from green infrastructure alternatives, 

decision-makers are better primed for implementing stormwater management plans to meet 

desired stormwater ecosystem services. 
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Figure 5 – Connection between quantifying green stormwater infrastructure ecosystem services and management decisions 
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We provide example metrics to measure all categories of ecosystem services in Table 3. 

Green stormwater infrastructure research could be expanded to measure surface and 

groundwater supply, and the effects of urbanization and climate change on these services 

(Dillon et al. 2009a; Dillon et al. 2009b; Maliva 2014). Quantifying possible tradeoffs between 

increasing aquifer storage and introducing water quality contaminants to groundwater is a 

needed direction to quantify competing ecosystem services. Similarly, measuring the effects of 

green stormwater infrastructure design for water purification and stream temperature 

management is warranted, especially at the watershed- or regional-scale for spatial planning 

purposes. While considerable research has evaluated perceptions and values of ecosystem 

services from green stormwater infrastructure, cultural components of ecosystem services 

should be measured in future research. This could include change in property values from 

proximity to green stormwater projects (Mazzotta et al. 2014) or recreational metrics, such as 

number of boatable days in rivers (Ligare et al. 2012). Research on supporting services of 

stormwater management is least often studied. Green stormwater infrastructure could focus 

on biodiversity as an umbrella goal for resiliency of several ecosystem services in the urban 

setting (Connop et al. 2016).  
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Table 3 -  Ecosystem services - stormwater management research subareas and example metrics to quantify ecosystem services from green stormwater infrastructure 

 

Category    Future Research Subareas Example Metrics to Quantify Ecosystem Services 

Provisioning  

Services 

   Population growth and water supply reliability Water volume, cubic meters per month (m3/mo) 

   Water storage and climate adaptation Groundwater recharged, m3/mo, or aquifer water level, m 

Regulating  

Services 

   Water quality improvement 
Temperature and contaminant change, ∆C, or dollars per pound of 

contaminant removed, $/lb C 

   Flood mitigation  
Reduction in flood discharge magnitude, m3/s, or reduction in flood 

duration (hours) 

Cultural  

Services 

   Pricing strategies for cultural services 
Residents’ willingness to pay for aesthetics and recreational 
opportunities from green stormwater infrastructure, $ 

   Revenue and property values 
Property value change from proximity to green stormwater 

infrastructure, $ 

Supporting  

Services 

   Biodiversity Number of species, count 

   Perceptions of resource managers and residents  
Statistical analyses on managers’ and residents’ perceptions of 

species and habitats, chi-square statistic 
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Secondly, integrating engineering, social, and environmental criteria is needed to 

identify the most appropriate and effective stormwater infrastructure, and to evaluate 

synergies between disciplines for holistic stormwater decision-making and management (Hale 

et al. 2015). Engineering criteria are the basis for infrastructure and technological solutions. 

Environmental criteria maintain ecosystem functions of interest. Social criteria highlight 

economic, political, and cultural values, perceptions, and barriers to implementation. Figure 6 

shows examples of these intersections. Our review showed that provisioning and regulating 

ecosystem services received more attention than other ecosystem services, but were typically 

evaluated one at a time (Gittleman et al. 2017; Mogollon et al. 2016; Griffin et al. 2014). These 

studies offer initial findings that support green stormwater management to maintain ecosystem 

services, but future research could provide a deeper investigation of green infrastructure 

through evaluating research questions about multiple types of ecosystem services. 
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Figure 6 - Examples of engineering, environmental, and social criteria 

 

  Finally, we encourage scholars to quantify the social, economic, environmental, and 

policy benefits of green stormwater infrastructure so that green stormwater management can 

be integrated into environment-related policy. Stormwater governance in the U.S. is 

decentralized, which creates barriers from jurisdictional overlap or lack of mandate and 

authority in managing stormwater (Freeman 2000; Armstrong 2015; Shuster & Garmestani 

2015; Chaffin et al. 2016; Dhakal & Chevalier 2016). By further integrating and explicitly 

addressing stormwater management research, stakeholders and decision-makers can be better 

informed to implement effective and resilient management practices. Here we briefly mention 

four policy routes that have potential to support the investigation and implementation of 

sustainable stormwater practices in the US. Similar opportunities exist globally. 
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First, Total Maximum Daily Load (TMDL) plans, which are required for contaminated 

water bodies by the Clean Water Act (Elshorbagy et al. 2005), are an example method of 

further incorporating green stormwater management into environmental-related policy. Plans 

set limits on acceptable pollutant loads and outline needed changes to reduce contaminant 

loads. As the ecosystem services of green stormwater infrastructure for managing nutrients are 

measured, and as tradeoffs between enhancing water supply and water quality impacts are 

quantified, green stormwater infrastructure could be a direct method to attain TMDL targets. 

Many TMDL plans have been designated for impaired water bodies across the U.S. with 

recommendations for best management practices, including green stormwater infrastructure. 

However, little research has been conducted on the extent to which green stormwater 

infrastructure would need to be implemented to attain TMDL targets. Also, one component of 

the ESA is to address nonpoint source pollution, which is a significant part of stormwater 

runoff. Section 9 of the ESA requires protection of habitat for endangered fish and wildlife 

species. This, in turn, opens up legal possibilities to monitor and regulate nonpoint source 

pollution by increasing infiltration, water storage, and nutrient uptake through green 

stormwater infrastructure (Tzankova 2013). Local- and state-level groundwater policy regulates 

and allocates groundwater. These policies may support groundwater recharge and water 

quality control from stormwater management (Kubasek & Silverman 2005). Finally, researchers 

are increasingly studying the influence of green stormwater infrastructure on human health 

(Vogel et al. 2015). Current research is connecting ecosystem services to human health and 

well-being in urban environments (Ibid.), leading to more research on the linkages between 
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green infrastructure and ecosystem services. Public health concerns could encourage the 

implementation of green stormwater management (Coutts & Hahn 2015).  
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