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Road surface type is a key input to most asset management and maintenance management models and
analyses, such as deterioration prediction models, life cycle cost analysis, and need estimates. However,
surface type changes in space and time due to the use of varying pavement types and the application of
different surface treatments. In recent years, the transportation and municipal industry has begun to use
mobile lidar (Light Detection and Ranging) systems to collect roadway condition and inventory data,
including surface type. This paper provides a heuristics-based method for detecting road surface type
based on statistical analysis of laser reflected signal intensity. The studied surfaces are open graded
asphalt, dense graded asphalt, seal coated asphalt, concrete, and roadside vegetation. This method will
improve the availability and quality of surface type data, especially for large roadway networks, by
automating the process of obtaining this information from mobile lidar measurements.

� 2018 Published by Elsevier Ltd.
1. Introduction

To ensure optimal maintenance and rehabilitation of roadway
assets over their life cycle, transportation agencies and municipal-
ities use asset management software systems [1]. These software
systems analyze roadway condition, inventory, and utilization data
to develop optimal multi-year maintenance and rehabilitation
(M&R) plans for roadway networks and provide answers to three
key questions: What roadway assets should be renewed?; When
should these assets be renewed?; and How should they be
renewed? Fig. 1 shows the framework in which asset management
systems operate.

Pavement surface type is a key input to most asset management
models and analyses, such as deterioration prediction models, life
cycle cost analysis, and need estimates [2,3]. Information on vege-
tation areas is used by roadside maintenance systems (e.g., vegeta-
tion management). However, surface type changes in space and
time due to the use of varying pavement types and the application
of different surface treatments (typically used to improve surface
characteristics such as friction and smoothness) within the same
network. Thus, keeping track of surface type is a major challenge,
especially for large roadway networks. For example, the Texas
Department of Transportation (TxDOT) maintains approximately
200,000 lane-miles of roads comprised of multiple and changing
surface types. In recent years, the transportation infrastructure
industry (e.g., municipalities and transportation agencies) has
begun to use mobile lidar (Light Detection and Ranging) systems
to collect roadway condition and inventory data, including surface
type, for use in asset management systems [4,5]. While mobile
lidar systems (MLSs) collect large amounts of data rapidly, process-
ing these data to obtain surface type remains expensive and time-
consuming, especially for large roadway networks.

The aim of this paper is to improve the use of mobile lidar in
transportation asset management by providing a heuristics-based
method for automated identification of road surface type from
laser intensity measurements obtained from MLSs. It is envisioned
that this method will improve the availability and quality of sur-
face type data, especially for large roadway networks.

In the next sections of this paper, we describe the developed
method and test it on actual roadway sections. We begin, however,
with a review of the literature on lidar technology and surface type
identification methods.
2. Background

Generally, measurements collected by a lidar system include
incidence angle, slant distance, and laser intensity. In this paper,
we use reflected laser signal intensity, a measure of return signal
strength, to identify surface type for use in pavement and roadside
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Fig. 1. Infrastructure asset management framework.
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asset management systems. Laser intensity has been used in a vari-
ety of applications, such as classification of natural and built urban
cover surfaces, identification of snow covered areas, lava flow and
aging, rock properties, coastal land cover, and flood modeling [6].

Laser intensity varies by surface reflectance and roughness, and
other confounding variables, such as range, angle of incidence,
transmittal power, atmospheric transmittance, and scanning envi-
ronment. Kashani et al. [6] grouped these factors into four cate-
gories: a) target surface characteristics (i.e., reflectance and
roughness), b) data acquisition geometry, c) instrument effects,
and d) environmental effects. Lidar systems normally implement
intensity processing techniques to minimize the effect of these
confounding variables and produce intensity values that are more
closely related to the true surface characteristics. These processes
have been classified as intensity correction, intensity normaliza-
tion, and rigorous radiometric correction and calibration [6]. Sig-
nificant advances have been made in the development of
algorithms for identifying pavement surface characteristics and
condition from digital images [7–10] and hyperspectral imagery
[11–13]. However, despite the penetration of mobile lidar into
the transportation and municipal industry, methods for identifying
road surface type frommobile lidar measurements are still lacking.
One of the early efforts in automated identification of roadway
characteristics from aerial lidar data is described in [14]. In this
paper, we focuses on mobile lidar and aim to improve the use of
Table 1
Data collection sites (Central and East Texas).

Section no. Road name Length, km Pavement area

1 George Bush Drive(1) 7.2 14,400
2 Penberthy Road(1) 4.3 8,600
3 University Drive(1) 7.1 14,200
4 Texas Highway 6(1) 11.2 22,400
5 Farm-to-Market (FM)95(1) 18.0 36,000
6 FM320(2) 11.7 23,400
7 FM2661(2) 0.3 600

(1) Central Texas.
(2) East Texas.
this technology in transportation asset management by providing
a heuristics-based method for automated identification of road
surface type.
3. Data collection and analysis

A pulse-scanning MLS unit was used to measure reflected signal
intensity in terms of Received Signal Strength Indicator (RSSI) for
61.3 km (38.1 miles) of road located in different parts of Texas,
USA (Table 1). The data were collected in dry weather conditions
(i.e., no wet surfaces were included) in December-January. RSSI is
a dimensionless 8-bit measure of reflected signal intensity, ranging
from zero to 255.

Intensity is affected by the reflectivity of the pavement surface
struck by the laser pulse. The pavement surfaces of these roadway
sections are concrete, dense graded asphalt, open graded asphalt,
and seal coated asphalt. The roadway network in Texas is com-
posed predominantly of these pavement types. While gravel roads
are common in many parts of the world (e.g., low-volume roads),
seal coated asphalt is often used in Texas in lieu of bare gravel. Seal
coating consists of spraying one or more layers of bituminous bin-
der; each layer is followed by spreading a layer of aggregates [15].
Sections 5–7 include roadside vegetation areas.

The MLS includes a single planar SICK LMS-5XX series laser
scanner, a forward-facing video camera, a global positioning sys-
tem (GPS) unit, and an inertial measurement unit (IMU) (Fig. 2).
The wavelength of light emitted by the laser scanner is 905 nm.
The IMU was used to improve the accuracy of the lidar point cloud
collected at high traffic speeds [16]. For pavement surfaces, inten-
sity was measured within approximately one meter on each side of
the MLS centerline (in the transverse direction). For roadside,
intensity was measured between the edge of pavement and
approximately four meters into the roadside (i.e., approximately
6 m from the MLS centerline). These distances were used to mini-
mize the need for interpolation between measurements, obtain
sufficient point density, and lessen intensity attenuation. As the
distance between the MLS and the target increases, the spacing
between the measurement points becomes wider; which decreases
point density and may necessitate interpolation between measure-
ments. For example, for a 1 m � 1 m grid along the right roadside
of a rural roadway with shoulder, no interpolation is required
between the edge of pavement and approximately 4.6 m [17].

Road surface characteristics such as texture, granulation size,
color, and porosity affect laser intensity [18]; resulting in different
RSSI values. The developed method uses RSSI values to identify
surface type. To uncover possible patterns in intensity measure-
ments, laser intensity data for the studied roadway sections were
plotted in frequency distributions (Fig. 3).

As can be observed from Fig. 3, the intensity distributions for
open graded and dense graded asphalt are very similar, possibly
due to similarity in surface color and texture. Compared to con-
, m2 Pavement surface Filtered no. of intensity measurements

Concrete 1,091,721
Concrete 643,068
Dense Graded Asphalt 868,329
Open Graded Asphalt 1,702,827
Seal Coated Asphalt 1,483,840
Seal Coated Asphalt 1,388,874
Seal Coated Asphalt 47,483



RSSI 

Fig. 3. Frequency distributions of laser reflected signal intensity measurements for road surfaces considered in this study.

RSSI 

Fig. 4. Attenuation of laser reflected signal intensity for roadside vegetation on FM95.

Fig. 2. MLS used in data collection, consisting of SICK LMS-5XX laser scanner, GPS Unit, IMU, forward looking video camera, and data storage and processing systems.
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a) Laser reflected signal intensity before correction 

b) Laser reflected signal intensity after correction 

Fig. 5. Plan view of a road section color-coded based on reflected signal intensity (X
and Y are distance in meters; legend is RSSI scale).
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crete surface, asphalt surfaces exhibit higher variability in laser
intensity, possibly due to the higher variability in color and tex-
ture. Generally, the studied asphalt pavement sections have vary-
ing age (which leads to changes in color due to varying levels of
binder oxidation) and include more patching (which leads to
changes in texture).

Identifying vegetation from intensity data is more challenging
than identifying pavement surface type because the roadside is
highly irregular in terms of composition, texture, and color. Also,
the roadside extends in the transverse direction further away from
Fig. 6. Reference reflected signal intensity

Table 2
RSSI mean and standard deviation for studied surfaces.

Parameter Open Graded Asphalt Dense Graded Aspha

Mean 146.8 142.6
Standard Deviation 11.6 10.4

* Attenuated and corrected.
the MLS centerline. As shown in Fig. 4, the intensity distributions
for roadside areas attenuate as the lidar measurements move away
from the MLS center in the transverse direction. Therefore, inten-
sity data from the roadside (assuming that roadside begins
2.25 m from the MLS center) were corrected for impurities (e.g.,
gravel areas) and attenuation using the following regression
equation:

DS ¼ 8:03d� 17:82 ð1Þ

where DS is the difference between mean intensity at any given
transverse horizontal distance, d, from the MLS center and the
intensity at 2.25 m from the MLS in the transverse direction (i.e.,
distance at which roadside vegetation normally begins). A quadratic

attenuation equation ðDS ¼ �0:06d2 þ 8:53d� 18:74Þ was devel-
oped and tested during the initial development phase. However,
no significant effect on the overall method’s performance was
observed, and thus the linear function was adopted for simplicity.
Fig. 5 depicts laser intensity on the plan view of a sample road sec-
tion before and after the intensity from the roadside surface was
corrected using Eq. (1).

The processed data were used to establish reference distribu-
tions for each surface type. Fig. 6 depicts the reference intensity
distributions for the four pavement surfaces and the roadside
vegetation considered in this study. The mean and standard
deviation for these reference distributions are presented in
Table 2.
RSSI 

distributions for the studied surfaces.

lt Seal Coated Asphalt Concrete Roadside Vegetation*

160.9 185.9 200.5
12.9 8.5 8.2
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4. Surface type identification method

During the initial development phase, the Support Vector
Machine and the K-Nearest Neighbor classification methods were
considered. However, that approach was not pursued in favor of
a heuristics-based method to facilitate adoption by the transporta-
tion and municipal industry, without compromising rigor. Also, the
autocorrelation/power spectrum was considered during the initial
development phase. While seal coated sections exhibited multiple
peaks for selected nonequispaced fast Fourier transforms, no dis-
cernable pattern was found. There was a lack of any significant
spatial periodicity. Thus, intensity spectral distribution was
excluded from further consideration. Due to the lack of periodicity
and the lack of observable patterns in the variance and kurtosis, the
mean and skewness of RSSI (a measure of reflected signal intensity)
were deemed key for identifying road surface type. The developed
algorithm begins by identifying surface type based on skewness
and closeness to mean of reference distributions (Fig. 7). RSSI
skewness and closeness to reference mean are computed as follows:

SR ¼ E R� lR

� �3

r3
R

ð2Þ

where SR = Pearson’s moment coefficient of skewness of RSSI for
subject section, mR = mean of RSSI for subject section, rR = standard
deviation of RSSI for subject section, and E(t) represents the
expected value of the quantity t.
Fig. 7. Detection of surface type based on RSSI
DR ¼ lR � lR�
�� �� ð3Þ
where DR = Closeness of RSSI to reference mean, mR = Mean RSSI for
subject section, lR� = Mean RSSI for reference distribution.

When the mean RSSI for the subject section (i.e., section for
which surface type is being identified) is relatively equidistant
from the mean values of seal coated and concrete reference distri-
butions, or mean values of seal coated and dense graded reference
distributions, skewness is used to distinguish seal coated surface
from other surface types. Otherwise, the type corresponding to
the closest reference mean is identified as surface type for the sub-
ject section. The threshold values and constants used in this algo-
rithm were determined using an iterative process to maximize the
agreement between the detected surface type and the true surface
type.

For network-level applications, additional steps were added to
the algorithm to account for consistency in detected surface type
for adjacent pavement sections (Fig. 8). If adjacent sections have
no predominant surface type, no change is made to the surface
type identified based on intensity skewness and closeness to refer-
ence mean.

For identifying roadside vegetation areas, first, the algorithm
identifies the pavement surface as either concrete or asphalt, then
it distinguishes between vegetation and asphalt surfaces or
between vegetation and concrete surfaces using the same process
described in Fig. 7.
skewness and closeness to reference mean.
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Fig. 8. Adjustment of pavement surface type based on adjacent sections.
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5. Validation and limitations of the developed method

The developed method was tested using randomly-selected
roadway sections from the study dataset. The length of the test
sections was varied from approximately 20 m (66 feet) to 161 m
(528 feet), resulting in thousands of test sections. In each run,
the developed method analyzed the intensity data from the
randomly-selected test section in two sequential stages: 1) identi-
fied pavement surface type, and 2) delineated the area of roadside
vegetation, given the pavement type identified in stage 1. The out-
come of stage 1 is one of four possible pavement types (concrete,
dense graded asphalt, open graded asphalt, seal coated asphalt),
whereas the outcome of stage 2 is one of two possible surface types
(vegetation or the pavement type identified in stage 1). Thus, the
evaluation of model accuracy in identifying roadside vegetation
areas was done for concrete roads and asphalt roads separately.

In each test, a portion of the intensity data for each surface type
was used as the reference data and the remaining portion was used
as subject data. To remove biases in data selection, the reference
data and subject data were always selected at random from the
overall data sets. Accuracy is calculated as follows:

Accuracy ¼ TP þ TN
N

� 100 ð4Þ
Table 3
Accuracy of the developed method in identifying pavement surface type for 80.5 m (0.05-

Surface type Algorithm based on closeness
to RSSI reference mean and skewne

Concrete 95.39%
Dense Graded Asphalt 63.33%
Open Graded Asphalt 88.44%
Seal Coated Asphalt 92.58%
where TP = True positives (number of times surface correctly iden-
tified as subject surface); TN = True negative (number of times sur-
face correctly identified as non-subject surface); N = Total number
of subject sections in the test data set. When the subject section
is of a single surface, TN is zero.

Table 3 shows the algorithm’s accuracy in identifying pavement
surface type through classification into four possible outcomes
(concrete, dense graded asphalt, open graded asphalt, or seal
coated asphalt) for 80.5 m (0.05-mile) subject pavement sections.
When the algorithm is based solely on intensity measurements
(i.e., disregarding adjacent sections), the algorithm’s accuracy
was at least 88% for concrete, seal coated asphalt, and open graded
asphalt surfaces; but markedly lower (63.3%) for dense graded
asphalt pavement. The dense graded results can be explained by
the similarity in the intensity distributions for dense graded and
open graded surfaces, making it difficult to distinguish between
these two surfaces. When adjacent pavements are considered (in
combination with intensity skewness and closeness to reference
mean), however, the algorithm’s accuracy increases for all cases;
most noticeably for dense graded surfaces where accuracy
increased to 73.3%. Similar accuracy was achieved when the size
of the reference data sets and size of subject sections were varied.

To test the algorithm’s accuracy in detecting roadside vegeta-
tion, one thousand random samples were extracted from the
mile) subject sections.

ss
Algorithm based on closeness to rssi mean,
skewness, & consistency among adjacent sections

100%
73.33%
89.33%
97.42%



Table 4
Results of identification of roadside vegetation areas (Concrete roads).

Actual surface Percent intensity points identified As

Vegetation Concrete

Vegetation 90.3 9.7
Concrete 16.3 83.7

Table 5
Results of Identification of Roadside Vegetation Areas (Asphalt Roads).

Actual surface Percent intensity points identified As

Vegetation Asphalt

Vegetation 98.7 1.3
Asphalt 1.0 99.0
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studied sections after grouping them into asphalt roads – open
graded, dense graded, and seal coated combined – and concrete
roads. For concrete roads (Table 4), 90.3% of the vegetation samples
were correctly identified and 9.7% were misidentified as concrete.
For asphalt roads (Table 5), 98.7% of the vegetation samples were
correctly identified and 1.3% were misidentified as asphalt. Thus,
the developed algorithm is more accurate when identifying road-
side vegetation areas on asphalt roads than on concrete roads.

The method described in this paper has limitations that could
be addressed in future work, as follows.

� The data used in this study were collected on dry paved roads in
east central Texas in December-January. Future work could test
and calibrate the developed method for a wider range of
weather conditions (e.g., wet surfaces), seasons (e.g., different
vegetation condition), and surface types (e.g., gravel roads).
Wet surfaces, in particular, are a major issue because many cur-
rent laser scanners cannot capture them.

� The method could be extended to distinguish between pave-
ment and gravel shoulders.

� Generally, the intensity data from pavements in good condition
were observed to have less kurtosis compared to cracked pave-
ments (sealed or unsealed cracks). Future work could consider
distinguishing between pavement in good condition and pave-
ment in poor condition.

� Attenuation correction could be expanded to consider angle of
incidence, instrument parameters, and surface/material
condition.

6. Summary and conclusions

This paper describes the development and validation of a
heuristics-based method for automated identification of road sur-
face types from laser reflected signal intensity measurements
obtained from a mobile lidar unit. The algorithm was developed
and tested using data collected from 61.3 km (38.1 miles) of roads
in Texas, USA, representing four pavement surface types (open
graded asphalt, dense graded asphalt, seal coated asphalt, and con-
crete) and roadside vegetation. The method identifies surface type
based on the intensity skewness and closeness to the mean of ref-
erence distributions. For network-level applications, the method
takes into consideration the detected surface type of adjacent
pavement sections. If adjacent sections have no predominant sur-
face type, no change is made to the surface type identified based
on intensity skewness and closeness the mean of reference a distri-
butions. When the method is based solely on intensity measure-
ments (i.e., disregarding adjacent sections), its accuracy is at least
88%; except for dense graded pavement where accuracy drops to
63.3%. These results can be explained by the similarity in the laser
intensity distributions for dense graded and open graded asphalt
surfaces, making it difficult to distinguish between these two sur-
faces. When adjacent pavements are considered, however, the
algorithm’s accuracy increases for all cases; most noticeably for
dense graded asphalt surfaces where accuracy increases from
63.3% to 73.3%. Roadside vegetation areas were identified correctly
98.7% and 90.3% of the time for asphalt and concrete roads, respec-
tively. Thus, the developed method is more accurate when identi-
fying roadside vegetation areas on asphalt roads, compared to
concrete roads.
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