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1. Introduction

This paper deals with several set theories, most of which include ZF + DC. Here, ZF
is Zermelo—Fraenkel set theory and DC is the Dependent Choice principle. One such
theory is ZFC, which is ZF 4+ AC, where AC is the Axiom of Choice. Other examples are

ZFC + There exists a measurable cardinal
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and

ZF+DC+AD.
We start by reviewing some basic notions.
1.1. Large cardinals and inner model theory

Large cardinal hypotheses, also known as large cardinal axioms, are strong forms of
the Axiom of Infinity and provide structures for the analysis of propositions not provable
in ZFC alone. Good sources that cover this material are [1] and [2]. We will concentrate
primarily on two special kinds of large cardinals that we discuss below.

By definition, an uncountable cardinal k is measurable if and only if there is a non-
principal k-complete and normal ultrafilter on x. In ZFC, this is equivalent to the
existence of a transitive class M and an elementary embedding j : V' — M with critical
point k. The proof of this equivalence uses an ultrapower construction and Y.os’ Theo-
rem, which in turn uses AC. The existence of a measurable cardinal is an example of a
large cardinal axiom. Another example is the existence of a supercompact cardinal. An
uncountable cardinal k is S-supercompact if and only if there is a x-complete ultrafil-
ter on P, (S) which is fine and normal.! We say r is supercompact if and only if it is
S-supercompact for every non-empty set S. In ZFC, this is equivalent to, for every car-
dinal A, there exists a transitive class M with *M C M and an elementary embedding
j V. — M with crit(j) = s and j(k) > A. Again we emphasize that AC is used to
prove this equivalence. Clearly, in ZFC if k is supercompact, then x is measurable and
the set of measurable cardinals is unbounded in x. This can be used to show that the
consistency of the theory

ZFC + There is a measurable cardinal
is a theorem of the theory
ZFC + There is a supercompact cardinal.

In other words the second theory has greater consistency strength than the first. It is an
empirical fact that large cardinal axioms line up this way.

Another important aspect of this paper is inner model theory, which we describe
briefly (more will be discussed in Section 2). Let us assume that V' is a model of ZF and
that T is any theory of sets. By definition M is an inner model of T if M is a transitive
proper class contained in V' that satisfies T'. The constructible universe, L, is the minimal
inner model of ZFC. Godel proved this fact in ZF. One relativisation of Gédel’s universe

! For the definitions of fine and normal see [2].
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is constructed as follows. For any set S, we construct a transitive proper class L[S] by
setting Lo[S] = 0 and Ly4+1[S] to be the family of subsets of L,[S] that are definable
over the structure

(La[S],€,SN Ly [S])

and taking unions at limits. Note that L is the same as L[()]. Let us discuss the connection
between these constructions and large cardinals. If ¢/ is a normal measure on P(x) and

U=unLU,

then

and
L[U] £ ZFC +U is a normal measure on P (k).

This is a theorem of Solovay; see [1]. Extending this, Kunen (cf. [4]) proved the following
uniqueness result.

Theorem 1 (Kunen). Assume ZFC. Let k be an ordinal and assume that for i < 2,
L{U;] E ZFC+ U; is a normal measure on k.

There is more to Kunen’s result that we are suppressing for this introduction. For
several decades inner model theory has strived to extend such results to more powerful
large cardinals. In spite of great progress, supercompact cardinals remain beyond our
reach so far in the context of ZFC. Roughly, this paper is on analogs of Kunen’s theorem
for ZF + AD 4+ DC + There exists an R-supercompact cardinal.

1.2. Determinacy

If S is a set, then ADg says that, for every game of length w in which two players
alternate choosing members of S, one or the other player has a winning strategy. The
instances relevant here are AD,,, more commonly called AD or the Axiom of Determinacy,
and ADg. It is an easy well known result that AC implies AD fails. In other words
ZFC + AD is inconsistent. However, the consistency of the theory

ZF+DC+ AD
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is a theorem of the theory
ZFC + There is a supercompact cardinal.

In fact, combining results of Martin and Steel ([6]) and of Woodin ([25]) one can prove in
ZFC that if there is a supercompact cardinal, then L(R) is a model of AD. Here L(R) is
the minimal model of ZF + DC containing all ordinals and reals. L(R) is constructed by
setting Lo(R) = HC (we identify R with HC), Lo+1(R) to be the family of sets definable
over (L,(R), €), and taking unions at limits. Woodin reduced the hypothesis of this
result to a large cardinal axiom strictly between measurability and supercompactness.
In fact, he showed that the existence of a certain countable structure called M¥ suffices,
see [18] for its precise definition. Woodin also showed that the consistency of the theory

ZF +DC+ ADg
is a theorem of the theory
ZFC + There is a supercompact cardinal.

Under AD, using fine structure and pointclass theory, there is a complete structural
analysis of the Wadge hierarchy (i.e. the pattern of scales) of L(R). In other models,
determinacy alone does not yield such a detailed structural analysis. Woodin introduced
AD™ to make up for the difference. Good sources that cover this material are [3] and
Chapter 9 of [26]. Before defining AD™ the following notion gets us started.

Definition 2. Let A C R. We say A is oo-Borel if there is a formula ¢(z,y) and a set
S C ON such that

x € A if and only if L[S, z] = ¢(z, S).

Let us recall that © is the least ordinal that is not a surjective image of a function
with domain R. In other words,

© = {a € ON | there is f : R — « surjective}.
Definition 3. AD™ is the conjunction of the following two sentences:

(1) Every set of reals is co-Borel.
(2) Let A < © and 7 : AY — R be a continuous function; then 7~1[A] is determined for
every A C R.

The ordinal © has the following approximations. For A C R, we define

0(A) = {«a] there is a surjection f: R — « with f € OD4}
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The Solovay sequence is defined as follows.

Definition 4. Assume AD™. Define a sequence of ordinals < ©,

(0o : 0 <),
as follows.
o 0o =0(0).
e O =0.

o If 4 is a limit ordinal, then 6., = sup{f, | @ < ~}.
o 0441 =0(A) for A any set of Wadge rank 6, if o < Q.

In L(R), the minimal model of AD" every set is ordinal definable from a real, hence
© = 0y. Adding conditions on the length of the Solovay sequence yields a hierarchy of
strengthenings of AD™. For example, ADT +© = 6,, implies ADg. Another example is
ADT +© = 0,,, which implies DC + ADg.

The following ordinal is also an approximation to © but in a different sense.

Definition 5. 62 is the least ordinal that is not the rank of a A? pre-wellorder on R, in
other words

0% = {a € ON | there exists a A% pre-wellorder on R of rank o}

Recall that a bounded quantifier in a formula is a quantifier that can be rendered as
Vz € R or dz € R. A bounded formula is a formula all whose quantifiers are bounded.
¢ is a ¥j-formula if it can be written as Jyi) where ¢ is a bounded formula. We recall
that given a structure M and N a substructure of M we say that N is Xy elementary
in M and write

N <1 M

if whenever ¢(z) is a 3y formula and @ € N then M = ¢(a) implies N = ¢(a). In L(R),
8% is the least ordinal o such that L, (R) <; L(R). For this reason we call 85 the least
stable ordinal. This is closely related to the fact, that under AD, ElL(R) is the largest
scaled point-class of L(R) and, for every bounded formula, ¢, if

L(R) = 34 C R ¢(A),

then L(R) has a Suslin co-Suslin witness for ¢. Recall that AD" was introduced to
generalize theorems of AD+V = L(R). Here is an example we will use later in the

paper.
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Theorem 6. (Woodin) Assume AD' and V = L(P(R)). Suppose that ¢ is a bounded
formula such that ¢p(A) holds for some A C R. Then there is a Suslin co-Suslin witness

A for ¢.

We end this section by pointing out that it is an open problem whether AD implies
AD™.

1.8. Supercompactness measures under ZF + AD

One important and surprising consequence of determinacy is that wy is a large car-
dinal. Solovay proved that, under ZF + AD, the club filter on w; is a normal measure
and it is the unique such measure (see [3]). He also proved that under ZF + ADg, w; is
R-supercompact as witnessed by the club filter on P, (R) (see [10]). We recall that C' is
a club subset of P, (R) if there is 7 : <“R — R such that o € C'if and only if o is closed
under 7. We define the club filter C as the collection of subsets of P, (R) that contain
a club.

We start to discuss the theory ZF + AD + w; is R-supercompact in further detail.
For this we must define another kind of models which is built by a combination of
two constructions. Suppose p is a collection of subsets of P, (R). By L(R, 1), we mean
“throw in R at the bottom” and “use p as a predicate”. That is, define Lo(R, u) = HC,
Lo+1(R, i) to be the collection of sets definable over the structure

(LOL(R7/J‘)3 evﬂ N La(Rvﬂ))

and take unions at limits. Notice that p might not belong to L(R, u) but N L(R, p)
does and

LR, ) = L(R, p N L(R, 1))

We usually think of L(R, u) as a structure in which the extra symbol /i is interpreted as
w N L(R, ). Perhaps, a more descriptive notation for this structure would be L(R)[u],
however we will stick to the notation in the literature and refer to this model as L(R, u).
It is immediate from Solovay’s theorem (cf. [10]) about ZF + ADg and other well-known
facts that assuming ZF 4+ ADg, L(R,C) is a model of the theory

ZF +DC + AD + w; is R-supercompact
where the R-supercompactness is witnessed by Z®C) = n L(R,C).
Following Solovay, Woodin began the analysis of models of the form L(R,pu) and

obtained the following uniqueness result, the proof of which can be found in [24].

Theorem 7 (Woodin). Suppose ADg holds. Then the club filter is the unique R-super-
compact measure on wi.
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Motivated by this result and Kunen’s theorem on the uniqueness of L[], Woodin
asked the following question (cf. [24]).

Question 8 (Woodin, 1983). Assume ZF +DCg + AD. Is there at most one model of the
form L(R, ) that satisfies AD + wy is R-supercompact?

One of our two main results is that the answer is yes. In fact, assuming further that
V = L(P(R)), the unique model is L(R,C), where C is the club filter on P,, (R). For
future reference:

Theorem 9. Assume ZF +DCgr + AD. Then, there is at most one model of the form
L(R, u) that satisfies AD + wq is R-supercompact. Moreover if V.= L(P(R)) and such
a model exists, then L(R,C) is the unique one.

The “moreover” part of the theorem is analogous to another result about measurable
cardinals. Namely, if & = w; and 0 exists,” then there is exactly one model of the form
L{Y] in which & N L[] is a normal measure on k, namely take U to be the club filter on
k (cf. [4] or [2, Chapter 21]). We note here the analogy of this fact with Theorem 1. The
fact implies the uniqueness of L[U]; the extra assumption (that 0T exists) gives us that
the club filter ¢ on  is indeed a measure on L[U].

It is also natural to ask Woodin’s question with the assumption ZFC instead of
ZF +DCgr + AD. We do not know the answer to the modified question, but under ZFC
together with a technical large cardinal hypothesis we obtain a positive answer, our
second main result.

Theorem 10. Assume ZFC and suppose that /\/lfd2 exists. Then

(1) L(R,C) E AD + C is an R-supercompact measure, and
(2) if p C P(Po, (R)) is such that

LR, ) E AD + w; is R-supercompact,
then L(R,C) = L(R, ).
The meaning of Mi? and the sense in which it is iterable will be discussed in Section 2.
The large cardinal hypothesis that ./\/li2 exists is slightly stronger than the consistency
strength of the theory ZF + DC + AD + w; is R-supercompact. We do not know how to

do without this mild “extra” assumption but conjecture that it is possible and have some
partial results in this direction that will be mentioned.

2 0 is the sharp for a model of the form L[U] in which U N L{U] is a measure on a cardinal &.
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Conjecture 11. Assume ZFC. Then there is at most one model of the form L(R, i) that
satisfies AD + w; is R-supercompact.

Theorems 9 and 10 will come at the end of a series of uniqueness results with varying
hypotheses, which we label propositions. One of these, the following, is the main result of
Section 2, which Theorem 10 strengthens in that there are no stationarity assumptions
for the members of p.

Proposition 12. Assume ZFC and suppose that Miz exists. Then

(1) L(R,C) E AD + C is an R-supercompact measure, and
(2) if p C P(Py, (R)) is such that for any A € u, A is stationary and

LR, u) E AD + w; is R-supercompact,
then L(R,C) = L(R, ).

We remark that we just need ZF + DC in the proof of Proposition 12. To read
Section 2 the reader should be familiar with the technique of iterating mice to make
reals generic, see Theorem 18. We give a brief summary of the results needed at the
beginning of subsection 2.1.

In Section 3, we prove Theorem 10. For this, we use the HOD analysis of the models
L(R, u) satisfying AD + w; is R-supercompact, to show that on a Turing cone of reals x,

HODL®€) = HODZ(®m) .

See [13] for the HOD analysis in L(R); other good sources on this subject are [20] and
[22]. The meaning of ordinal definability in L(R, u) is different from the usual notion
in that the language for the definitions includes the predicate £ which is interpreted as
N LR, ).

Finally, in Section 4, we use Theorem 10 and its proof to show Theorem 46 after first
proving yet another approximation, namely:

Proposition 13. Assume V = L(P(R)) + AD™. Then, there is at most one model of the
form L(R,u) that satisfies AD +wy is R-supercompact. Moreover if such model exists
then L(R,C) is the unique such model, where C is the club filter.

In addition to the prerequisites mentioned earlier, for Section 4, the reader should be
familiar with certain concepts of descriptive inner model theory. For example, [8] is a
good source.

The authors would like to thank the anonymous reviewers for their helpful and con-
structive comments and suggestions that greatly contributed to improving the paper.
The first author would also like to thank professor Ernest Schimmerling for numerous
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the NSF (Grant DMS-1565808) for its generous support.

2. The ZFC case under the stationarity assumption

In this section, we prove Proposition 12. Recall that we assume the existence of /\/lgﬂ,
we give a brief summary of this special mouse next.

2.1. Mice and genericity iterations

We will assume that the reader has familiarity with the basic concepts of extender
models and mice. Sources for this subject are [18] and [7]. However, for the non-expert
we will summarize the key parts of the theory of mice we will be using.

We start by recalling that a premouse M is a fine structural model of the form
(JE €,E | a,E,), where E is a fine extender sequence in the sense of [18]. Let us fix
some notation: supposing M is as above and v < «, we write M|y for the structure
(Jf 'Y €,E | v,E,). Suppose that M and N are two pre-mice we say that M is an
initial segment of N and write M <N, if there is v < ONNA such that M = Ny.

If M is a k-sound mouse, we say that M is (k,S,v) or (k,j)-iterable if player II
has a winning strategy for the iteration games Gy (M, 3,7) or G, (M, ) respectively, see
sections 3 and 4 of [18] for a precise definition. A mouse is a k-sound pre-mouse that is
(k,w1 + 1)-iterable. Whenever k = w we will abuse notation and write w; + 1-iterable for
(w,wy + 1) ete. Mﬂz is the mouse we will be most interested in this work. We warm up
for its presentation with the following definition.

Definition 14. A pre-mouse is called w?-small if whenever x is the critical point of an
extender in the sequence of M, then

M|k ¥ “There are w? many Woodin cardinals”.

Definition 15. Miz is the unique sound, (w,wi,w; + 1)-iterable mouse that is not
w?-small, but all of whose initial segments are w?-small.

Notice that p; (/\/lfﬂ) = w and p; (Mfﬂ) = (), hence Mig is countable. We will see
in Section 3 that MiQ is related to L(R,C) very much like M is related to L(R) as
exposed in [18]. Recall the Solovay sequence defined in subsection 1.2. Its length not only
entails stronger versions of determinacy but also the existence of mice with certain large
cardinal structure. A fact we will repeatedly use is that under AD™ if © > 6y, then there
is a non-tame mouse, which we introduce now.

Definition 16. Let M be a pre-mouse. We say M is tame if for any § such that M =
“0 is Woodin” and for any E., in the sequence of M with crit(E,) < §, then v < 6.
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Note that a non-tame mouse is a mouse that has a cardinal that is strong past a
Woodin cardinal. Also, if a non-tame mouse exists, it is easy to see that Mfug exists.

Theorem 17 (Woodin, see [16]). Assume ADY + © > 6y, then there is an (wy+1)-iterable
non-tame mouse.

One important application of mice is that they help when analyzing certain deter-
minacy models. For example, one of the key ingredients for the analysis of HOD*® ig
that one can iterate M! to make any given real generic. We will also use this technique
throughout this paper.

Theorem 18 (Genericity iterations). Let ¥ be an (w1+1)-iteration strategy for a countable
mouse M and §y < d1 be two ordinals in M such that

M = 81 is a Woodin cardinal.

Then there is a Boolean algebra Bf\gb 5, € M such that IB%&’L sy C V({IA and M =
B(50,5,) is d1-c.c. Moreover, for every x € R, there is a countable iteration tree T such
that

e T is a play according to X,

e T has a final model, say MI,

e T is nowhere dropping

o All extenders used in T have a critical point above dy and its images and

fu
o there is an MI-genem'c filter G for IB%?:ZT ) = igﬁv (Bf\gz) 61)) such that
sb0,y ’ ’

We will abuse notation and call the boolean algebra B{‘gg o) the extender algebra of M
at 61 whenever dg is clear from context. The corresponding iteration is called a genericity
iteration in the interval (dp,d1). We will use genericity iterations and /\/li2 to compute
the theory of L(R,C) in Section 3.

We will also use the notion of mice constructed over a set X in Section 3. We define
this notion below.

Definition 19. We say that M = (JE(tr.cl.(X)), €, E | a, E,) is an X-premouse if E is
a fine extender sequence and all extenders in E have critical points above o(tr.cl.(X)).

Definition 20. For a set X we have the following.

« Given an X-premouse M, we say that M is countably iterable if for any M countable
and elementarily embeddable into M, we have that M is w; + 1 iterable.
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o An X-premouse M is sound if it is w-sound (in the sense of [18]).

e An X-premouse M is said to project to X if there is an A C X that is definable
over M from X U{X} and ordinal parameters but A is not in M.

e Lp(X) is the union of all countably iterable and sound X-mice that project to X.

We commonly refer to Lp(X) as the lower part of X.
2.2. The proof of Proposition 12

Assume its hypotheses. Recall that Mfdz is the unique, active, sound mouse projecting

2_small. Part of

to w, with w?-many Woodin cardinals all whose initial segments are w
what it means to be a mouse is that Mg}z has an iteration strategy, which happens
to be unique; we call it . For simplicity we make an additional assumption about %
that we will eliminate when we finish the proof of Proposition 12 at the end of this
section. Assume further that ¥ extends to an outer model W in which P(R) NV is
countable. Let us fix k = ((2‘)+)V and note that ¥ € HY. We also fix such an outer
model W.

If P is a countable Y-iterate of /\/lfug, then the tail of X is an iteration strategy on P.
If @ is a Y-iterate of such a P and there is no dropping on the branch from P to @, then
we write P - Q for the branch embedding.

We need to review a certain construction that plays a role in the proof of Proposi-
tion 12. Consider an arbitrary transitive class model M of ZFC that has w?-many Woodin
cardinals. Let §)' be the a-th Woodin cardinal of M. Also, let A}’ = sup{d}' | o € 5}
for B limit; A)’ = 0. Suppose further that G is an M-generic filter for col(w, < A\M). Let

oi= |J RMCTeland R* = (] RMIGT

a<wi a<w?

we say that R* is the set of symmetric reals associated to G. In M[G], define the tail
filter, F, on P, (R*) as follows: for A C P, (R*)

A€ Fifand only if In € w¥m > n (o, € A)
The fact we will use is

Theorem 21 (Woodin, see [22]). Let M be a transitive proper class model of ZFC' with
w? many Woodin cardinals whose limit is )\%. Let G be an M -generic filter for the Levy
collapse up to )\%. Let F and R* be the tail filter and symmetric reals associated to G,

then

L(R*, F) = ADT + F is an R-supercompactness measure.
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We will call L(R*, F) the derived model® of M at A\,. Eventually, we will find a
Y-iterate, M, and an M-generic filter G on col(w, < A\M) such that the associated R* is
R and the corresponding tail filter contains the club filter, C. Towards this, the following
gets us started.

Lemma 22. Suppose that 7y is a cardinal of V' such that v > k. Let Xg and X1 be countable
elementary substructures of H. such that RN Xo € Xy and ¥ € Xo. Then there is an
iteration tree T on Mig of successor length ( + 1 such that T | a € Xg for all a < ¢

MT
and T € X1, and there exists G € X, such that G is Mg——generic on collw, < Ay, ¢ ) and
the associated set of symmetric reals is R N Xg.

Proof. Given the assumptions above note that R N Xy € X, so there is (x;]i € w)
an enumeration of R N Xy in X;. Now, by Theorem 18, there is an iteration tree 7y
on Mig according to ¥, with last model P, such that 7 : Miz — Py exists and zg
is generic for IB%(I;;], the extender algebra at 55 9. Note that since ¥ € Xy, 7o belongs
to Xy and is countable there. We continue iterating Py — P; in the interval (65", 81")
(see paragraph after Theorem 18), say via 71, to make the next real 1, generic for the
extender algebra at (5{3 *. Note that in this case both zg and z; are set generic over P;
for posets in V)\Igl. Continuing in this fashion we get X-iteration trees 7, with branch

embeddings P, _; — P, such that z,, is P,-generic for the extender algebra at 5. Also
every x; for i < m is set generic over P,.

In X;, define 7 to be the concatenation of the 7,’s. Now 7T has a unique cofinal
branch b. Let P = M,], 0 = RN Xy and A = A\L. By construction the following hold:

(1) For every = € o there is a poset P € V;¥’ such that x is P-generic for P.
(2) A= sup{wfm |z € o}
(3) P = “\is a strong limit cardinal”.

Then essentially by Lemma 3.1.5 of [5] there is a P-generic filter G for col(w, < AL) in
X7 such that the associated set of symmetric reals is RN Xy. O

Note that in the proof of Lemma 22 all we really need is an iterable mouse M whose
strategy is in Xy and an interval (A\)*, \}) containing w many Woodin cardinals. In
practice (as in Lemma 23) we will use a 3-iterate M of Miz with M € X and some
interval (A\M, )\ﬁ/l(iﬂ)) of w many Woodins in M.

Lemma 23. Let CV be the club filter on P, (R) as computed in V. Then, in W, there is
a Y-iterate P of Mig and a P-generic filter G for col(w, < )\52) such that if F is the
associated tail filter, then CV is contained in F.

3 We recall that this is not the standard definition of the derived model, see [16] and [25] for the standard
definition.
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Proof. In W, we let (X; |i € w) be a chain of elementary substructures of HY such that
U X; D P(R)Y and if 0; = X; NR, then o; € X;,; and o; is countable in V. We may
i€w

assume that Mﬁ)g, and X are in Xy. We construct an iteration of the form

M, PP =P =Py P
by recursion using Lemma 22 so that the iteration P;_; — P; is done in the interval
(Awis Aw(i+1)) and makes o; the set of symmetric reals associated to a Pj;-generic on
col(w, < )\5;) Let P be the direct limit of the P;, since X extends to an iteration strategy
in W, we have that P is well-founded. By a variant of Lemma 3.1.5 in [5] there is a
P-generic filter G for col(w, < AL,) such that o; = U RPIG T,

a<wi

Note that the set of symmetric reals associated to G and P is RY. Let F be the
corresponding tail filter. Consider any A € CV. Let m € V be such that 7 : R<¥ — R
and its closure points belong to A. Then there is an n € w such that = € X,,. So for all
m>n, n € X, and o, is closed under =, thus A€ F. O

The two key facts in the proof of Lemma 23 are that if A is an element of CV, then
there is an 7 € w such that A € X;, and that every X; is closed under X. This motivates
the following definitions.

Definition 24. Suppose N is a set model of ZFC-PowerSet such that P(R)% is countable.

(1) We say (X;|i € w) is a good resolution of N if:
(a) For all i € w, we have X; < N,
(b) ¥ € Xo,
(¢) RNX; € X;41, RN X; is countable in N and
@) (JXxioP®R)N.
(2) Givelneg( = (X;|i € w) a good resolution of N, and o; = X; N R, we define Fx, the
tail filter associated to X by

Ae Fx ifand only if 3In e wVm > n (o, € A)

Note that in the proof of Lemma 23 instead of H, we could have used any N that is
a model of ZFC-PowerSet with a good resolution in W. We give an example of such a
situation in the following lemma.

Lemma 25. Suppose that A is stationary in P, (R). Then, in W, there exists a X-iterate
P of M, and P-generic filter G for col(w, < )\52) such that A belongs to the tail filter

w2

associated to G and P.
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Proof. Consider P4, the forcing poset whose conditions are countable, closed, increasing
sequences from A. In other words, p = (o, | < ) is a condition in P4 if

o for all a < 3, we have that o, belongs to A,
e for every a and o' less or equal § if a < o’ then o, C o4/, and
e if & < [ is a limit ordinal, then o, = U ;.

i€EQ

We say p < ¢ if p end-extends q. It is easy to see that this poset shoots a club through A.
Also, since A is stationary this forcing is (wy, 00)-distributive, so in particular it does
not add any new reals. Note that P4 has size continuum (in V') and so there is h € W,
such that h is V-generic for P4. Also RVIM = R, so if N = HY™ and (Xili < w) is a

good resolution for N in W; then the remark after Lemma 23 yields the result. O

Suppose that in W there are two X-iterates P and @ of Mig and generic filters G
and H for col(w, < AF;) and col(w, < )\82) respectively such that the set of symmetric
reals of P[G] and Q[H] is precisely RV . Let £ and F be the tail filters associated to P,
G and @, H respectively. We show next that if this is the case then L(R, ) = L(R, F).

Lemma 26. In W, let Ny and Ny be transitive sets models of ZFC-PowerSet containing
Y such that RN: = RY fori =1,2. Let (X}]i € w) and (X2]i € w) be good resolutions
of N1 and Ny respectively and F* and F? be the associated tail filters. Then L(R, F') =
L(R, F?).

In practice N; would be HY and N, would be H ;/ I for some filter h which is V-generic
for a forcing of size < k (that adds no reals).

Proof. Let ojl- =X jl N R and similarly 032- = XJ2 NR. Iterate MBJZ inductively as follows.
Let 09 = o}, and note that og can be coded as a single real, so there is i; such that
oy € Xfl and so there is Miz — Py an iteration in Xz?1 to make oy generic on the first
w-many Woodins. Define 07 = 0221 and note that there is 75 such that o7 € X}Q an hence,
in X }2, there is an iteration Py — P; on the second w-many Woodins to make o1 generic.
Continue the iteration in this fashion. We get an iteration

M, PP —P 5Py — - —P

w?

and a P-generic filter G for col(w,< Al,) such that o; = U RPE T Let F be the

a<wi
associated tail filter. Note also that for any ¢ € w there are j > i and k > 4, and natural

numbers m and n such that le- = o,, and 0,% =0,

Claim. L(R, F!) = L(R, F) = L(R, F?).
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Proof of the claim. By Theorem 21 we have that F' is an ultrafilter relative to sets in
L(R, F1), and similarly F is an ultrafilter in L(R, F). We first show that F and JF; agree
on

LR, F)NL(R, Fy)

To see this let A C P, (R) be a set in L(R, F) N L(R, F1) N F!, since F is an ultrafilter

in L(R, F) we have that either A or its complement is in F. But A contains a tail of the
.
0;, which means A € F. The other direction is similar.

Now an induction on a € ON shows that L, (R, F') = L,(R,F). Successor steps

follow from the observation above, limit steps are clear. We have shown the first equality.

o; since it belongs to F7, hence by construction its complement cannot contain a tail of

The second equality is shown similarly. O
Clearly the claim completes the proof of Lemma 26. O

For simplicity we will refer to the unique model in W coming from constructions a la
Lemma 23 as L(R, F). We refer to F NV as F when there is no ambiguity. We will use
the following useful lemma extensively. We remind the reader that f is the extra symbol
in the language that is interpreted as a subset of P(P,, (R)).

Lemma 27. Let L(R, 1) E AD + p is an R-supercompactness measure, and suppose that
W contains only stationary sets. Then L(R,u) = L(R, F).

Proof. We will show again inductively that L, (R, F) = L, (R, ). For this, as in the proof
of the claim of Lemma 26, we only need to see that F and p agree on L(R, F)NL(R, F).
Given A € FN LR, F) N L(R, 1) we have that either A or its complement is in u. For
contradiction suppose A ¢ pu. Then A€ € p, so A€ is stationary, applying Lemma 25 we
have that there is a tail filter £ associated to a good resolution such that A¢ € &£, now
by Lemma 26 we have that A¢ € F, which is a contradiction. O

The careful reader might note that there is a general trend in these kind of inductive
arguments. Indeed

Lemma 28. Let L(R, 1) and L(R,v) be models of ZF + [v in an ultrafilter on Py, (R), and
suppose further that v C p. Then L(R, u) = L(R,v).

Proof. Note that uNL(R,v) = vNL(R,v) since v C p and v is an ultrafilter in L(R,v).
Now again an induction on the constructive hierarchy shows that L(R, ) = L(R,v) as
wanted. O

Lemma 29. CN L(R, F) = FN LR, F).
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Proof. Otherwise by Lemma 23, there is A € F N L(R, F) that does not contain a club,
which means that A€ is stationary so by Lemma 25 and 26 we have A¢ € F, which gives
a contradiction. 0O

To summarize we have seen that L(R,C) is the unique model of AD + w; is
R-supercompact under the hypotheses of Proposition 12 and the additional assump-
tion that ¥ is has an extension to W, a class outer model in which P(R)" is countable.
Our final step is to eliminate this extra assumption.

Assume that MEJZ exists and X is an iteration strategy. Suppose that p is as in the
statement of the proposition but assume that L(R,u) # L(R,C). Fix v be such that
V,, reflects this fact, and P(R) € V,. Let N < V, be countable such that ¥ and p are
in N. Let H be the transitive collapse of N and 7 : H — N be the uncollapsing map.
Define ji = 71 (u) and ¥ = 7~ (2). On the one hand, by elementarity of m we have that
H | L(R, i) # L(R,C). On the other hand ¥ canonically extends to ¥ and P(R) is
countable in V. The relationship between H and V is similar enough to the relationship
between V' and W to obtain the following in V. There is a countable iterate P of MiQ
and a P-generic filter K for col(w, < AL;) such that R¥ is the set of symmetric reals of
P[K]. Moreover, if F is the associated tail filter, then in H, L(R¥, F) = L(R" 7)) =
L(RH cH), a contradiction. Hence Proposition 12 holds.

We end this section with the remark that the proof of Proposition 12 uses only de-
pendent choice and so it follows from ZF + DC. We will use this fact in the following
sections.

3. The general ZFC case

Assume Mfﬂ exists. In the last section we saw that if p consists only of stationary sets
and L(R, i) is a model of AD + w; is R-supercompact, then N L(R, u) = C N L(R, u).
Let us fix some notation for the rest of the paper.

Definition 30. Let N be a model of ZFC-PowerSet. We define SV to be the (in N)
stationary subsets of P, (R)N.

Let us give an example that illustrates there is more to do. Consider SV. By Proposi-
tion 12 we have that L(R,S") is a model of AD + w; is R-supercompact. Let A C P, (R)
be a stationary set whose complement is also stationary and let h be a V-generic filter
for the poset that shoots a club through A€ (as in the proof of Lemma 25). Applying
Proposition 12 in V[h], L(R,SY") is the unique model of AD +w; is R-supercompact.
We would like to conclude that L(R,S8Y) = L(R,S"") but it does not follow from
Proposition 12 applied in V[h] because A € SV but A is nonstationary. Note, however,
that a posteriori since L(R,S") = L(R,SV[") even though A° is a club in V[h] we have
that A° ¢ L(R,SV["), the point here is that V[h] is unaware of this situation.
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Notice that the proof given in the last section relies heavily on the fact that if A € p,
then one can shoot a club through A without adding reals. Without this available to us
we need a different idea. We use Woodin’s Analysis of HOD in order to prove Theorem 10.
The HOD Analysis for structures of the form L(R, ) was done in [22], however we will
use a variant closer to the exposition of [13]. We start by doing the analysis for L(R,C)
and then generalize to L(R, ). We first give some useful definitions and lemmas. We
will work, as in the last section, with ./\/liz and its strategy X, as well as with W an
external model in which P(R) is countable and ¥ extends to an iteration strategy in W.
Ultimately, the extra assumptions will be eliminated at the end of this section using the
same ideas from Section 2.

3.1. A HOD analysis for L(R,C)

We start the outline of the HOD analysis by adapting the standard notions. This
means, we will define, in V', a directed system whose limit agrees with a rank initial
segment HODY®C) "and then discuss what the rest of HODX®C) Jooks like and define
in L(R,C) a corresponding covering system. Then we will generalize these results to
models L(R, i) of ZF + AD + w is R-supercompact. By [22], in L(R, ), AD" and Mouse
Capturing holds.

Definition 31. We say P is a dg-bounded Y-iterate of Mig if there is an iteration tree T
on Mi}z built according to ¥, such that,

e P is the last model of T,

M
o all extenders used in 7 have critical point below the image of &, “*, and
 there is no drop in model on the branch leading to P so that there is an embedding
i: Miz — P given by T.

Let

DT = {P| P is a countable, §y-bounded iterate of M",}.

For P and Q in DT, say P <™ Q if P iterates to Q via X in a dg-bounded way, in which
case we let mp g be the corresponding embedding given by ¥. By the Dodd-Jensen
property of 3, mp o does not depend on any particular ¥-iteration from P to ). The
Dodd-Jensen property also guarantees that (D*, <" 7g p) is a directed system. Take
the direct limit of (D', <%, 7p ) and iterate away the sharp (i.e. the top extender of
the direct limit) ON-many times to obtain a proper class model MZ. Also, let 7 o be
the natural map from @ to MT.

We will eventually prove that, LML ¥ | X] = HOD*®C) for some set of iteration
trees X in L(R,C). Motivated by the work of Steel and Woodin for L(R) the next step is
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to adapt the definition of suitability. From now on, we work in L(R,C) unless otherwise
mentioned.

Definition 32. Let a < w?. Let P be a premouse. We say P is a-suitable if there exist a
sequence (67),., in P such that

(1) For every cut-point n of P, Lp(P|n) < P.

(2) If n < o(P), but is not a Woodin cardinal of P, then Lp(P|n) = “n is not Woodin”.

(3) For all i < o, P F “5F is Woodin”, and these are the only Woodin cardinals of P.
Furthermore, letting A = sup 6/, then o(P) = sup(A™™)¥".

[A<Te" new

We call a premouse full if it satisfies (1) of Definition 32. We will say P is suitable if
there is a < w? such that P is a-suitable and define a(P) = . It is an easy consequence
of mouse capturing and the definition of suitability that if P is suitable, £ a P-cardinal
and A C £ is such that A is ODILD(R’C), then A € P. On the other hand if A € P, then A
is ODIL)(R’C). We will use this fact repeatedly without explicitly mentioning it.

Definition 33. Let 7 be normal tree on a suitable mouse P. We say T is guided if and
only if for all limit n < Ih(7), we have that Q([0,n)r,T | n) exists and is an initial
segment of Lp(M(T [ n)). We say that T is mazimal if Lp(M(T)) = 6(T) is Woodin;
otherwise we say T is short.

Notice that if 7 has successor length, then it is short. Moreover by the way X is
defined if T is short and guided then it is according to ¥.*

Definition 34 (Capturing). Consider an a-suitable premouse P and A C R. Let n be a
cardinal of P. We say that P captures A at 7 if there is a col(w,n) name 7, such that
whenever g is P-generic on col(w,n), we have 7[g] "R = ANR. We say that P captures
A if for every i < a(P), P captures A at 6F.

Note that given A C R and a suitable P that captures A at 67, say via 7, there is a
standard term that witnesses the capturing, following [13], we give its definition

T};i = {(p,0) |0 is a name for a real and p |peel@dl) & ¢ T}

Our next step is to define a notion of iterability that is strong enough so that one can
compare suitable mice. Note the connection with [13], where the analysis of HOD*®
used a system of suitable mice with only finitely many Woodin cardinals. In our situation,

2

however, suitable mice are allowed to have fewer than w® many Woodin cardinals. That

is why we need a stronger form of iterability that we describe below.

4 This is via a standard argument using the uniqueness of Q-structures, cf. [20].



D. Rodriguez, N. Trang / Advances in Mathematics 324 (2018) 855-393 373

We will define a slight modification of Definition 1.8 from [12]. A suitable P is said
to be weakly* (w,w?)-(quasi-)iterable if player 11 has a winning (quasi)-strategy for the

game WG*(P,w?) in which I and II alternate moves for w?

many rounds as follows.
The game starts by letting Py = P. At round «, player I plays a countable normal,
guided, putative iteration tree 7T, on P,. At that point player II has two options. The
first option is only available if 7, has a well-founded final model; then IT may accept I's
move in which case we set P,y1 = Mz;f(n)_l. The second option is for player II to play
a maximal well-founded branch b, on T, such that, if 7, is short then Q(bn, 7o) exists
and is an initial segment of Lp(M(7,)). The game continues by setting P,4; = MZ?:‘.
There are additional requirements for both players at limit rounds. Namely, if I and II
have played for all 8 < vy and =y is a limit ordinal then:

o If there is i < a(P) such that for infinitely many 5 < 7, we have that 73 is a tree
based on (6,%,,6,7) then I loses.”

o The direct limit of Pg for 8 < + is well-founded. Otherwise II loses.

After the w? rounds have been played, the only condition for II is that the direct limit
along the main branch is well-founded. We illustrate the weak* game, WG* (P, w?) game

as follows:
Player | 0 1 w
I 7o on Py Ti on M[° R
II bo b1 v b,

Note that if P and @ are suitable premice such that IT has a winning quasi-strategies
7p and ¢ for WG*(P,w?) and WG*(Q,w?) respectively then one can form guided it-
eration trees 7p and 7 using the extenders that cause the “least” disagreement, and
using 7p and 7g when a maximal tree arises in this comparison. Since each P and @
have < w?-many Woodin cardinals, this comparison succeeds. Note also that the end
model of this comparison is still weakly* (w,w?)-quasi iterable, since any game on it can
be seen as the terminal part of a game on either P or Q.

Recall that a stack T on a premouse P is a pair consisting of a sequence of iteration
trees (T; | ¢ < ) and a sequence of premice (P; |i < «) such that

« Bhy=P,

o for every i <+, 7T; is an iteration tree of successor length on P; and with last model
P11, and

o for every limit ordinal f < =, Ps is the direct limit of (P;|i < () and the tree
embeddings.

® Here by convention §¥, = 0.
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Note that (P;|i < 7) is determined by the sequence (T;|i < 7). Also for a stack 7 on
P, we define ./\/lT = P, and ZT P — MT the natural embedding associated to this
stack (if it exists). Notice that in WG* (P, w?) players I and II collaborate to form a stack
on P.

If P is a suitable mouse capturing some A C R it will be desirable that “good” itera-
tions of P maintain the suitability condition and move the terms capturing A correctly.

Definition 35 (A-iterations). For a suitable P that captures a set of reals A we define
the following.

(1) We say P is A-iterable if II has a winning quasi strategy for the game WG*(P, )
such that whenever T is a stack glven by a game according to the quasi strategy®
and ZT P — ./\/lT exists, then MT is suitable and for any i < a(P) we have that
’LZ; (TATZ-) = Tﬁ;. We will call such a quasi strategy an A-quasi strategy for P.

(2) An A-iteration of P is a stack T on P given by a run in WG*(P,w?) according to
an A-quasi strategy.

(3) We will say @ is an A-iterate of P if there is an A-iteration 7 on P such that
Q= MZ and zfo exists.

(4) For T, a normal guided tree on P of successor length n + 1, such that 7 [ 7 is
maximal, we let 7~ =7 [ n. In other words 7~ is 7 without the last branch.

Also, given /_1', a finite sequence of sets of reals, we say P is A-iterable in case there
exists a winning quasi strategy in WG* (P, w?) that simultaneously witnesses A-iterability
for every A in the sequence A.

Remark. For A € L(R,C), being A-iterable is (downward) absolute to L(R,C). This is
because the existence of an A-quasi-strategy is absolute between V and L(R,C); the
latter can figure out @Q-structures of a relevant tree 7 if T is short and if 7 is maximal,
there will be a branch b of T respecting A if such a b exists in V', using DC in L(R, C) one
gets the desired quasi-strategy. From now on, we will simply write “A-iterable”, instead
of “A-iterable in L(R,C)”.

So far we do not know whether there are A-iterable suitable mice but we prove next
that these exist when ./\/lfiz is present. Lemma 36 and Corollary 37 are adaptations of
results in Chapter 3 of [13].

6 Here, at each normal component U of T, there may be more than one branch choice of U according to
the quasi strategy, if U is maximal; our convention is when we talk about iteration maps iz;

make a unique branch choice at each such U.

we already
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Lemma 36. Suppose A C R is definable in L(R,C) from indiscernibles and assume that
N is a S-iterate of Miz, such that i : /\/liQ — N (given by %) exists. Then any suitable
initial segment of N is A-iterable.

The idea in the proof is the following. Note that if N is a S-iterate of M&)Q, by

Lemma 23, given a Woodin cardinal 6 of N, we can iterate N 2, K above J to make
L(R, C) realizable as the derived model associated to K and some K-generic filter. Hence,
one can define truth in L(R,C) in K using the homogeneity of the collapse. We show the
details below.

Proof. Let N as above and suppose that A C R is definable in L(R,C) from indis-
cernibles. Let ¢ be a formula such that for any increasing sequence of indiscernibles
cop< e <---<epfor LR, C)

z€A & LR,C) Eplco, - Cn1,T).

Let Q be a suitable initial segment of N, and a = a(Q). Let us define N to be the
proper class model resulting when iterating the last extender of N ON-many times. Let
B < « and define 7 as (p,z) € 7 if

1 sy N <
pIFe SOl LR F) oo,y Enn, 1),
where R is the standard name for the symmetric reals under col(w, < AN,) and F is
the name for the tail filter associated to this forcing as defined in Section 2. Now by
suitability of @@ we have that 7 € Q.

Let us see first that 7 captures A at 5?. For this let G be Q-generic for col(w, 5?)

Note that by suitability G is also N-generic. Now, working in W, we can use X to iterate

N, above 622, in the fashion of Lemma 23 to get an embedding j: N — M and an
M |[G]-generic filter H such that G« H is M-generic for col(w, \), and j(F)[G « H] = C

N2

and j(R)[G « H] = R.
Also, we can pick indiscernibles large enough so that they are fixed by j. This implies
that if (p,z) € 7 and p € G, then

M|G x H] = L(R,C) E ¢(co, ..., cn-1,z[G])

In other words if z[G] € 7[G] = z[G] € A. Conversely if x € A N Q[G], then by
homogeneity of the second forcing over N we have that

N ~
col(w, <A Ja

FY ) LR F) = (e, 61, (21G),
so there is a condition p € G such that

w N col(w N, d -
p IO PR FY = (6o, Gy s et T).
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In other words AN Q[G] C 7[G], and so 7[G] = AN Q[G].
By the way 7 is defined it is easy to see that ¥ moves 7 correctly and so it is an
A-iteration strategy. O

Corollary 37. Suppose A is an OD R et of reals. Then for every a < w? there is an
a-suitable P that is A-iterable.

Proof. By contradiction, suppose that there is a counterexample A. By minimizing the
ordinals from which A is defined we may assume that A is actually definable in L(R,C).
Let o < w? and Q is the suitable initial segment of ./\/li2 with a(Q) = a. By Lemma 36
Q@ is A-iterable, a contradiction. O

The point in the proof of Corollary 37 is that given a counterexample in L(R,C) to a
statement of the form “for all OD*(®€) gets of reals” then one can, by minimizing the
counterexample, find a definable one. However it is the case that, usually, the suitable
initial segments of /\/lfﬂ witness that there are no definable counterexamples. The same
argument essentially gives the following lemma.

Lemma 38 (Comparison). Suppose that P is a suitable, A-iterable mouse and Q is a suit-
able, B-iterable mouse. Then there is an A@ B-iterable suitable mouse R, an A-iteration
from P to a suitable initial segment of R and a B iteration from Q to suitable initial
segment of R.

Recall that the notion of A-iteration is definable in L(RR, C). The next step is to define
a covering system using pairs (P, A), where A is an OD*®C) get of reals and P is an
A-iterable mouse. However, it could be the case that for such a P, there are two different
A-iterations 7 : P — @Q and o : P — @, and this would be a clear problem in building a
directed limit. For this reason we need to work with relevant hulls and a stronger notion
of iterability. We define below these concepts.

Definition 39. For an A-iterable mouse P, we let

(1) P~ = P|(65)"

(2) vk, = sup(Hull” (1} ;) N 67).

(3) %1: = SUP;eq(P) 75,2"

(4) 55 =7 -

(5) H(P,A) = Hull"(€4 U{rh;|i < a(P)})

Note that if P is a suitable A-iterable mouse, then P~ = P|(5“)F is 1-suitable and
A-iterable.
Using the usual “zipper argument” (see [17] or [15]) we get the following lemma.
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Lemma 40. Let T be a tree of limit length on P, a suitable pre-mouse. Suppose further
that there are branches b and ¢ such that T b and T " c are A-iterations and ./\/le and
MY are A-iterable. Then il | v§ =il | 4% and soi] | H(P,A) =14l | H(P,A).

A delicate point here is that if P is an A-iterable mouse we could potentially have
two A-iterations associated to two different trees on P leading to the same end model @,
so Lemma 40 would not apply. Hence we define the notion of strong iterability in the
natural way and prove the existence of strongly iterable mice.

Definition 41. For A C R and a suitable A-iterable mouse P, we say P is strongly
A-iterable, if whenever i : P — @ and j : P — @ are two A-iterations, then ¢ |

Note again that when proving that for any A C R which is OD” (RC) there is a strongly
A-iterable mouse it is sufficient to prove that for any definable set A there is a strongly
A-iterable mouse. The following lemma, in contrast to most of what we have discussed
so far, is not an “easy” generalization of the HOD Analysis in L(R). The reason for this
is the extra complexity in the iteration games considered. We give a detailed proof for
the existence of strongly A-iterable mice.

Lemma 42. Let A be an OD*®C) get of reals and let P be A-iterable. Then there is an
A-iterate of P that is strongly A-iterable.

Proof. By minimizing the ordinals from which a potential counterexample can be de-
fined, we may without loss of generality, assume that A is definable in L(R,C). Given
an A-iterable mouse P, by comparison we can A-iterate P to @), an initial segment of a
correct iterate of vaz. We claim that @ is as wanted.

Suppose that 7 and U are A-iteration stacks on @ with the same last model R. We
want to show that the embeddings given by T and U agree on H(Q, A). We will actually
show that both embeddings agree with embeddings given by ¥ on H(Q, A). Here we
have to be an extra bit more careful than in the analogous situation of L(R), because
our iteration games can have more rounds and at limit stages it is not straightforward
how to proceed, we will show next the details of how to overcome this difficulty.

We look inductively at the trees in the stack 7 = (7; |i € a). Let Q; (for i € a) be the
model starting round 7 in the weak* game. We will construct trees S; inductively such
that S = (S81]i € a) is according to X and has the property that the embedding given by
S agrees with iT on fg. Since there are no extenders in @ overlapping a Woodin cardinal,
and the trees 7; are normal we can split each 7; into a < w?-sequence of trees, each of
whom is based on a window of the form (dy,, 0, +1). Hence, we will assume with no loss
of generality that every tree 7T; for ¢ € a is based on a window of the form (5,275,2+1)

Start with 7. Let us define Sy as follows. First suppose that 7Tg is based on Qg™ . If
it is according to X we let Sy = Ty. Otherwise, if Ty is not according ¥, then since it is
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guided it must be a maximal tree with a last branch b (recall that all short and guided
trees are according to X). Recall that 7;  denotes the maximal part of 7o. Let ¢ be the
branch given by ¥ through 7, and, note that, by the proof of Lemma 36, c respects A.
Let Sy be 7B_Ac. Also, by Lemma 40, we have that i7° and i agree on 53. Recall
that Q, is the last model of 75, and let Q; be the last model of Sy. By fullness of Q;
and @1, we have that Lp(M (7, )) is an initial segment of both Q; and @1, so, by and
maximality of 7,” we have that §(7;") is the first Woodin cardinal of ); and Q1, this
implies, by suitability, that Q7 = Qf.

If 75 based on a window above §g then let Sy = 0, i = id and Q, = Q. Here we get
also, trivially, that i70 and i° agree on 522 and Q] = Qf.

Let us consider then 7;. If it is based on Q1 we can regard it as a tree on Qq and
then we can again use ¥ to get S; on Q; such that i7* and ' agree on & =5
Again, by fullness we get that if Qy is the last model of S;, then Q; = Q2

Otherwise we just let S; = () and the desired agreement is maintained so far.

Note that by the rules of the weak™ game one has that 7; can be based on Q; only
for finitely many i € w. Hence Q,, agrees with @, up to their common 1-suitable initial
segment and the embedding on the T-side agrees with the one given by the S-side up to
£3.

We proceed inductively in this fashion. At successors simply use ¥ if the tree is based
below the least Woodin cardinal, and otherwise define the corresponding tree in the
S-side as empty.

After a-many steps in this induction we will have that Q, is a Y-iterate of Q. Let
o be the branch embedding. Then we have that Qa agreeb with @, = R up to their
common 1-suitable initial segment, and that ¢ | f A= il 1 §Q

Similarly for U one can get the analogous construction. So, we get that U agrees with

1 Q — Q',, an embedding given by X, on £%. Furthermore R, Q. and Q’, agree up
to thelr l-suitable initial segment, and so since &8¢ is a cut- point of both Q4 and @', by
the Dodd Jensen property of ¥ we can conclude that o and o’ agree up to 5Q°
T and ¥ agree up to fA Hence i7 | H(Q,A) = | H(Q, A) as wanted. O

, and so

Our covering system in L(R,C) will be
D= {H(P,A)| ACR, P is strongly A-iterable, and A € OD*®),

Also we let (P, A) = (Q, B) if Q is an A-iterate of P and A C B. We let 9 (p.A) Q.5 be
the unique embedding from H(P, A) to H(Q, B) given by an (any) A-iteration from P
to Q. The following results show that the suitable initial segments of correct iterates of
Miz together with the theories of indiscernibles for L(R,C) are in some sense “dense”
in D.

Let

Moo = im(D, <, 0(p.4).(0.5))
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and let us define o(p ) o the natural embedding from H(P, A) to this direct limit.”

Let 7. be the theory of n-many indiscernibles with real parameters of L(R,C) coded
as a subset of R. Lemma 5.6 and Lemma 5.9 in [13] give the following results, we omit
their proofs as they are word by word the same, except that we use Miz and L(R,C)
instead of M? and L(R) (the key, again, is that one can realize L(R,C) as the derived
model of an iterate of Mi}z)

Lemma 43. Suppose that P is a suitable initial segment of a X-iterate of Miz, then
6§ = sup{&fe |n € w}.

Lemma 44. Assume A is ODL(R’C), and P is a strongly A-iterable suitable mouse. Then

there is R, a suitable initial segment of a 3-iterate of Mi}rz, and natural number n such
that (P,A) = (R, A® TYF), and moreover

HR,A®TS) = H(R,TY).

Let us pause for a moment and discuss the general L(R, i) case. The lemma above
will also be valid in this context by an application of ¥;-reflection.

Lemma 45. Suppose L(R,u) = AD+ wy is R-supercompact, and let A be ODHR:1)
Given P a strongly A-iterable suitable mouse and B an ODF®H) get of reals, with
A <w B, there is R a suitable and A ® B-iterable mouse, such that (P, A) < (R, A® B)
and moreover H(R,A® B) = H(R, B).

Proof. Otherwise fix A and B a counterexample to the statement. Fix v large enough
such that L, (R, ) = ZF + AD +DC and A and B are ordinal definable over L. (R, ),
but L,(R, x) has no R and A-iteration of P witnessing the conclusion of the Lemma.
This X statement about + can then be reflected below §2. Hence there is such a v < 3.
But then L(R,C) = L, (R, n) since below 02 both y and C are just the club filter (by
results of Woodin, but see [21]). We get then that there are A and B counterexamples
of the statement in L, (R,C) (and moreover OD in this structure). But then we can get
the desired R and A-iteration in L(R,C) and, by the closure of v, an A-iteration of P
leading to R can be computed in L, (R, ), so A and B cannot be the counterexample
of Ly(R,C), contradiction. O

Lemmas 44 and 45 allow us to compute the direct limit of D just by looking at suitable
initial segments of Y-iterates of Mﬁjz with corresponding theories of indiscernibles. We

have the following agreement.

N
Theorem 46. M., = MO‘*;|)\£/[2°°.

7 Here we identify M., with its transitive collapse.
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n
Proof. We define a map i : My, — M7 that is surjective below )\342“ and respects the
membership relation as follows. For € M, there is a natural n and a suitable initial
segment of a correct iterate of ./\/lfﬂ, say P, such that x is in the range of O(P,A®BTC),00; a0

there is z € H(P, T,*) such that o(p ae7¢),0c(2) = 2. Now we have an iteration MBJQ =,
N such that P is a suitable initial segment of A/. Note that A/ might not be a dg-bounded
iterate of /\/liz. We can however split the iteration from Miz to NV in a dg-bounded part

and the rest. Namely, there is N'* such that Mig >, N* into a dg-bounded way, and

N* Z5 N. Note that this second iteration does not move &) (because all its extenders
have critical point above the first Woodin cardinal). This implies that z is in the range
of mar« nr, let Z be its pre-image. Then we define i(z) = mar+ o0 (Z2), it is routine to show
that ¢ is well defined (see Theorem 5.10 of [13]). Now Lemma 44 gives us the surjectivity
as follows: Let = € M;Mi‘:lft so there is z € N a correct iterate of M&)z such that
TN 0o(z) = z. Let P be a suitable initial segment of N such that z € P. Because N is a
0o bounded iterate of ./\/lfu2 we have that z is definable from ordinals less than 6{)\[ and
indiscernibles, but this is easily computable from 7,¢ for a suitable n (again this follows
essentially by Corollary 5.7 of [13]). Because f%c is unbounded in 6{)\[ we conclude that
z € H(P,TF) for a sufficiently large n. This readily implies z is in the range of i as
wanted. O

Recall that W is the outer model in which ¥ has an extension and P(R) is countable.
Hence, it is forced (over V) that in VR ¥ has an extension. Let us work for a
moment in V! «R) Here we have that M¥ is a countable Y-iterate of M,2. Also if G is
M -generic for col(w, < )\%‘X‘), and R* and F are the symmetric reals and associated tail
filter, then, by Theorem 21, L(R*, F) is model of AD 4 w; is R-supercompact. Following
the notation and the content of Chapter 6 from [13], if A is in ODE®EC) we can define,
A* C R*, by pieces as follows. For (P, A), an element of D, and for i < o(P) let

Thi = U(P,A),oo(Tf,z‘)

)

and

A* = U ThilG | 5ZM°°]

1€Ew?

Recall that T,C is the theory of n-many indiscernibles with real parameters. We will be
in particular interested in 7;6*. Note that any suitable initial segment of M, is strongly
T -iterable (in V!« a5 witnessed by ¥ and in L(R*, F) by absoluteness). Recall
that M2 is the l-suitable initial segment of M.,. We summarize the relevant facts of
these sets in Lemmas 47 and 48.

Lemma 47. For any set of reals A which is OD in L(R,C) we have that A* is OD in
L(R*, F). Moreover for any such A,
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L(R*,F) = M is strongly A*-iterable.

Proof. This follows exactly as in the case of L(R) so we omit details. These proofs can
be found essentially in Chapter 6: Claims 1, 2 and 3 of [13]. O

Let X be the set of finite full stacks on MZ in Moo |(A\)5*). As in [13], when computing
the branches that ¥ would have picked through 7 € X it is enough to choose the unique
branch that moves terms for A* (such that A € ODL(R’C)) correctly. That is to say

Lemma 48. Suppose T € L(R*, F) is a guided mazimal tree on ML in L(R*,F). Then
S(T) = b if and only if T™b is an A*-iteration for all A in OD*®C),

Proof. This is claim 4 of Chapter 6 in [13]. Here we use Lemma 44 instead of Lemma 5.8
of [13], everything else follows word by word. O

From this and the homogeneity of the collapse it follows that L[M.,X | X] C
HODL®S) | Also, note that if MZ is the direct limit defined in L(R*, F) of the system
{(P, A*) | P is strongly A*-iterable and A € ODL®EO)} then there is an embedding o :
M — M, where 0 = U O(Mz,A%),00"

ACODL(E.C)

Lemma 49. Suppose that Ny and N1 are countable X-iterates of Miz, G, is N;-generic
for col(w,\)3) and L(R;, F;) are the associated derived models.

Then given © € Rg N Ry we have
<L(RO7~F0)7'T’7;10> = <L(R1a]:1)7x77;7,1>7

where T! is the theory of n indiscernibles for L(R;, JF;).

Proof. Fix z as inN‘phe hypotheses. Then there exist k¥ < w? such that for i = 0,1 we
have 2 € RV:%: 19471 Fix ¢y < ¢; < -+ < ¢, indiscernibles for L(Ry, Fy), L(Ry, F)
and L(R,C). Let ¢ be a formula and assume L(Rg, Fo) E ¢(x,co, ..., Cn_1). We will see
that L(R,C) satisfies the same formula. By homogeneity of the collapse we have that

col(w,<)\i:]§)

‘FNO[G P 5No)

L(RP/_:) ': @(i‘vé()a .. 'aén—l)

Now in W we can iterate Ny above §,° to realize L(R,C) as a derived model (see
Lemma 36). Picking ¢y, ..., c, large enough we get that

L(R,C) E ¢(x,coy. .., Cn-1)

By symmetry of the argument, we cannot have L(Ry, F1) = —p(z, co, ..., ¢n—1), which
completes the proof. O
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Theorem 50. Suppose Mig exists and its iteration strategy extends to an outer model W
in which P(R)Y is countable. Then the following are the same model.

(1) HODY®C)
(2) LMy, X | X]
(3) L[Mw, 0]

Proof. This proof follows exactly as Claims 6 and 7 in chapter 6 of [13]. Here instead of
Lemma 6.2 of [13] we use Lemma 49 and that by Theorem 3.1 in [22] HOD*®C) = L[B]
for some B ¢ ©L&C) . o

Also for an arbitrary pn C P(P,, (R)) such that L(R, u) = AD 4+ w; is R-supercompact
we can define the corresponding internal direct limit system

D, ={H(P, A)|ACR, P is strongly A-iterable, and A € OD*®1)},

Let M, be its direct limit (see for example Theorem 3.13, and subsequent discussion
n [22]). Furthermore by [22] we have the following result.

Theorem 51. Suppose L(R, ) = AD + wy is R-supercompact. Then
HOD*®#) = LMy ,,, 5]
where ¥, is defined in L(R, ) using the corresponding definition given in Lemma 48.

Note that the construction recovering HOD can be relativized to any particular real
y as follows. The existence of Mig implies the existence of Mfﬂ (y) and so one has
HOD;UR’C) = LM . (y), ¥, (y)], where My ,,(y) is the direct limit of

D, (y) ={H(P,A)| P is a strongly A-iterable y-mouse and A € ODj(R’C)}.

And %, (y) is the strategy whose domain consists of finite full stacks of trees on M3, ,(y)
that are in

MOO. (L
Moo ()| (A=)

and 3, (y) picks branches b such that respect every A* for A € OD; (1) Here we define
A* in L(R*, F), the derived model given by a generic filter over M, for the collapse
up to the sup of its Woodins. For the Record

Lemma 52. Suppose L(R,u) | AD+ w; is R-supercompact and let y be a real. Let
My u(y) and X,,(y) be as above. Then

HODi(R’#) = L[MOO7M(y)7 Zu(y)]
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3.2. P(R) in models of AD 4wy is R-supercompact

We start this subsection by analyzing P(R) in “minimal” AD models of w; is
R-supercompact. The following terminology will get us started.

Definition 53. Given p, a subset of P(P., (R)), we use the following notation:

« Pu(R) = P(R)LEW
L(R,

. 53(n) = 62"

L[] @(,LL) = @L(Rvu)

The following lemma says that the power sets of the reals of such models line up with
that of L(R,C).

Lemma 54. Suppose that p C P(Py, (R)) is such that L(R,u) E AD+ w; is R-super-
compact. Then, either P,(R) C Pe(R) or Pe(R) C P, (R).

Proof. Suppose neither P,(R) C Pc(R) nor Pe(R) C P,(R). Let T' = Pe(R) NP, (R).
By Theorem 3.7.1 of 23] L(R,I") = ADg. Hence by the theorem of Solovay mentioned in
the first paragraph of Section 1.3, if v is the club filter defined in L(R,T"), then L(R,v) =
AD + v is an R-supercompactness measure. Moreover, we have that v is a subset of C,
so by Lemma 28 we have L(R,v) = L(R,C), which readily gives a contradiction. O

We will need the notion of the envelope of a point-class. For a complete exposition
of this subject the reader may consult Chapter 3 of [23]. We will mostly be interested
in envelopes of point-classes of the form Efp ®1 We recall the definitions below. It
should be noted that the definition below is not the original definition of Envelope by
D.A. Martin but it is due to Steel. In the context of AD, it is equivalent to the original
definition.

Definition 55. Suppose that 7 is an admissible ordinal of Lp(R). Let I' = Ele B oy
ACR

e Wesay A € OD<" if there is o < y such that A is oD P®)le
o We say A € Env(T) if for every o € P, (R) there is A’ € OD<” such that ANo =
A'No.

We also note that the definition of the envelope can be relativized to any real x. Recall

that Env(I"), the boldface envelope, is U Env(I'(x)). The notion of the envelope is

z€R
particularly useful when analyzing the ¥;-gaps and the pattern of scales in the structure

Lp(R) (see [11], [14] and [9]).



384 D. Rodriguez, N. Trang / Advances in Mathematics 324 (2018) 355-393

We turn now to prove that for any p such that L(R, u) = AD + w; is R-supercompact,
we have that P,(R) = Pc(R).

Lemma 56. Suppose that p is a subset of P(Py, (R)) such that L(R,u) satisfies
AD +w; is R-supercompact. Then L(R,C) and L(R, u) have the same sets of reals.

Proof. For contradiction, suppose that this is not the case. Without loss of generality
we may assume that p and C measure some subset of P, (R) differently, as otherwise
the lemma would follow trivially. By Lemma 54 we have the following two cases.

Case 1: P,(R) is strictly contained in P¢(R).

In this case without loss of generality, we will assume that p is such that P,(R)
is minimal. In other words, given any other v C P(P,,(R)) such that L(R,v) =
AD + w, is R-supercompact, P,(R) C P, (R).

By (R, 1£)*, we mean the theory of the reals and indiscernibles of L(R, z1) in a language
with predicates for membership and p and constant symbols & for each real z. Let B
belong to P¢(R) but not to P, (R). Then (R, n)* = @ye, T, where each T,* is Wadge
reducible to B; here, T} is the theory of the first n indiscernibles with real parameters
in L(R, i). Since there is a real x that codes all these reductions, (R, u)* € L(R,C). Also,
recall that Lz ¢y (R,C) <1 L(R,C) (see [21]), hence there is such a sharp in Lsz ¢ (R, C).
Let ji be such that (R, 1) € Ls20y(R,C) and L(R, ii) = AD + w; is R-supercompact.

Claim. In L(R,C), MBJQ exists and is wy + l-iterable.
Proof of the claim. Let us work in L(R,C). First, by results of [22] we have that
Pc(R) C Lp(R)EEC) and Py (R) € Lp(R)E®A) Note that if M is an R-mouse in L(R, jz)
projecting to R, there is a set of reals in P;(R) coding it. Thus M € Lsz () (R, C). Also,
if M is countably iterable in L(R, i), by definition, if M is a countable hull of M it is
(wy + 1)-iterable in L(R, z). As R C L(R,C) any such M is w;-iterable in L(R,C). But
w; is measurable in L(R,C) hence M is (w; + 1)-iterable in L(R,C). So by definition of
Lp(R), M is an initial segment of Lp(R) in L(R,C). This gives us that:

Lp(R)* M g (Lp(R)|63(C)) F).
This implies that 63 (i) starts a Xi-gap in Lp(R)X®€) (and not the last gap).® This is
because “starting a ¥;-gap” is downward absolute and also 6% (C) starts the last gap of

(Lp(R)[7(C))*O). Let

Lp(R)L R )
r=xr®

We claim that Env(I') = P;(R), where the envelope is as defined in L(R,C).

* [, B] is a ¥i1-gap in Lp(R) if Lp(R)la <1 Lp(R)|B, Vy < a =(Lp(R)|y <1 Lp(R)|a), and Yy >
B —~(Lp(R)|B <1 Lp(R)|vy). See [17] for more detailed discussions and precise definition of <j.
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For this note that by results of [14], we have Env(T") = P(R)“P(®)" where ~ is the
largest ordinal such that Lp(R)|62 (i) <1 Lp(R)|y. Note that v > ©L®:#)  and for all we
know this inequality could be strict. However, since [83 (1), 7] is a ¥1-gap and v < §2(C),
we have that Lp(R)|(y+1) is the first initial segment of L(R)*(®:€) that has a subset of the
reals not in Lp(R)X®A) in fact (R, 1) € Lp(R)|(y + 1). Thus Pz(R) = P(R) N Lp(R)|y
and so Env(I") = Pz (R), as wanted.

Let B be a self-justifying system sealing Env(T").” Since B is countable, there exists a
real z such that each element in B is ODi(R’m. Let M, o (z) as defined in Lemma 52. For
ease of notation put M = M,, o(z). Then M has w?-many Woodin cardinals and terms
capturing every B in B at every Woodin cardinal § of M. Let 7 5 be the standard term*’
witnessing this. Let £ >> ©L(®#) be an inaccessible cardinal in M and a V-cardinal and
let us define N = HullM|#({rp 5| B € B and § Woodin in M}); note that A is a model
of ZFC. Hence N is an z-mouse that captures all the elements of a self-justifying system.
Thus, by a theorem of Woodin, the strategy that picks branches that are realizable into
M and moves these term relations correctly is an iteration strategy for N (see [8]).
In other words, N is wi-iterable in L(R,C), and N* exists and is w;-iterable (hence
wy + l-iterable) in L(R,C) (sketch: since w; is measurable, and N is countable, N*
exists. Furthermore, the Woodin cardinals of N remain Woodin in N* because we have
put 75,¢’s in the hull.). Therefore Miz exists and it is wy (and hence wy +1) iterable. O

We claim that if v is the club filter in L(R,C), then L(R,v) = AD + w; is R-super-
compact. We cannot apply Proposition 12 directly but we can work our way into a
situation where the proof can be adapted. For this, let « be large such that L,(R,C) F
ZF + DC. Therefore, there is a countable set N, such that N < L, (R, C); furthermore,
we get that MiQ and its unique strategy are in N. Let N be the transitive collapse of N.
Then Proposition 12 and the remark after it imply that N believes that “if 7 is the club
filter, then L(R,7) = AD + w; is R-supercompact”. By elementarity and the choice of
a, we get that L(R,C) believes this as well. Also, v C C, and so by Lemma 28 we get
L(R,v) = L(R,C), implying L(R,C) = L(Pc(R)). Now, Theorem 9.100 of [26] implies
L(R,C) = ADg but this is impossible since L(R,C) = © = 6.

Case 2: Pc(R) is strictly contained in P, (R).

By %;-reflection we have that in L(R, ) there is C in L2,y (R, p) such that L(R,C)
is a model of AD 4w is R-supercompact. By Case 1, P¢(R) C Pz(R) and so P¢(R) €
L2,y (R, p). By [21] we have that pN Lsz(,) (R, p) is a subset of the club filter of L(R, ).
Soif A € Pe(R) Ny then A contains a club in V. Hence CNL(R,C) C p and so Lemma 28
implies L(R,C) = L(R, ). O

9 See e.g. (23] for a detailed discussion of self-justifying systems and sealing. Roughly, B is a countable
sequence of sets of reals telling us where the gap ends and where the next scaled pointclass begins.

10 This was defined after Definition 34.

1 Suppose m : N/ — M is the uncollapse map and let 7 be an iteration tree on N. b is a branch of 7 that

is realizable into M if whenever i; exists, there is a map o : M,T — M such that m = o o zz
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Note that the proof of Lemma 56 implies that any two models, L(R, u) and L(R,v)
that satisfy AD + w; is R-supercompact would have the same © and so they would also
share the same 62. This justifies referring to ©(u) and 62 (u) simply as © and 2 respec-
tively.

3.8. The proof of Theorem 10

Let us fix a p such that L(R, i) is a model of AD + w; is R-supercompact.

The crux of the main theorem of this section is the following observation.

Note that by Lemma 56 we have that Pc(R) = P, (R). This implies that the notion of
suitability is the same in L(R,C) and L(R, ). The notion of ordinal definability might
however be different. Recall that 7} is the theory of n many indiscernibles with real
parameters of L(R, u).

We have that for any n there is k such that 7.¢ <y T, and vice versa, for any n
there is a k such that 7,* <y T,C. From now on let us fix a real number z that codes
all of these reductions in a natural way.'> We also choose  so that 7,¢ is ODE®) for
all k. If P is a suitable initial segment of a ¥, -iterate of Mig (z) then by Lemmas 36
and 42 we have that P is strongly 7,%-iterable. Furthermore as € P by Lemma 5.9 of
[13] we have that P captures 7" for every natural n. Moreover we have that if z codes
a reduction T# <y T then for any i < o(P), 77}?#714 € H(P,TF) and moreover every
TE-iteration of P is also a T iteration. The following lemma will show that as in the
case of L(R,C) the pairs of the form (P, 7,C) are dense in D,, in the sense of Lemma 44.
In other words.

Lemma 57. Suppose L(R, u) E AD + wy is R-supercompact. Let A be ODZL.(R’”) and P
is an x-mouse that is A-iterable. Then there is a natural number n and a suitable initial
segment of a correct iterate of Mﬁ)z (z), say Q, that is A © TC -iterable, Tff € HQ,TF)
and (P, A) < (Q,TY).

Proof. Here just note that {7.°|n € w} is Wadge cofinal in the Wadge hierarchy of
L(R, 11). Also for every n we have that 7€ is ODZ®#) We can then apply Lemma 45
and comparison to get the desired Q. O

Theorem 58. Suppose that L(R,pu) = AD+ wy is R-supercompact. Then for a Turing
cone of y € R we have that HODj(R’“) = HOD?S(R’C),

Proof. Using Lemma 57, the proof of Theorem 46 can be adapted to yield

+ T
Moo () = M (2) NV

12 Fix 2z + ((2)i)icw a recursive bijection between R and R¥ and fix & such that given n € w there exists
i and j naturals such that (x); codes a continuous reduction witnessing T, <y 'ch (for some k) and the
similarly (z); codes a reduction T,.¢ <y T (fore some other k).
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Also, essentially, by Theorem 46 My, (z) = MZ ($)|)\i\)42;(z). Hence we have that
Moo p(z) = Moo ().

Note that by Theorem 51 we only need to show the following claim.

Claim. X, , = ¥, when restricted to countable stacks of trees based on Moo(az;)’,]:5
Proof of the claim. We will prove inductively that if T is a stack of n trees, and is

according to both 3, and X, , then these strategies pick the next branch the same way.
Note that by the definitions of ¥, and X, , we have that ¥, (71) = b if and only if T7b

is an flc*—iteration on M, for all n € w (here again the key fact is that the f%’i and the

{;\_Jf are cofinal in 53)\4 ;). As discussed in the discussion at the beginning of this section
this implies that 7 b is a T " -iteration for all n € w, in other words X ,”(71) = b, which
finishes the proof of the claim. O

But then this implies HODf(R’C) = HODﬁ(R’“) by Theorem 51. Note also that if
y >7 x then same proof relativized to y is still valid. This completes the proof of the
theorem. 0O

Proof of Theorem 10. First let us suppose that ¥ extends to W, so all the previous
results of this section hold. By Theorem 58 we can fix a real x such that HODﬁ(R’“) =

HODE®C) - Also, by [21] we have that
L(R, ) = HODE®EH)(R) and HODE®O)(R) = L(R, C),

which clearly implies L(R,C) = L(R, p).

Now, if ¥ is just an w; + l-iteration strategy, by contradiction suppose that there
is p such that L(R,u) = AD +w; is R-supercompact but L(R,C) # L(R, ). Pick «
such that V, is a model of ZF-PowerSet, and reflects the existence of such p. Let N <
V, be countable and H its transitive collapse. Then we are in the same situation as
when proving Proposition 12. Hence the result follows word by word from the proof of
Proposition 12. O

4. The AD case

We give in this section a proof of Theorem 9. We will first assume AD™ and for
contradiction suppose that the theorem does not hold and then we reflect this statement
to a Suslin co-Suslin set. Then we can use [19] and [8] to construct models with Woodin

13 We refer as ¥, the strategy given by Lemma 48 and Y ,,« the one defined in the paragraph before
Theorem 51.



388 D. Rodriguez, N. Trang / Advances in Mathematics 324 (2018) 355-393

cardinals and run a version of the last chapter’s arguments. Lastly we show how to reduce
the hypotheses to AD + DCg. We start by noting some preliminary facts.

Lemma 59. Suppose V = L(P(R))+AD" and let ju be a filter such that L(R, 1) satisfies
AD + wy is R-supercompact. Then P,(R) # P(R).

Proof. Otherwise we have that V' = L(P(R)) believes there is a supercompact measure
on P, (R). Also V= L(R, ), so by [26, Theorem 9.100] L(R, ) = ADg but this is
impossible since we have L(R, ) = © =6y by [22]. O

From now on we will also assume that V' = L(P(R)) = © = 6y, as otherwise by
Theorem 17 there exists a non-tame mouse and hence /\/lw2 exists and it is iterable so
the results of last section would hold. Since © = 6y we have that, in particular, DC holds
in V. We now prove the first approximation to our main result.

Theorem 60. Suppose V. = L(P(R)) + ADT. Then there is at most one model of the
form L(R, u) satisfying AD 4wy is R-supercompact. Moreover if such model exists then
the unique such model is L(R,C) where C is the club filter on P, (R).

Proof. Suppose that there is u C P(P,, (R)) such that L(R, u) = AD +w; is R-super-
compact. Let p be chosen such that P,(R) is minimal in that given any v such that
L(R,v) = AD + w; is R-supercompact then we have that P,(R) C P, (R). Note that by
Lemma 59 we have that there is a set of reals B of Wadge rank bigger than the Wadge
rank of any sets of reals in L(R, u). For € R, let E, be the Wadge reduction of B
coded by z. Let

A={rcR|E, € u}.

Let A be a set of reals from which A and B are definable. Then, in L(R, A) p is definable
from parameters and moreover by ADT we have (R, u)* € L(R, A). Now by Theorem 6
and minimality of u we may assume that A is Suslin and co-Suslin.

Let us work from now on in L(R, A). By minimality of ;1 we get that (R, u)? is Suslin
and co-Suslin in L(R, A). The presence of (R, x)* and the proof of Lemma 56 imply the
existence of N = (Moo’#)ﬂ. Here we identify A/ with the least active mouse extending
My . Let T' be EIL(R’“) and B a self-justifying system sealing Env(T"). Let us fix ¢ to
be the largest Suslin cardinal in L(R, A).

Claim 1. Env(I") C Lp(R).

Proof of Claim 1. Let C € Env(T"). First, note that C is in L¢(P¢(R)); this is because
by the choice of A, B is Wadge reducible to A and the Wadge rank of A is at most (.
By the definition of Env, for any o € P, (R), we have that CNo € OD{LéRA’}‘)UU; so by
mouse capturing in L(R, i) we have that CNo € Lp(o). We then have that Cno e M,
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where M, = HODLé(Z:}fL(JU)), this is because Lp(c)“®#) € M,. Define M, <1 Lp(o) to
be the least initial segment of Lp(c) having C'N o as an element. Note that M, € M,
and M, | “M, is countably iterable” because the unique iteration strategy for M, is
definable from o, C.

Also the club filter C is an ultrafilter on P¢(R) (basically by Moschovaki’s third
periodicity theorem, see [22]). So, we can define M = H M, /C, where the func-

o€Py

tions of this ultraproduct are f : P, (R) — Haeﬂu1 M, arid f € L¢(Pe(R)). Note
that by [21], C is normal and countably complete. Then we have that ¥;-Fos holds,
since L¢(P¢(R)) satisfies ¥i-replacement. Let M = [0 — M,]c; we claim that M
believes “M is countably iterable”. To see this let M be a countable transitive hull
of M, then we have that M € ¢ for club-many o. Also [0 — M]c = M (by
countable completeness of C). Now by ¥, -Los we have that for club-many o, M
is a countable hull of M, and so M, | “M is wi-iterable”. Let ¥, be the unique
iteration strategy of M, then the function o ~ ¥, is in L¢(P¢(R)) and is such
that M, = (HC,%,)“ = X, is an w; strategy for M”. By Los, again, we get that
M |= “M is w;-iterable”.

Also, C = [0 — CNo]c hence C € M. Note that in L(R, A), M is actually countably
iterable, so we have M < Lp(R) and so C € Lp(R). O

Argumg as in the proof of the claim in Lemma 56 we then get that Env(I") = P,(R).
Let B be a self-justifying system sealing Env(T"). Recall that N captures every B in E
say via 7g. Define then

M = HullN{m% | B € BY}).

Here we think of M as the transitive collapse of this hull. Then as in the proof of
the claim in Lemma 56, we have that M is w; + 1 iterable and so MEJQ exists and is
w1 + l-iterable.

Claim 2. L(R,C) is a model of “AD + w; is R-supercompact” and the only such model.

Proof of Claim 2. Here we use the results of Section 2. The key point is that the iteration
strategy for Mfﬂ might not extend to big generic collapses. For this though we use
instead a countable elementary substructure of L (R, A), where a >> X4 large and
is such that L, (R, A) F ZF 4+ DC-PowerSet and contains all relevant objects. Let N <
L,(R, A) be countable and elementary such that MiQ € N (here we use that DC holds
in V). Let H be the transitive collapse of N. Then as in the proof of Proposition 12 the
results of Section 2 give that H models “L(R,C) satisfies AD 4 w; is R-supercompact”,
but then N does and so does V.

The same argument combined with the results of Section 3 will show that since MBJZ
exists, L(R,C) is the unique model of AD 4 w; is R-supercompact. This concludes the
proof. O
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Let us mention that the key fact about AD™ we used in the proof of Theorem 60 is
that given p such that L(R, u) = AD + w; is R-supercompact, then one can reflect the
existence of such a g to the Suslin co-Suslin part of a model of the form L(R, A), where
A is a set of reals. This is particularly useful as then one can take ultraproducts using
the club filter. In the absence of AD™ this can be a little bit more tricky as we may not
be able to reflect, but we show how to overcome this difficulty and get the proof of the
result under AD + DCkg.

Proof of Theorem 9. First let us assume AD™ holds, and then we will use this proof
to get a proof under AD + DCg. Suppose that there are p and v such that L(R, ) and
L(R,v) are models of AD + w; is R-supercompact. We may assume with no loss that
V = L(R, u,v) and © = 6y, as otherwise there is a non-tame mouse and we would finish
the proof as before.'

Note that the proof of Lemma 56 holds in this case too, so P,(R) = P, (R).

Claim. P(R) is strictly larger that P, (R).

Proof of the claim. Otherwise we have that P(R) = P,(R) = P,(R). We can fix then
an ODEP®) tree T that projects to a universal $2. Following [22] we let D = {(d; |i €
w) Vi € wd;isa X} degree and d; <y diy1}."” We recall in the following lines the
definition of the auxiliary measures i and 7 on D from [22].

For A C D, let S C ON be an co-Borel code for A, then

A€ iiff VioL[T,S)(0) = “ADT + o =Rand 3(0,U) € P (0,U) IF G € As”

where P is the usual Prikry forcing using ¥:3-degrees in L[S, T](c) and the Martin measure
(see section 6.3 of [3]), also G is the name of the corresponding Prikry sequence and Ag
is the interpretation of the set of reals coded by S.

By results of [22] we have:

e For any S C ON we have that V}oL[T, S](0) | “ AD" +o =R".

L

e Whether A € i does not depend on the code S.
e Let AC P, (R) and for d € D let

oq = {y|there are i and z such that y <y d(i)}.

Then we have that if A= {d € D|og4 € A}

14 Here L(R, u, v) is constructed by induction as follows. Lo(R, i, v) = R, for & € ON we let Lo11 (R, p, V)
be the collection definable sets over (L4 (R, p,v), €,v N Lo (R, p,v), u N Lo(R, 1, v)) and taking unions at
limit stages.

15 Define z <x:z y if and only if z € L[T,y], = =2 y if and only if ¢ <2 y and y <s2 z, and z <s2 y
if and only if x Sg'iz y and —(x = y). A E? degree is a Ezf—equivalence class. It can be shown that the
above definition of <yx: does not depend on the choice of T’; in fact, <y y if and only if x € HOD,,.



D. Rodriguez, N. Trang / Advances in Mathematics 324 (2018) 855-393 391

A € p if and only if A € fi.

Let us recall the construction of the Prikry Forcing done in Section 2 of [22]; we
however, will alternate using u and v when choosing measure one sets. More precisely,
for n € w, given X C D"*! we say X € U, if

V2 EOWVEE(1) -+ V5 Z(n) ((2(6) i < n+1) € X).

In the definition above, G = 1 if n is even and G = v otherwise. We also define P as
follows. Conditions will be pairs (p,U), with U(n) € U, for all n € w and such that
p = (d;|i < n) is a sequence of elements in D, such that d; is in L]z, T] for any (all)
z € di+1(0) and it is countable there. We say (q, W) <p (p,U) if InIr € D" ¢ = p~r
and r~s € U(n + k) for all k and all s € W (k). As in Section 6 of [3] we will have
that P has the Prikry property, which is to say that given a forcing statement ® and a
condition (p,U) € P, there is W such that (p, W) decides ®. We summarize the facts of
this forcing that we will use (see [22]).

e For a given set a that admits a well order rudimentary in a, there is a cone of reals
x such that HOD%Z’JE] = wQL[T’x] is Woodin. For a real z we let §(z) = wg‘[T’x]. And
for a ¥2-degree d, we let §(d) = §(x) for any (all) z € d.

e Given (d; |i < n) € D", we let

=

Qo(d) = HODED T | sup{5(do(n) | n € w},

and

Qi1 (d) = HOD, 2] |(sup{3(disa (n)) [ n € w}).

e Given G generic for P define ¢ = U{p|(p,U) € G for some U}. Let Qi(g) be
Qi(g | i). Then L[U;c,Qi(g), T] has w? many Woodin cardinals.

o If 0, = {z|3n(x € cf;(n))} then the tail filter F generated by (o; : i € w) is such
that L(R, F) = AD + w; is R-supercompact.

Let us fix G a V-generic filter for P and let F be its associated tail filter. We claim
that L(R, ) = L(R,F) = L(R,v). For this, suppose that A € F NV, we will show
A € p. Otherwise we have A & . Let (p,U) I A € F. Let W be defined as W (2n) =
U@n)ND\ A, and W(2n+1) = U(2n + 1) for n € w (here A is the translation of A to
D as defined before). But then it is clear that (p, W) |- A ¢ F, a contradiction. Hence
Lemma 28 implies that L(R, u) = L(R, F), similarly L(R,v) = L(R, F). So V = L(R, p)
which is impossible. O
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Hence P(R) is strictly larger than P, (R), and we can choose A C R such that L(R, )
and L(R,v) are definable (from parameters) in L(R, A) and hence the result follows from
Theorem 60.

Now, assume AD™ does not hold, then we have that P,(R) is strictly smaller than
P(R) (because AD™ holds in L(R,pu)). Let T' = {A c R| L(R,A) = ADT}. By [26,
Theorem 9.14], we have that L(R,T') = ADT. We have two cases. If T strictly contains
P.(R), then we have that L(R, ) is definable from parameters in L(R,I") and hence one
can work in L(R,T) and the theorem follows from Theorem 60.

If I' = P,(R), then I # P(R) and, by Theorem 9.14 of [26] again, we get L(R,T") =
ADg, and so L(R, 1) = ADg, which is a contradiction. O
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