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Under various appropriate hypotheses it is shown that there 
is only one determinacy model of the form L(R, μ) in which 
μ is a supercompact measure on Pω1 (R). In particular, this 
gives a positive answer to a question asked by W.H. Woodin 
in 1983.
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1. Introduction

This paper deals with several set theories, most of which include ZF + DC. Here, ZF
is Zermelo–Fraenkel set theory and DC is the Dependent Choice principle. One such 
theory is ZFC, which is ZF + AC, where AC is the Axiom of Choice. Other examples are

ZFC + There exists a measurable cardinal
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and

ZF + DC + AD .

We start by reviewing some basic notions.

1.1. Large cardinals and inner model theory

Large cardinal hypotheses, also known as large cardinal axioms, are strong forms of 
the Axiom of Infinity and provide structures for the analysis of propositions not provable 
in ZFC alone. Good sources that cover this material are [1] and [2]. We will concentrate 
primarily on two special kinds of large cardinals that we discuss below.

By definition, an uncountable cardinal κ is measurable if and only if there is a non-
principal κ-complete and normal ultrafilter on κ. In ZFC, this is equivalent to the 
existence of a transitive class M and an elementary embedding j : V → M with critical 
point κ. The proof of this equivalence uses an ultrapower construction and Łos’ Theo-
rem, which in turn uses AC. The existence of a measurable cardinal is an example of a 
large cardinal axiom. Another example is the existence of a supercompact cardinal. An 
uncountable cardinal κ is S-supercompact if and only if there is a κ-complete ultrafil-
ter on Pκ(S) which is fine and normal.1 We say κ is supercompact if and only if it is 
S-supercompact for every non-empty set S. In ZFC, this is equivalent to, for every car-
dinal λ, there exists a transitive class M with λM ⊆ M and an elementary embedding 
j : V → M with crit(j) = κ and j(κ) > λ. Again we emphasize that AC is used to 
prove this equivalence. Clearly, in ZFC if κ is supercompact, then κ is measurable and 
the set of measurable cardinals is unbounded in κ. This can be used to show that the 
consistency of the theory

ZFC + There is a measurable cardinal

is a theorem of the theory

ZFC + There is a supercompact cardinal.

In other words the second theory has greater consistency strength than the first. It is an 
empirical fact that large cardinal axioms line up this way.

Another important aspect of this paper is inner model theory, which we describe 
briefly (more will be discussed in Section 2). Let us assume that V is a model of ZF and 
that T is any theory of sets. By definition M is an inner model of T if M is a transitive 
proper class contained in V that satisfies T . The constructible universe, L, is the minimal 
inner model of ZFC. Gödel proved this fact in ZF. One relativisation of Gödel’s universe 

1 For the definitions of fine and normal see [2].
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is constructed as follows. For any set S, we construct a transitive proper class L[S] by 
setting L0[S] = ∅ and Lα+1[S] to be the family of subsets of Lα[S] that are definable 
over the structure

(Lα[S], ∈, S ∩ Lα[S])

and taking unions at limits. Note that L is the same as L[∅]. Let us discuss the connection 
between these constructions and large cardinals. If U is a normal measure on P(κ) and

U = U ∩ L[U ],

then

U ∈ L[U ] = L[U ]

and

L[U ] |= ZFC + U is a normal measure on P(κ).

This is a theorem of Solovay; see [1]. Extending this, Kunen (cf. [4]) proved the following 
uniqueness result.

Theorem 1 (Kunen). Assume ZFC. Let κ be an ordinal and assume that for i < 2,

L[Ui] |= ZFC + Ui is a normal measure on κ.

Then L[U0] = L[U1].

There is more to Kunen’s result that we are suppressing for this introduction. For 
several decades inner model theory has strived to extend such results to more powerful 
large cardinals. In spite of great progress, supercompact cardinals remain beyond our 
reach so far in the context of ZFC. Roughly, this paper is on analogs of Kunen’s theorem 
for ZF + AD + DC + There exists an R-supercompact cardinal.

1.2. Determinacy

If S is a set, then ADS says that, for every game of length ω in which two players 
alternate choosing members of S, one or the other player has a winning strategy. The 
instances relevant here are ADω, more commonly called AD or the Axiom of Determinacy, 
and ADR. It is an easy well known result that AC implies AD fails. In other words 
ZFC + AD is inconsistent. However, the consistency of the theory

ZF + DC + AD
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is a theorem of the theory

ZFC + There is a supercompact cardinal.

In fact, combining results of Martin and Steel ([6]) and of Woodin ([25]) one can prove in 
ZFC that if there is a supercompact cardinal, then L(R) is a model of AD. Here L(R) is 
the minimal model of ZF + DC containing all ordinals and reals. L(R) is constructed by 
setting L0(R) = HC (we identify R with HC), Lα+1(R) to be the family of sets definable 
over (Lα(R), ∈), and taking unions at limits. Woodin reduced the hypothesis of this 
result to a large cardinal axiom strictly between measurability and supercompactness. 
In fact, he showed that the existence of a certain countable structure called M�

ω suffices, 
see [18] for its precise definition. Woodin also showed that the consistency of the theory

ZF + DC + ADR

is a theorem of the theory

ZFC + There is a supercompact cardinal.

Under AD, using fine structure and pointclass theory, there is a complete structural 
analysis of the Wadge hierarchy (i.e. the pattern of scales) of L(R). In other models, 
determinacy alone does not yield such a detailed structural analysis. Woodin introduced 
AD+ to make up for the difference. Good sources that cover this material are [3] and 
Chapter 9 of [26]. Before defining AD+ the following notion gets us started.

Definition 2. Let A ⊆ R. We say A is ∞-Borel if there is a formula φ(x, y) and a set 
S ⊂ ON such that

x ∈ A if and only if L[S, x] |= φ(x, S).

Let us recall that Θ is the least ordinal that is not a surjective image of a function 
with domain R. In other words,

Θ = {α ∈ ON | there is f : R → α surjective}.

Definition 3. AD+ is the conjunction of the following two sentences:

(1) Every set of reals is ∞-Borel.
(2) Let λ < Θ and π : λω → R be a continuous function; then π−1[A] is determined for 

every A ⊆ R.

The ordinal Θ has the following approximations. For A ⊆ R, we define

θ(A) = {α | there is a surjection f : R → α with f ∈ ODA}
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The Solovay sequence is defined as follows.

Definition 4. Assume AD+. Define a sequence of ordinals ≤ Θ,

(θα : α ≤ Ω),

as follows.

• θ0 = θ(∅).
• θΩ = Θ.
• If γ is a limit ordinal, then θγ = sup{θα | α < γ}.
• θα+1 = θ(A) for A any set of Wadge rank θα if α < Ω.

In L(R), the minimal model of AD+ every set is ordinal definable from a real, hence 
Θ = θ0. Adding conditions on the length of the Solovay sequence yields a hierarchy of 
strengthenings of AD+. For example, AD+ + Θ = θω implies ADR. Another example is 
AD+ + Θ = θω1 , which implies DC + ADR.

The following ordinal is also an approximation to Θ but in a different sense.

Definition 5. δ2
1 is the least ordinal that is not the rank of a Δ2

1 pre-wellorder on R, in 
other words

δ2
1 = {α ∈ ON | there exists a Δ2

1 pre-wellorder on R of rank α}

Recall that a bounded quantifier in a formula is a quantifier that can be rendered as 
∀x ∈ R or ∃x ∈ R. A bounded formula is a formula all whose quantifiers are bounded. 
φ is a Σ1-formula if it can be written as ∃yψ where ψ is a bounded formula. We recall 
that given a structure M and N a substructure of M we say that N is Σ1 elementary 
in M and write

N ≺1 M

if whenever φ(x) is a Σ1 formula and a ∈ N then M |= φ(a) implies N |= φ(a). In L(R), 
δ2

1 is the least ordinal α such that Lα(R) ≺1 L(R). For this reason we call δ2
1 the least 

stable ordinal. This is closely related to the fact, that under AD, ΣL(R)
1 is the largest 

scaled point-class of L(R) and, for every bounded formula, φ, if

L(R) |= ∃A ⊂ R φ(A),

then L(R) has a Suslin co-Suslin witness for φ. Recall that AD+ was introduced to 
generalize theorems of AD + V = L(R). Here is an example we will use later in the 
paper.
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Theorem 6. (Woodin) Assume AD+ and V = L(P(R)). Suppose that φ is a bounded 
formula such that φ(A) holds for some A ⊆ R. Then there is a Suslin co-Suslin witness 
A for φ.

We end this section by pointing out that it is an open problem whether AD implies 
AD+.

1.3. Supercompactness measures under ZF + AD

One important and surprising consequence of determinacy is that ω1 is a large car-
dinal. Solovay proved that, under ZF + AD, the club filter on ω1 is a normal measure 
and it is the unique such measure (see [3]). He also proved that under ZF + ADR, ω1 is 
R-supercompact as witnessed by the club filter on Pω1(R) (see [10]). We recall that C is 
a club subset of Pω1(R) if there is π : <ω

R → R such that σ ∈ C if and only if σ is closed 
under π. We define the club filter C as the collection of subsets of Pω1(R) that contain 
a club.

We start to discuss the theory ZF + AD + ω1 is R-supercompact in further detail. 
For this we must define another kind of models which is built by a combination of 
two constructions. Suppose μ is a collection of subsets of Pω1(R). By L(R, μ), we mean 
“throw in R at the bottom” and “use μ as a predicate”. That is, define L0(R, μ) = HC, 
Lα+1(R, μ) to be the collection of sets definable over the structure

(Lα(R, μ), ∈, μ ∩ Lα(R, μ))

and take unions at limits. Notice that μ might not belong to L(R, μ) but μ ∩ L(R, μ)
does and

L(R, μ) = L(R, μ ∩ L(R, μ))

We usually think of L(R, μ) as a structure in which the extra symbol μ̇ is interpreted as 
μ ∩ L(R, μ). Perhaps, a more descriptive notation for this structure would be L(R)[μ], 
however we will stick to the notation in the literature and refer to this model as L(R, μ). 
It is immediate from Solovay’s theorem (cf. [10]) about ZF + ADR and other well-known 
facts that assuming ZF + ADR, L(R, C) is a model of the theory

ZF + DC + AD + ω1 is R-supercompact

where the R-supercompactness is witnessed by μ̇L(R,C) = C ∩ L(R, C).
Following Solovay, Woodin began the analysis of models of the form L(R, μ) and 

obtained the following uniqueness result, the proof of which can be found in [24].

Theorem 7 (Woodin). Suppose ADR holds. Then the club filter is the unique R-super-
compact measure on ω1.
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Motivated by this result and Kunen’s theorem on the uniqueness of L[U ], Woodin 
asked the following question (cf. [24]).

Question 8 (Woodin, 1983). Assume ZF + DCR + AD. Is there at most one model of the 
form L(R, μ) that satisfies AD + ω1 is R-supercompact?

One of our two main results is that the answer is yes. In fact, assuming further that 
V = L(P(R)), the unique model is L(R, C), where C is the club filter on Pω1(R). For 
future reference:

Theorem 9. Assume ZF + DCR + AD. Then, there is at most one model of the form 
L(R, μ) that satisfies AD + ω1 is R-supercompact. Moreover if V = L(P(R)) and such 
a model exists, then L(R, C) is the unique one.

The “moreover” part of the theorem is analogous to another result about measurable 
cardinals. Namely, if κ = ω1 and 0† exists,2 then there is exactly one model of the form 
L[U ] in which U ∩ L[U ] is a normal measure on κ, namely take U to be the club filter on 
κ (cf. [4] or [2, Chapter 21]). We note here the analogy of this fact with Theorem 1. The 
fact implies the uniqueness of L[U ]; the extra assumption (that 0† exists) gives us that 
the club filter U on κ is indeed a measure on L[U ].

It is also natural to ask Woodin’s question with the assumption ZFC instead of 
ZF + DCR + AD. We do not know the answer to the modified question, but under ZFC
together with a technical large cardinal hypothesis we obtain a positive answer, our 
second main result.

Theorem 10. Assume ZFC and suppose that M�
ω2 exists. Then

(1) L(R, C) |= AD + C is an R-supercompact measure, and
(2) if μ ⊂ P(Pω1(R)) is such that

L(R, μ) |= AD + ω1 is R-supercompact,

then L(R, C) = L(R, μ).

The meaning of M�
ω2 and the sense in which it is iterable will be discussed in Section 2. 

The large cardinal hypothesis that M�
ω2 exists is slightly stronger than the consistency 

strength of the theory ZF + DC + AD + ω1 is R-supercompact. We do not know how to 
do without this mild “extra” assumption but conjecture that it is possible and have some 
partial results in this direction that will be mentioned.

2 0† is the sharp for a model of the form L[U ] in which U ∩ L[U ] is a measure on a cardinal κ.



362 D. Rodríguez, N. Trang / Advances in Mathematics 324 (2018) 355–393
Conjecture 11. Assume ZFC. Then there is at most one model of the form L(R, μ) that 
satisfies AD + ω1 is R-supercompact.

Theorems 9 and 10 will come at the end of a series of uniqueness results with varying 
hypotheses, which we label propositions. One of these, the following, is the main result of 
Section 2, which Theorem 10 strengthens in that there are no stationarity assumptions 
for the members of μ.

Proposition 12. Assume ZFC and suppose that M�
ω2 exists. Then

(1) L(R, C) |= AD + C is an R-supercompact measure, and
(2) if μ ⊂ P(Pω1(R)) is such that for any A ∈ μ, A is stationary and

L(R, μ) |= AD + ω1 is R-supercompact,

then L(R, C) = L(R, μ).

We remark that we just need ZF + DC in the proof of Proposition 12. To read 
Section 2 the reader should be familiar with the technique of iterating mice to make 
reals generic, see Theorem 18. We give a brief summary of the results needed at the 
beginning of subsection 2.1.

In Section 3, we prove Theorem 10. For this, we use the HOD analysis of the models 
L(R, μ) satisfying AD + ω1 is R-supercompact, to show that on a Turing cone of reals x,

HODL(R,C)
x = HODL(R,μ)

x .

See [13] for the HOD analysis in L(R); other good sources on this subject are [20] and 
[22]. The meaning of ordinal definability in L(R, μ) is different from the usual notion 
in that the language for the definitions includes the predicate μ̇ which is interpreted as 
μ ∩ L(R, μ).

Finally, in Section 4, we use Theorem 10 and its proof to show Theorem 46 after first 
proving yet another approximation, namely:

Proposition 13. Assume V = L(P(R)) + AD+. Then, there is at most one model of the 
form L(R, μ) that satisfies AD + ω1 is R-supercompact. Moreover if such model exists 
then L(R, C) is the unique such model, where C is the club filter.

In addition to the prerequisites mentioned earlier, for Section 4, the reader should be 
familiar with certain concepts of descriptive inner model theory. For example, [8] is a 
good source.

The authors would like to thank the anonymous reviewers for their helpful and con-
structive comments and suggestions that greatly contributed to improving the paper. 
The first author would also like to thank professor Ernest Schimmerling for numerous 
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2. The ZFC case under the stationarity assumption

In this section, we prove Proposition 12. Recall that we assume the existence of M�
ω2 , 

we give a brief summary of this special mouse next.

2.1. Mice and genericity iterations

We will assume that the reader has familiarity with the basic concepts of extender 
models and mice. Sources for this subject are [18] and [7]. However, for the non-expert 
we will summarize the key parts of the theory of mice we will be using.

We start by recalling that a premouse M is a fine structural model of the form 
(J E

α , ∈, E � α, Eα), where E is a fine extender sequence in the sense of [18]. Let us fix 
some notation: supposing M is as above and γ < α, we write M|γ for the structure 
(J E � γ

γ , ∈, E � γ, Eγ). Suppose that M and N are two pre-mice we say that M is an 
initial segment of N and write M � N , if there is γ ≤ ON ∩N such that M = N |γ.

If M is a k-sound mouse, we say that M is (k, β, γ) or (k, β)-iterable if player II 
has a winning strategy for the iteration games Gk(M, β, γ) or Gk(M, β) respectively, see 
sections 3 and 4 of [18] for a precise definition. A mouse is a k-sound pre-mouse that is 
(k, ω1 + 1)-iterable. Whenever k = ω we will abuse notation and write ω1 + 1-iterable for 
(ω, ω1 + 1) etc. M�

ω2 is the mouse we will be most interested in this work. We warm up 
for its presentation with the following definition.

Definition 14. A pre-mouse is called ω2-small if whenever κ is the critical point of an 
extender in the sequence of M, then

M|κ � “There are ω2 many Woodin cardinals”.

Definition 15. M�
ω2 is the unique sound, (ω, ω1, ω1 + 1)-iterable mouse that is not 

ω2-small, but all of whose initial segments are ω2-small.

Notice that ρ1(M�
ω2) = ω and p1(M�

ω2) = ∅, hence M�
ω2 is countable. We will see 

in Section 3 that M�
ω2 is related to L(R, C) very much like M�

ω is related to L(R) as 
exposed in [18]. Recall the Solovay sequence defined in subsection 1.2. Its length not only 
entails stronger versions of determinacy but also the existence of mice with certain large 
cardinal structure. A fact we will repeatedly use is that under AD+ if Θ > θ0, then there 
is a non-tame mouse, which we introduce now.

Definition 16. Let M be a pre-mouse. We say M is tame if for any δ such that M |=
“δ is Woodin” and for any Eγ in the sequence of M with crit(Eγ) < δ, then γ < δ.
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Note that a non-tame mouse is a mouse that has a cardinal that is strong past a 
Woodin cardinal. Also, if a non-tame mouse exists, it is easy to see that M�

ω2 exists.

Theorem 17 (Woodin, see [16]). Assume AD+ + Θ > θ0, then there is an (ω1+1)-iterable 
non-tame mouse.

One important application of mice is that they help when analyzing certain deter-
minacy models. For example, one of the key ingredients for the analysis of HODL(R) is 
that one can iterate M�

ω to make any given real generic. We will also use this technique 
throughout this paper.

Theorem 18 (Genericity iterations). Let Σ be an (ω1+1)-iteration strategy for a countable 
mouse M and δ0 < δ1 be two ordinals in M such that

M |= δ1 is a Woodin cardinal.

Then there is a Boolean algebra BM
(δ0,δ1) ∈ M such that BM

(δ0,δ1) ⊂ V M
δ1

and M |=
B(δ0,δ1) is δ1-c.c. Moreover, for every x ∈ R, there is a countable iteration tree T such 
that

• T is a play according to Σ,
• T has a final model, say MT

γ ,
• T is nowhere dropping
• All extenders used in T have a critical point above δ0 and its images and
• there is an MT

γ -generic filter G for B
MT

γ

δ0,iT
0,γ (δ1) = iT

0,γ

(
B

M
(δ0,δ1)

)
such that

MT
γ [G] = MT

γ [x]

We will abuse notation and call the boolean algebra BM
(δ0,δ1) the extender algebra of M

at δ1 whenever δ0 is clear from context. The corresponding iteration is called a genericity 
iteration in the interval (δ0, δ1). We will use genericity iterations and M�

ω2 to compute 
the theory of L(R, C) in Section 3.

We will also use the notion of mice constructed over a set X in Section 3. We define 
this notion below.

Definition 19. We say that M = (J E
α (tr.cl.(X)), ∈, E � α, Eα) is an X-premouse if E is 

a fine extender sequence and all extenders in E have critical points above o(tr.cl.(X)).

Definition 20. For a set X we have the following.

• Given an X-premouse M, we say that M is countably iterable if for any M̄ countable 
and elementarily embeddable into M, we have that M̄ is ω1 + 1 iterable.
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• An X-premouse M is sound if it is ω-sound (in the sense of [18]).
• An X-premouse M is said to project to X if there is an A ⊆ X that is definable 

over M from X ∪ {X} and ordinal parameters but A is not in M.
• Lp(X) is the union of all countably iterable and sound X-mice that project to X.

We commonly refer to Lp(X) as the lower part of X.

2.2. The proof of Proposition 12

Assume its hypotheses. Recall that M�
ω2 is the unique, active, sound mouse projecting 

to ω, with ω2-many Woodin cardinals all whose initial segments are ω2-small. Part of 
what it means to be a mouse is that M�

ω2 has an iteration strategy, which happens 
to be unique; we call it Σ. For simplicity we make an additional assumption about Σ
that we will eliminate when we finish the proof of Proposition 12 at the end of this 
section. Assume further that Σ extends to an outer model W in which P(R) ∩ V is 
countable. Let us fix κ =

(
(2c)+)V and note that Σ ∈ HV

κ . We also fix such an outer 
model W .

If P is a countable Σ-iterate of M�
ω2 , then the tail of Σ is an iteration strategy on P . 

If Q is a Σ-iterate of such a P and there is no dropping on the branch from P to Q, then 
we write P Σ−→ Q for the branch embedding.

We need to review a certain construction that plays a role in the proof of Proposi-
tion 12. Consider an arbitrary transitive class model M of ZFC that has ω2-many Woodin 
cardinals. Let δM

α be the α-th Woodin cardinal of M . Also, let λM
β = sup{δM

α | α ∈ β}
for β limit; λM

0 = 0. Suppose further that G is an M -generic filter for col(ω, < λM
ω2). Let

σi =
⋃

α<ωi

R
M [G � α] and R

∗ =
⋃

α<ω2

R
M [G � α]

we say that R∗ is the set of symmetric reals associated to G. In M [G], define the tail 
filter, F , on Pω1(R∗) as follows: for A ⊆ Pω1(R∗)

A ∈ F if and only if ∃n ∈ ω ∀m ≥ n (σm ∈ A)

The fact we will use is

Theorem 21 (Woodin, see [22]). Let M be a transitive proper class model of ZFC with 
ω2 many Woodin cardinals whose limit is λM

ω2 . Let G be an M -generic filter for the Levy 
collapse up to λM

ω2 . Let F and R∗ be the tail filter and symmetric reals associated to G, 
then

L(R∗, F) |= AD+ + F is an R-supercompactness measure.
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We will call L(R∗, F) the derived model3 of M at λM
ω2 . Eventually, we will find a 

Σ-iterate, M , and an M -generic filter G on col(ω, < λM
ω2) such that the associated R∗ is 

R and the corresponding tail filter contains the club filter, C. Towards this, the following 
gets us started.

Lemma 22. Suppose that γ is a cardinal of V such that γ ≥ κ. Let X0 and X1 be countable 
elementary substructures of Hγ such that R ∩ X0 ∈ X1 and Σ ∈ X0. Then there is an 
iteration tree T on M�

ω2 of successor length ζ + 1 such that T � α ∈ X0 for all α < ζ

and T ∈ X1, and there exists G ∈ X1 such that G is MT
ζ -generic on col(ω, < λ

MT
ζ

ω ) and 
the associated set of symmetric reals is R ∩ X0.

Proof. Given the assumptions above note that R ∩ X0 ∈ X1, so there is 〈xi | i ∈ ω〉
an enumeration of R ∩ X0 in X1. Now, by Theorem 18, there is an iteration tree T0
on M�

ω2 according to Σ, with last model P0, such that i : M�
ω2 → P0 exists and x0

is generic for BP0
δ0

, the extender algebra at δP0
0 . Note that since Σ ∈ X0, T0 belongs 

to X0 and is countable there. We continue iterating P0 → P1 in the interval (δP1
0 , δP1

1 )
(see paragraph after Theorem 18), say via T1, to make the next real x1, generic for the 
extender algebra at δP1

1 . Note that in this case both x0 and x1 are set generic over P1
for posets in V P1

λ
P1
ω

. Continuing in this fashion we get Σ-iteration trees Tn with branch 

embeddings Pn−1 → Pn such that xn is Pn-generic for the extender algebra at δPn
n . Also 

every xi for i < n is set generic over Pn.
In X1, define T to be the concatenation of the Tn’s. Now T has a unique cofinal 

branch b. Let P = MT
b , σ = R ∩ X0 and λ = λP

ω . By construction the following hold:

(1) For every x ∈ σ there is a poset P ∈ V P
λ such that x is P -generic for P.

(2) λ = sup{ω
P [x]
1 | x ∈ σ}.

(3) P |= “λ is a strong limit cardinal”.

Then essentially by Lemma 3.1.5 of [5] there is a P -generic filter G for col(ω, < λP
ω ) in 

X1 such that the associated set of symmetric reals is R ∩ X0. �
Note that in the proof of Lemma 22 all we really need is an iterable mouse M whose 

strategy is in X0 and an interval (λM
0 , λM

ω ) containing ω many Woodin cardinals. In 
practice (as in Lemma 23) we will use a Σ-iterate M of M�

ω2 with M ∈ X0 and some 
interval (λM

ωi , λM
ω(i+1)) of ω many Woodins in M.

Lemma 23. Let CV be the club filter on Pω1(R) as computed in V . Then, in W , there is 
a Σ-iterate P of M�

ω2 and a P -generic filter G for col(ω, < λP
ω2) such that if F is the 

associated tail filter, then CV is contained in F .

3 We recall that this is not the standard definition of the derived model, see [16] and [25] for the standard 
definition.
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Proof. In W , we let 〈Xi | i ∈ ω〉 be a chain of elementary substructures of HV
κ such that ⋃

i∈ω

Xi ⊇ P(R)V and if σi = Xi ∩ R, then σi ∈ Xi+1 and σi is countable in V . We may 

assume that M�
ω2 , and Σ are in X0. We construct an iteration of the form

M�
ω2 → P0 → P1 → · · · → Pi → Pi+1 · · · → P

by recursion using Lemma 22 so that the iteration Pi−1 → Pi is done in the interval 
(λωi, λω(i+1)) and makes σi the set of symmetric reals associated to a Pi-generic on 
col(ω, < λPi

ωi). Let P be the direct limit of the Pi, since Σ extends to an iteration strategy 
in W , we have that P is well-founded. By a variant of Lemma 3.1.5 in [5] there is a 
P -generic filter G for col(ω, < λP

ω2) such that σi =
⋃

α<ωi

R
P [G � α].

Note that the set of symmetric reals associated to G and P is RV . Let F be the 
corresponding tail filter. Consider any A ∈ CV . Let π ∈ V be such that π : R<ω → R

and its closure points belong to A. Then there is an n ∈ ω such that π ∈ Xn. So for all 
m ≥ n, π ∈ Xm and σm is closed under π, thus A ∈ F . �

The two key facts in the proof of Lemma 23 are that if A is an element of CV , then 
there is an i ∈ ω such that A ∈ Xi, and that every Xi is closed under Σ. This motivates 
the following definitions.

Definition 24. Suppose N is a set model of ZFC-PowerSet such that P(R)N is countable.

(1) We say 〈Xi | i ∈ ω〉 is a good resolution of N if:
(a) For all i ∈ ω, we have Xi ≺ N ,
(b) Σ ∈ X0,
(c) R ∩ Xi ∈ Xi+1, R ∩ Xi is countable in N and
(d)

⋃
i∈ω

Xi ⊃ P(R)N .

(2) Given X = 〈Xi | i ∈ ω〉 a good resolution of N , and σi = Xi ∩ R, we define FX , the 
tail filter associated to X by

A ∈ FX if and only if ∃n ∈ ω ∀m ≥ n (σm ∈ A)

Note that in the proof of Lemma 23 instead of Hκ we could have used any N that is 
a model of ZFC-PowerSet with a good resolution in W . We give an example of such a 
situation in the following lemma.

Lemma 25. Suppose that A is stationary in Pω1(R). Then, in W , there exists a Σ-iterate 
P of M�

ω2 , and P -generic filter G for col(ω, < λP
ω2) such that A belongs to the tail filter 

associated to G and P .
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Proof. Consider PA, the forcing poset whose conditions are countable, closed, increasing 
sequences from A. In other words, p = 〈σα | α ≤ β〉 is a condition in PA if

• for all α ≤ β, we have that σα belongs to A,
• for every α and α′ less or equal β if α < α′ then σα ⊆ σα′ , and
• if α ≤ β is a limit ordinal, then σα =

⋃
i∈α

σi.

We say p ≤ q if p end-extends q. It is easy to see that this poset shoots a club through A. 
Also, since A is stationary this forcing is (ω1, ∞)-distributive, so in particular it does 
not add any new reals. Note that PA has size continuum (in V ) and so there is h ∈ W , 
such that h is V -generic for PA. Also RV [h] = R, so if N = H

V [h]
κ and 〈Xi|i < ω〉 is a 

good resolution for N in W ; then the remark after Lemma 23 yields the result. �
Suppose that in W there are two Σ-iterates P and Q of M�

ω2 and generic filters G
and H for col(ω, < λP

ω2) and col(ω, < λQ
ω2) respectively such that the set of symmetric 

reals of P [G] and Q[H] is precisely RV . Let E and F be the tail filters associated to P , 
G and Q, H respectively. We show next that if this is the case then L(R, E) = L(R, F).

Lemma 26. In W , let N1 and N2 be transitive sets models of ZFC-PowerSet containing 
Σ such that RNi = R

V for i = 1, 2. Let 〈X1
i |i ∈ ω〉 and 〈X2

i |i ∈ ω〉 be good resolutions 
of N1 and N2 respectively and F1 and F2 be the associated tail filters. Then L(R, F1) =
L(R, F2).

In practice N1 would be HV
κ and N2 would be HV [h]

κ for some filter h which is V -generic 
for a forcing of size < κ (that adds no reals).

Proof. Let σ1
j = X1

j ∩R and similarly σ2
j = X2

j ∩R. Iterate M�
ω2 inductively as follows. 

Let σ0 = σ1
0 , and note that σ0 can be coded as a single real, so there is i1 such that 

σ0 ∈ X2
i1

and so there is M�
ω2 → P0 an iteration in X2

i1
to make σ0 generic on the first 

ω-many Woodins. Define σ1 = σ2
i1

and note that there is i2 such that σ1 ∈ X1
i2

an hence, 
in X1

i2
, there is an iteration P0 → P1 on the second ω-many Woodins to make σ1 generic. 

Continue the iteration in this fashion. We get an iteration

M�
ω2 → P0 → P1 · · · → Pi → Pi+1 → · · · → P

and a P -generic filter G for col(ω, < λP
ω2) such that σi =

⋃
α<ωi

R
P [G � α]. Let F be the 

associated tail filter. Note also that for any i ∈ ω there are j > i and k > i, and natural 
numbers m and n such that σ1

j = σm and σ2
k = σn.

Claim. L(R, F1) = L(R, F) = L(R, F2).
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Proof of the claim. By Theorem 21 we have that F1 is an ultrafilter relative to sets in 
L(R, F1), and similarly F is an ultrafilter in L(R, F). We first show that F and F1 agree 
on

L(R, F) ∩ L(R, F1)

To see this let A ⊆ Pω1(R) be a set in L(R, F) ∩ L(R, F1) ∩ F1, since F is an ultrafilter 
in L(R, F) we have that either A or its complement is in F . But A contains a tail of the 
σ1

i since it belongs to F1, hence by construction its complement cannot contain a tail of 
σi, which means A ∈ F . The other direction is similar.

Now an induction on α ∈ ON shows that Lα(R, F1) = Lα(R, F). Successor steps 
follow from the observation above, limit steps are clear. We have shown the first equality. 
The second equality is shown similarly. �

Clearly the claim completes the proof of Lemma 26. �
For simplicity we will refer to the unique model in W coming from constructions a la 

Lemma 23 as L(R, F). We refer to F ∩ V as F when there is no ambiguity. We will use 
the following useful lemma extensively. We remind the reader that μ̇ is the extra symbol 
in the language that is interpreted as a subset of P(Pω1(R)).

Lemma 27. Let L(R, μ) |= AD + μ is an R-supercompactness measure, and suppose that 
μ contains only stationary sets. Then L(R, μ) = L(R, F).

Proof. We will show again inductively that Lα(R, F) = Lα(R, μ). For this, as in the proof 
of the claim of Lemma 26, we only need to see that F and μ agree on L(R, F) ∩L(R, F). 
Given A ∈ F ∩ L(R, F) ∩ L(R, μ) we have that either A or its complement is in μ. For 
contradiction suppose A /∈ μ. Then Ac ∈ μ, so Ac is stationary, applying Lemma 25 we 
have that there is a tail filter E associated to a good resolution such that Ac ∈ E , now 
by Lemma 26 we have that Ac ∈ F , which is a contradiction. �

The careful reader might note that there is a general trend in these kind of inductive 
arguments. Indeed

Lemma 28. Let L(R, μ) and L(R, ν) be models of ZF + μ̇ in an ultrafilter on Pω1(R), and 
suppose further that ν ⊆ μ. Then L(R, μ) = L(R, ν).

Proof. Note that μ ∩ L(R, ν) = ν ∩ L(R, ν) since ν ⊆ μ and ν is an ultrafilter in L(R, ν). 
Now again an induction on the constructive hierarchy shows that L(R, μ) = L(R, ν) as 
wanted. �
Lemma 29. C ∩ L(R, F) = F ∩ L(R, F).
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Proof. Otherwise by Lemma 23, there is A ∈ F ∩ L(R, F) that does not contain a club, 
which means that Ac is stationary so by Lemma 25 and 26 we have Ac ∈ F , which gives 
a contradiction. �

To summarize we have seen that L(R, C) is the unique model of AD + ω1 is 
R-supercompact under the hypotheses of Proposition 12 and the additional assump-
tion that Σ is has an extension to W , a class outer model in which P (R)V is countable. 
Our final step is to eliminate this extra assumption.

Assume that M�
ω2 exists and Σ is an iteration strategy. Suppose that μ is as in the 

statement of the proposition but assume that L(R, μ) �= L(R, C). Fix γ be such that 
Vγ reflects this fact, and P(R) ∈ Vγ . Let N ≺ Vγ be countable such that Σ and μ are 
in N . Let H be the transitive collapse of N and π : H → N be the uncollapsing map. 
Define μ̄ = π−1(μ) and Σ = π−1(Σ). On the one hand, by elementarity of π we have that 
H |= L(R, μ̄) �= L(R, C). On the other hand Σ canonically extends to Σ and P(R)H is 
countable in V . The relationship between H and V is similar enough to the relationship 
between V and W to obtain the following in V . There is a countable iterate P of M�

ω2

and a P -generic filter K for col(ω, < λP
ω2) such that RH is the set of symmetric reals of 

P [K]. Moreover, if F is the associated tail filter, then in H, L(RH , F) = L(RH , μ) =
L(RH , CH), a contradiction. Hence Proposition 12 holds.

We end this section with the remark that the proof of Proposition 12 uses only de-
pendent choice and so it follows from ZF + DC. We will use this fact in the following 
sections.

3. The general ZFC case

Assume M�
ω2 exists. In the last section we saw that if μ consists only of stationary sets 

and L(R, μ) is a model of AD + ω1 is R-supercompact, then μ ∩ L(R, μ) = C ∩ L(R, μ). 
Let us fix some notation for the rest of the paper.

Definition 30. Let N be a model of ZFC-PowerSet. We define SN to be the (in N) 
stationary subsets of Pω1(R)N .

Let us give an example that illustrates there is more to do. Consider SV . By Proposi-
tion 12 we have that L(R, SV ) is a model of AD + ω1 is R-supercompact. Let A ⊂ Pω1(R)
be a stationary set whose complement is also stationary and let h be a V -generic filter 
for the poset that shoots a club through Ac (as in the proof of Lemma 25). Applying 
Proposition 12 in V [h], L(R, SV [h]) is the unique model of AD +ω1 is R-supercompact. 
We would like to conclude that L(R, SV ) = L(R, SV [h]) but it does not follow from 
Proposition 12 applied in V [h] because A ∈ SV but A is nonstationary. Note, however, 
that a posteriori since L(R, SV ) = L(R, SV [h]) even though Ac is a club in V [h] we have 
that Ac /∈ L(R, SV [h]), the point here is that V [h] is unaware of this situation.
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Notice that the proof given in the last section relies heavily on the fact that if A ∈ μ, 
then one can shoot a club through A without adding reals. Without this available to us 
we need a different idea. We use Woodin’s Analysis of HOD in order to prove Theorem 10. 
The HOD Analysis for structures of the form L(R, μ) was done in [22], however we will 
use a variant closer to the exposition of [13]. We start by doing the analysis for L(R, C)
and then generalize to L(R, μ). We first give some useful definitions and lemmas. We 
will work, as in the last section, with M�

ω2 and its strategy Σ, as well as with W an 
external model in which P (R) is countable and Σ extends to an iteration strategy in W . 
Ultimately, the extra assumptions will be eliminated at the end of this section using the 
same ideas from Section 2.

3.1. A HOD analysis for L(R, C)

We start the outline of the HOD analysis by adapting the standard notions. This 
means, we will define, in V , a directed system whose limit agrees with a rank initial 
segment HODL(R,C), and then discuss what the rest of HODL(R,C) looks like and define 
in L(R, C) a corresponding covering system. Then we will generalize these results to 
models L(R, μ) of ZF + AD + ω1 is R-supercompact. By [22], in L(R, μ), AD+ and Mouse 
Capturing holds.

Definition 31. We say P is a δ0-bounded Σ-iterate of M�
ω2 if there is an iteration tree T

on M�
ω2 built according to Σ, such that,

• P is the last model of T ,
• all extenders used in T have critical point below the image of δM�

ω2
0 , and

• there is no drop in model on the branch leading to P so that there is an embedding 
i : M�

ω2 → P given by T .

Let

D+ = {P | P is a countable, δ0-bounded iterate of M�
ω2}.

For P and Q in D+, say P �+ Q if P iterates to Q via Σ in a δ0-bounded way, in which 
case we let πP,Q be the corresponding embedding given by Σ. By the Dodd–Jensen 
property of Σ, πP,Q does not depend on any particular Σ-iteration from P to Q. The 
Dodd–Jensen property also guarantees that (D+, �+, πQ,P ) is a directed system. Take 
the direct limit of (D+, �+, πP,Q) and iterate away the sharp (i.e. the top extender of 
the direct limit) ON-many times to obtain a proper class model M+

∞. Also, let πQ,∞ be 
the natural map from Q to M+

∞.
We will eventually prove that, L[M+

∞, Σ � X] = HODL(R,C), for some set of iteration 
trees X in L(R, C). Motivated by the work of Steel and Woodin for L(R) the next step is 
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to adapt the definition of suitability. From now on, we work in L(R, C) unless otherwise 
mentioned.

Definition 32. Let α < ω2. Let P be a premouse. We say P is α-suitable if there exist a 
sequence 〈δP

i 〉i<α in P such that

(1) For every cut-point η of P , Lp(P |η) � P .
(2) If η < o(P ), but is not a Woodin cardinal of P , then Lp(P |η) |= “η is not Woodin”.
(3) For all i < α, P � “δP

i is Woodin”, and these are the only Woodin cardinals of P . 
Furthermore, letting λ = sup

i∈α
δP

i , then o(P ) = sup
n∈ω

(λ+n)P .

We call a premouse full if it satisfies (1) of Definition 32. We will say P is suitable if 
there is α < ω2 such that P is α-suitable and define α(P ) = α. It is an easy consequence 
of mouse capturing and the definition of suitability that if P is suitable, ξ a P -cardinal 
and A ⊆ ξ is such that A is ODL(R,C)

P , then A ∈ P . On the other hand if A ∈ P , then A
is ODL(R,C)

P . We will use this fact repeatedly without explicitly mentioning it.

Definition 33. Let T be normal tree on a suitable mouse P . We say T is guided if and 
only if for all limit η < lh(T ), we have that Q([0, η)T , T � η) exists and is an initial 
segment of Lp(M(T � η)). We say that T is maximal if Lp(M(T )) |= δ(T ) is Woodin; 
otherwise we say T is short.

Notice that if T has successor length, then it is short. Moreover by the way Σ is 
defined if T is short and guided then it is according to Σ.4

Definition 34 (Capturing). Consider an α-suitable premouse P and A ⊆ R. Let η be a 
cardinal of P . We say that P captures A at η if there is a col(ω, η) name τ , such that 
whenever g is P -generic on col(ω, η), we have τ [g] ∩R = A ∩R. We say that P captures 
A if for every i < α(P ), P captures A at δP

i .

Note that given A ⊂ R and a suitable P that captures A at δP
i , say via τ , there is a 

standard term that witnesses the capturing, following [13], we give its definition

τP
A,i = {(p, σ) | σ is a name for a real and p �col(ω,δP

i ) σ ∈ τ}.

Our next step is to define a notion of iterability that is strong enough so that one can 
compare suitable mice. Note the connection with [13], where the analysis of HODL(R)

used a system of suitable mice with only finitely many Woodin cardinals. In our situation, 
however, suitable mice are allowed to have fewer than ω2 many Woodin cardinals. That 
is why we need a stronger form of iterability that we describe below.

4 This is via a standard argument using the uniqueness of Q-structures, cf. [20].
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We will define a slight modification of Definition 1.8 from [12]. A suitable P is said 
to be weakly* (ω, ω2)-(quasi-)iterable if player II has a winning (quasi)-strategy for the 
game WG∗(P, ω2) in which I and II alternate moves for ω2 many rounds as follows. 
The game starts by letting P0 = P . At round α, player I plays a countable normal, 
guided, putative iteration tree Tα on Pα. At that point player II has two options. The 
first option is only available if Tα has a well-founded final model; then II may accept I’s 
move in which case we set Pα+1 = MTα

lh(Tα)−1. The second option is for player II to play 
a maximal well-founded branch bα on Tα, such that, if Tα is short then Q(bα, Tα) exists 
and is an initial segment of Lp(M(Tα)). The game continues by setting Pα+1 = MTα

bα
. 

There are additional requirements for both players at limit rounds. Namely, if I and II 
have played for all β < γ and γ is a limit ordinal then:

• If there is i < α(P ) such that for infinitely many β < γ, we have that Tβ is a tree 
based on (δPβ

i−1, δPβ

i ) then I loses.5

• The direct limit of Pβ for β < γ is well-founded. Otherwise II loses.

After the ω2 rounds have been played, the only condition for II is that the direct limit 
along the main branch is well-founded. We illustrate the weak* game, WG∗(P, ω2) game 
as follows:

Player 0 1 . . . ω . . .

I T0 on P0 T1 on MT0
b0

}
Pω

Tω

II b0 b1 bω

Note that if P and Q are suitable premice such that II has a winning quasi-strategies 
τP and τQ for WG∗(P, ω2) and WG∗(Q, ω2) respectively then one can form guided it-
eration trees TP and TQ using the extenders that cause the “least” disagreement, and 
using τP and τQ when a maximal tree arises in this comparison. Since each P and Q
have < ω2-many Woodin cardinals, this comparison succeeds. Note also that the end 
model of this comparison is still weakly* (ω, ω2)-quasi iterable, since any game on it can 
be seen as the terminal part of a game on either P or Q.

Recall that a stack �T on a premouse P is a pair consisting of a sequence of iteration 
trees 〈Ti | i < γ〉 and a sequence of premice 〈Pi | i ≤ γ〉 such that

• P0 = P ,
• for every i < γ, Ti is an iteration tree of successor length on Pi and with last model 

Pi+1, and
• for every limit ordinal β < γ, Pβ is the direct limit of 〈Pi | i < β〉 and the tree 

embeddings.

5 Here by convention δP
−1 = 0.
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Note that 〈Pi | i ≤ γ〉 is determined by the sequence 〈Ti | i < γ〉. Also for a stack �T on 
P , we define M�T

∞ = Pγ and i�T
∞ : P → M�T

∞, the natural embedding associated to this 
stack (if it exists). Notice that in WG∗(P, ω2) players I and II collaborate to form a stack 
on P .

If P is a suitable mouse capturing some A ⊆ R it will be desirable that “good” itera-
tions of P maintain the suitability condition and move the terms capturing A correctly.

Definition 35 (A-iterations). For a suitable P that captures a set of reals A we define 
the following.

(1) We say P is A-iterable if II has a winning quasi strategy for the game WG∗(P, ω2)
such that whenever �T is a stack given by a game according to the quasi strategy6

and i�T
∞ : P → M�T

∞ exists, then M�T
∞ is suitable and for any i < α(P ) we have that 

i
�T
∞(τP

A,i) = τ
M�T

∞
A,i . We will call such a quasi strategy an A-quasi strategy for P .

(2) An A-iteration of P is a stack �T on P given by a run in WG∗(P, ω2) according to 
an A-quasi strategy.

(3) We will say Q is an A-iterate of P if there is an A-iteration �T on P such that 
Q = M�T

∞ and i�T
∞ exists.

(4) For T , a normal guided tree on P of successor length η + 1, such that T � η is 
maximal, we let T − = T � η. In other words T − is T without the last branch.

Also, given �A, a finite sequence of sets of reals, we say P is �A-iterable in case there 
exists a winning quasi strategy in WG∗(P, ω2) that simultaneously witnesses A-iterability 
for every A in the sequence �A.

Remark. For A ∈ L(R, C), being A-iterable is (downward) absolute to L(R, C). This is 
because the existence of an A-quasi-strategy is absolute between V and L(R, C); the 
latter can figure out Q-structures of a relevant tree T if T is short and if T is maximal, 
there will be a branch b of T respecting A if such a b exists in V , using DC in L(R, C) one 
gets the desired quasi-strategy. From now on, we will simply write “A-iterable”, instead 
of “A-iterable in L(R, C)”.

So far we do not know whether there are A-iterable suitable mice but we prove next 
that these exist when M�

ω2 is present. Lemma 36 and Corollary 37 are adaptations of 
results in Chapter 3 of [13].

6 Here, at each normal component U of �T , there may be more than one branch choice of U according to 
the quasi strategy, if U is maximal; our convention is when we talk about iteration maps i�T

∞, we already 
make a unique branch choice at each such U .



D. Rodríguez, N. Trang / Advances in Mathematics 324 (2018) 355–393 375
Lemma 36. Suppose A ⊆ R is definable in L(R, C) from indiscernibles and assume that 
Ñ is a Σ-iterate of M�

ω2 , such that i : M�
ω2 → Ñ (given by Σ) exists. Then any suitable 

initial segment of Ñ is A-iterable.

The idea in the proof is the following. Note that if Ñ is a Σ-iterate of M�
ω2 , by 

Lemma 23, given a Woodin cardinal δ of Ñ , we can iterate Ñ Σ−→ K above δ to make 
L(R, C) realizable as the derived model associated to K and some K-generic filter. Hence, 
one can define truth in L(R, C) in K using the homogeneity of the collapse. We show the 
details below.

Proof. Let Ñ as above and suppose that A ⊆ R is definable in L(R, C) from indis-
cernibles. Let ϕ be a formula such that for any increasing sequence of indiscernibles 
c0 < c1 < · · · < cn for L(R, C)

x ∈ A ⇔ L(R, C) |= ϕ(c0, . . . , cn−1, x).

Let Q be a suitable initial segment of Ñ , and α = α(Q). Let us define N to be the 
proper class model resulting when iterating the last extender of Ñ ON-many times. Let 
β < α and define τ as (p, x) ∈ τ if

p �col(ω,<δN
β )

N �col(ω,<λN
ω2 )

N L(Ṙ, Ḟ) |= ϕ(č0, č1, . . . , čn−1, x),

where Ṙ is the standard name for the symmetric reals under col(ω, < λN
ω2) and Ḟ is 

the name for the tail filter associated to this forcing as defined in Section 2. Now by 
suitability of Q we have that τ ∈ Q.

Let us see first that τ captures A at δQ
β . For this let G be Q-generic for col(ω, δQ

β ). 
Note that by suitability G is also N -generic. Now, working in W , we can use Σ to iterate 
N , above δQ

β , in the fashion of Lemma 23 to get an embedding j : N → M and an 
M [G]-generic filter H such that G ∗H is M -generic for col(ω, λM

ω2), and j(Ḟ)[G ∗ H] = C
and j(Ṙ)[G ∗ H] = R.

Also, we can pick indiscernibles large enough so that they are fixed by j. This implies 
that if (p, x) ∈ τ and p ∈ G, then

M [G ∗ H] |= L(R, C) |= ϕ(c0, . . . , cn−1, x[G])

In other words if x[G] ∈ τ [G] ⇒ x[G] ∈ A. Conversely if x ∈ A ∩ Q[G], then by 
homogeneity of the second forcing over N we have that

�col(ω,<λN
ω2 )

N L(Ṙ, Ḟ) |= ϕ(č0, č1, . . . , čn−1, ˇ(x[G])),

so there is a condition p ∈ G such that

p �col(ω,<δN
β )

N �col(ω,<λN
ω2 )

N L(Ṙ, Ḟ) |= ϕ(č0, č1, . . . , čn−1, x).
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In other words A ∩ Q[G] ⊆ τ [G], and so τ [G] = A ∩ Q[G].
By the way τ is defined it is easy to see that Σ moves τ correctly and so it is an 

A-iteration strategy. �
Corollary 37. Suppose A is an ODL(R,C) set of reals. Then for every α < ω2 there is an 
α-suitable P that is A-iterable.

Proof. By contradiction, suppose that there is a counterexample A. By minimizing the 
ordinals from which A is defined we may assume that A is actually definable in L(R, C). 
Let α < ω2 and Q is the suitable initial segment of M�

ω2 with α(Q) = α. By Lemma 36
Q is A-iterable, a contradiction. �

The point in the proof of Corollary 37 is that given a counterexample in L(R, C) to a 
statement of the form “for all ODL(R,C) sets of reals” then one can, by minimizing the 
counterexample, find a definable one. However it is the case that, usually, the suitable 
initial segments of M�

ω2 witness that there are no definable counterexamples. The same 
argument essentially gives the following lemma.

Lemma 38 (Comparison). Suppose that P is a suitable, A-iterable mouse and Q is a suit-
able, B-iterable mouse. Then there is an A ⊕B-iterable suitable mouse R, an A-iteration 
from P to a suitable initial segment of R and a B iteration from Q to suitable initial 
segment of R.

Recall that the notion of A-iteration is definable in L(R, C). The next step is to define 
a covering system using pairs (P, A), where A is an ODL(R,C) set of reals and P is an 
A-iterable mouse. However, it could be the case that for such a P , there are two different 
A-iterations π : P → Q and σ : P → Q, and this would be a clear problem in building a 
directed limit. For this reason we need to work with relevant hulls and a stronger notion 
of iterability. We define below these concepts.

Definition 39. For an A-iterable mouse P , we let

(1) P − = P |(δ+ω
0 )P

(2) γP
A,i = sup(HullP (τP

A,i) ∩ δP
0 ).

(3) γP
A = supi∈α(P ) γP

A,i.
(4) ξP

A = γP −

A .
(5) H(P, A) = HullP (ξP

A ∪ {τP
A,i | i < α(P )})

Note that if P is a suitable A-iterable mouse, then P − = P |(δ+ω
0 )P is 1-suitable and 

A-iterable.
Using the usual “zipper argument” (see [17] or [15]) we get the following lemma.
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Lemma 40. Let T be a tree of limit length on P , a suitable pre-mouse. Suppose further 
that there are branches b and c such that T �b and T �c are A-iterations and MT

b and 
MT

c are A-iterable. Then iT
b � γP

A = iT
c � γP

A and so iT
b � H(P, A) = iT

c � H(P, A).

A delicate point here is that if P is an A-iterable mouse we could potentially have 
two A-iterations associated to two different trees on P leading to the same end model Q, 
so Lemma 40 would not apply. Hence we define the notion of strong iterability in the 
natural way and prove the existence of strongly iterable mice.

Definition 41. For A ⊆ R and a suitable A-iterable mouse P , we say P is strongly 
A-iterable, if whenever i : P → Q and j : P → Q are two A-iterations, then i �
H(P, A) = j � H(P, A).

Note again that when proving that for any A ⊆ R which is ODL(R,C) there is a strongly 
A-iterable mouse it is sufficient to prove that for any definable set A there is a strongly 
A-iterable mouse. The following lemma, in contrast to most of what we have discussed 
so far, is not an “easy” generalization of the HOD Analysis in L(R). The reason for this 
is the extra complexity in the iteration games considered. We give a detailed proof for 
the existence of strongly A-iterable mice.

Lemma 42. Let A be an ODL(R,C) set of reals and let P be A-iterable. Then there is an 
A-iterate of P that is strongly A-iterable.

Proof. By minimizing the ordinals from which a potential counterexample can be de-
fined, we may without loss of generality, assume that A is definable in L(R, C). Given 
an A-iterable mouse P , by comparison we can A-iterate P to Q, an initial segment of a 
correct iterate of M�

ω2 . We claim that Q is as wanted.
Suppose that �T and �U are A-iteration stacks on Q with the same last model R. We 

want to show that the embeddings given by �T and �U agree on H(Q, A). We will actually 
show that both embeddings agree with embeddings given by Σ on H(Q, A). Here we 
have to be an extra bit more careful than in the analogous situation of L(R), because 
our iteration games can have more rounds and at limit stages it is not straightforward 
how to proceed, we will show next the details of how to overcome this difficulty.

We look inductively at the trees in the stack �T = 〈Ti | i ∈ α〉. Let Qi (for i ∈ α) be the 
model starting round i in the weak* game. We will construct trees Si inductively such 
that �S = 〈S | i ∈ α〉 is according to Σ and has the property that the embedding given by 
�S agrees with i�T on ξQ

A . Since there are no extenders in Q overlapping a Woodin cardinal, 
and the trees Ti are normal we can split each Ti into a < ω2-sequence of trees, each of 
whom is based on a window of the form (δki

, δki+1). Hence, we will assume with no loss 
of generality that every tree Ti for i ∈ α is based on a window of the form (δQi

ki
, δQi

ki+1).
Start with T0. Let us define S0 as follows. First suppose that T0 is based on Q0

−. If 
it is according to Σ we let S0 = T0. Otherwise, if T0 is not according Σ, then since it is 
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guided it must be a maximal tree with a last branch b (recall that all short and guided 
trees are according to Σ). Recall that T −

0 denotes the maximal part of T0. Let c be the 
branch given by Σ through T −

0 and, note that, by the proof of Lemma 36, c respects A. 
Let S0 be T −

0
�

c. Also, by Lemma 40, we have that iT0 and iS0 agree on ξQ
A . Recall 

that Q1 is the last model of T0, and let Q̄1 be the last model of S0. By fullness of Q̄1
and Q1, we have that Lp(M(T −

0 )) is an initial segment of both Q1 and Q̄1, so, by and 
maximality of T −

0 we have that δ(T −
0 ) is the first Woodin cardinal of Q1 and Q̄1, this 

implies, by suitability, that Q−
1 = Q̄−

1 .
If T0 based on a window above δ0 then let S0 = ∅, iS0 = id and Q̄1 = Q1. Here we get 

also, trivially, that iT0 and iS0 agree on ξQ
A and Q−

1 = Q̄−
1 .

Let us consider then T1. If it is based on Q1
− we can regard it as a tree on Q̄1 and 

then we can again use Σ to get S1 on Q̄1 such that iT1 and iS1 agree on ξQ1
A = ξQ̄1

A . 
Again, by fullness we get that if Q̄2 is the last model of S1, then Q−

2 = Q̄−
2 .

Otherwise we just let S1 = ∅ and the desired agreement is maintained so far.
Note that by the rules of the weak* game one has that Ti can be based on Qi

− only 
for finitely many i ∈ ω. Hence Q̄ω agrees with Qω up to their common 1-suitable initial 
segment and the embedding on the T -side agrees with the one given by the S-side up to 
ξQ

A .
We proceed inductively in this fashion. At successors simply use Σ if the tree is based 

below the least Woodin cardinal, and otherwise define the corresponding tree in the 
S-side as empty.

After α-many steps in this induction we will have that Q̄α is a Σ-iterate of Q. Let 
σ̄ be the branch embedding. Then we have that Q̄α agrees with Qα = R up to their 
common 1-suitable initial segment, and that σ̄ � ξQ

A = i
�T � ξQ

A .
Similarly for �U one can get the analogous construction. So, we get that i�U agrees with 

σ′ : Q → Q′
α, an embedding given by Σ, on ξQ

a . Furthermore R, Q̄α and Q′
α agree up 

to their 1-suitable initial segment, and so since δR
0 is a cut-point of both Q̄α and Q′

α by 
the Dodd Jensen property of Σ we can conclude that σ̄ and σ′ agree up to δQ0

0 , and so 
i

�T and i�U agree up to ξQ
A . Hence i�T � H(Q, A) = i

�U � H(Q, A) as wanted. �
Our covering system in L(R, C) will be

D = {H(P, �A) | A ⊆ R, P is strongly �A-iterable, and �A ∈ ODL(R,C)}.

Also we let (P, �A) � (Q, �B) if Q is an A-iterate of P and �A ⊆ �B. We let σ(P, �A),(Q, �B) be 

the unique embedding from H(P, �A) to H(Q, �B) given by an (any) �A-iteration from P
to Q. The following results show that the suitable initial segments of correct iterates of 
M�

ω2 together with the theories of indiscernibles for L(R, C) are in some sense “dense” 
in D.

Let

M∞ = lim(D, �, σ(P,A),(Q,B))
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and let us define σ(P,A),∞ the natural embedding from H(P, A) to this direct limit.7
Let T C

n be the theory of n-many indiscernibles with real parameters of L(R, C) coded 
as a subset of R. Lemma 5.6 and Lemma 5.9 in [13] give the following results, we omit 
their proofs as they are word by word the same, except that we use M�

ω2 and L(R, C)
instead of M�

ω and L(R) (the key, again, is that one can realize L(R, C) as the derived 
model of an iterate of M�

ω2).

Lemma 43. Suppose that P is a suitable initial segment of a Σ-iterate of M�
ω2 , then 

δP
0 = sup{ξP

T C
n

| n ∈ ω}.

Lemma 44. Assume A is ODL(R,C), and P is a strongly A-iterable suitable mouse. Then 
there is R, a suitable initial segment of a Σ-iterate of M�

ω2, and natural number n such 
that (P, A) � (R, A ⊕ T C

n ), and moreover

H(R, A ⊕ T C
n ) = H(R, T C

n ).

Let us pause for a moment and discuss the general L(R, μ) case. The lemma above 
will also be valid in this context by an application of Σ1-reflection.

Lemma 45. Suppose L(R, μ) |= AD + ω1 is R-supercompact, and let A be ODL(R,μ). 
Given P a strongly A-iterable suitable mouse and B an ODL(R,μ) set of reals, with 
A ≤W B, there is R a suitable and A ⊕ B-iterable mouse, such that (P, A) � (R, A ⊕ B)
and moreover H(R, A ⊕ B) = H(R, B).

Proof. Otherwise fix A and B a counterexample to the statement. Fix γ large enough 
such that Lγ(R, μ) |= ZF + AD + DC and A and B are ordinal definable over Lγ(R, μ), 
but Lγ(R, μ) has no R and A-iteration of P witnessing the conclusion of the Lemma. 
This Σ1 statement about γ can then be reflected below δ2

1. Hence there is such a γ < δ2
1. 

But then Lγ(R, C) = Lγ(R, μ) since below δ2
1 both μ and C are just the club filter (by 

results of Woodin, but see [21]). We get then that there are A and B counterexamples 
of the statement in Lγ(R, C) (and moreover OD in this structure). But then we can get 
the desired R and A-iteration in L(R, C) and, by the closure of γ, an A-iteration of P
leading to R can be computed in Lγ(R, μ), so A and B cannot be the counterexample 
of Lγ(R, C), contradiction. �

Lemmas 44 and 45 allow us to compute the direct limit of D just by looking at suitable 
initial segments of Σ-iterates of M�

ω2 with corresponding theories of indiscernibles. We 
have the following agreement.

Theorem 46. M∞ = M+
∞|λM+

∞
ω2 .

7 Here we identify M∞ with its transitive collapse.
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Proof. We define a map i : M∞ → M+
∞ that is surjective below λM+

∞
ω2 and respects the 

membership relation as follows. For x ∈ M∞ there is a natural n and a suitable initial 
segment of a correct iterate of M�

ω2 , say P , such that x is in the range of σ(P,A⊕T C
n ),∞, and 

there is z ∈ H(P, T C
n ) such that σ(P,A⊕T C

n ),∞(z) = x. Now we have an iteration M�
ω2

Σ−→
N such that P is a suitable initial segment of N . Note that N might not be a δ0-bounded 
iterate of M�

ω2 . We can however split the iteration from M�
ω2 to N in a δ0-bounded part 

and the rest. Namely, there is N ∗ such that M�
ω2

Σ−→ N ∗ into a δ0-bounded way, and 

N ∗ Σ−→ N . Note that this second iteration does not move δN ∗
0 (because all its extenders 

have critical point above the first Woodin cardinal). This implies that z is in the range 
of πN ∗,N , let z̄ be its pre-image. Then we define i(x) = πN ∗,∞(z̄), it is routine to show 
that i is well defined (see Theorem 5.10 of [13]). Now Lemma 44 gives us the surjectivity 

as follows: Let x ∈ M+
∞|λM+

∞
ω2 so there is z ∈ N a correct iterate of M�

ω2 such that 
πN ,∞(z) = x. Let P be a suitable initial segment of N such that z ∈ P . Because N is a 
δ0 bounded iterate of M�

ω2 we have that z is definable from ordinals less than δN
0 and 

indiscernibles, but this is easily computable from T C
n for a suitable n (again this follows 

essentially by Corollary 5.7 of [13]). Because ξP
T C

n
is unbounded in δN

0 we conclude that 
z ∈ H(P, T C

n ) for a sufficiently large n. This readily implies x is in the range of i as 
wanted. �

Recall that W is the outer model in which Σ has an extension and P(R) is countable. 
Hence, it is forced (over V ) that in V col(ω,R) Σ has an extension. Let us work for a 
moment in V col(ω,R). Here we have that M+

∞ is a countable Σ-iterate of Mω2 . Also if G is 
M+

∞-generic for col(ω, < λM∞
ω2 ), and R∗ and F are the symmetric reals and associated tail 

filter, then, by Theorem 21, L(R∗, F) is model of AD + ω1 is R-supercompact. Following 
the notation and the content of Chapter 6 from [13], if A is in ODL(R,C) we can define, 
A∗ ⊆ R

∗, by pieces as follows. For (P, A), an element of D, and for i < o(P ) let

τ∗
A,i = σ(P,A),∞(τP

A,i)

and

A∗ =
⋃

i∈ω2

τ∗
A,i[G � δM∞

i ].

Recall that T C
n is the theory of n-many indiscernibles with real parameters. We will be 

in particular interested in T C
n

∗. Note that any suitable initial segment of M∞ is strongly 
T C

n
∗-iterable (in V col(ω,R) as witnessed by Σ and in L(R∗, F) by absoluteness). Recall 

that M−
∞ is the 1-suitable initial segment of M∞. We summarize the relevant facts of 

these sets in Lemmas 47 and 48.

Lemma 47. For any set of reals A which is OD in L(R, C) we have that A∗ is OD in 
L(R∗, F). Moreover for any such A,
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L(R∗, F) |= M−
∞ is strongly A∗-iterable.

Proof. This follows exactly as in the case of L(R) so we omit details. These proofs can 
be found essentially in Chapter 6: Claims 1, 2 and 3 of [13]. �

Let X be the set of finite full stacks on M−
∞ in M∞|(λM∞

ω2 ). As in [13], when computing 
the branches that Σ would have picked through �T ∈ X it is enough to choose the unique 
branch that moves terms for A∗ (such that A ∈ ODL(R,C)) correctly. That is to say

Lemma 48. Suppose T ∈ L(R∗, F) is a guided maximal tree on M−
∞ in L(R∗, F). Then 

Σ(T ) = b if and only if T �b is an A∗-iteration for all A in ODL(R,C).

Proof. This is claim 4 of Chapter 6 in [13]. Here we use Lemma 44 instead of Lemma 5.8 
of [13], everything else follows word by word. �

From this and the homogeneity of the collapse it follows that L[M∞, Σ � X] ⊆
HODL(R,C). Also, note that if M∗

∞ is the direct limit defined in L(R∗, F) of the system 
{(P, �A∗) | P is strongly �A∗-iterable and �A ∈ ODL(R,C)}, then there is an embedding σ :
M−

∞ → M∗
∞, where σ =

⋃
A∈ODL(R,C)

σ(M−
∞,A∗),∞.

Lemma 49. Suppose that N0 and N1 are countable Σ-iterates of M�
ω2, Gi is Ni-generic 

for col(ω, λNi

ω2 ) and L(Ri, Fi) are the associated derived models.
Then given x ∈ R0 ∩ R1 we have

〈L(R0, F0), x, T 0
n 〉 ≡ 〈L(R1, F1), x, T 1

n 〉,

where T i
n is the theory of n indiscernibles for L(Ri, Fi).

Proof. Fix x as in the hypotheses. Then there exist k < ω2 such that for i = 0, 1 we 
have x ∈ R

Ni[Gi � δ
Ni
k ]. Fix c0 < c1 < · · · < cn−1 indiscernibles for L(R0, F0), L(R1, F1)

and L(R, C). Let ϕ be a formula and assume L(R0, F0) |= ϕ(x, c0, . . . , cn−1). We will see 
that L(R, C) satisfies the same formula. By homogeneity of the collapse we have that

�col(ω,<λ
N0
ω2 )

N0[G � δ
N0
k ]

L(Ṙ, Ḟ) |= ϕ(x̌, č0, . . . , čn−1)

Now in W we can iterate N0 above δN0
k to realize L(R, C) as a derived model (see 

Lemma 36). Picking c0, . . . , cn large enough we get that

L(R, C) |= ϕ(x, c0, . . . , cn−1)

By symmetry of the argument, we cannot have L(R1, F1) |= ¬ϕ(x, c0, . . . , cn−1), which 
completes the proof. �
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Theorem 50. Suppose M�
ω2 exists and its iteration strategy extends to an outer model W

in which P (R)V is countable. Then the following are the same model.

(1) HODL(R,C)

(2) L[M∞, Σ � X]
(3) L[M∞, σ]

Proof. This proof follows exactly as Claims 6 and 7 in chapter 6 of [13]. Here instead of 
Lemma 6.2 of [13] we use Lemma 49 and that by Theorem 3.1 in [22] HODL(R,C) = L[B]
for some B ⊂ ΘL(R,C). �

Also for an arbitrary μ ⊂ P(Pω1(R)) such that L(R, μ) |= AD + ω1 is R-supercompact 
we can define the corresponding internal direct limit system

Dμ = {H(P, �A) | A ⊆ R, P is strongly �A-iterable, and �A ∈ ODL(R,μ)}.

Let M∞,μ be its direct limit (see for example Theorem 3.13, and subsequent discussion 
in [22]). Furthermore by [22] we have the following result.

Theorem 51. Suppose L(R, μ) |= AD + ω1 is R-supercompact. Then

HODL(R,μ) = L[M∞,μ, Σμ]

where Σμ is defined in L(R, μ) using the corresponding definition given in Lemma 48.

Note that the construction recovering HOD can be relativized to any particular real 
y as follows. The existence of M�

ω2 implies the existence of M�
ω2(y) and so one has 

HODL(R,C)
y = L[M∞,μ(y), Σμ(y)], where M∞,μ(y) is the direct limit of

Dμ(y) = {H(P, A) | P is a strongly A-iterable y-mouse and A ∈ ODL(R,C)
y }.

And Σμ(y) is the strategy whose domain consists of finite full stacks of trees on M−
∞,μ(y)

that are in

M∞,μ(y)|(λM∞,μ(y)
ω2 )

and Σμ(y) picks branches b such that respect every A∗ for A ∈ ODL(R,μ)
y . Here we define 

A∗ in L(R∗, F), the derived model given by a generic filter over M∞,μ for the collapse 
up to the sup of its Woodins. For the Record

Lemma 52. Suppose L(R, μ) |= AD + ω1 is R-supercompact and let y be a real. Let 
M∞,μ(y) and Σμ(y) be as above. Then

HODL(R,μ)
y = L[M∞,μ(y), Σμ(y)].
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3.2. P(R) in models of AD +ω1 is R-supercompact

We start this subsection by analyzing P(R) in “minimal” AD models of ω1 is 
R-supercompact. The following terminology will get us started.

Definition 53. Given μ, a subset of P(Pω1(R)), we use the following notation:

• Pμ(R) = P(R)L(R,μ)

• δ2
1(μ) = δ2

1
L(R,μ)

• Θ(μ) = ΘL(R,μ)

The following lemma says that the power sets of the reals of such models line up with 
that of L(R, C).

Lemma 54. Suppose that μ ⊂ P(Pω1(R)) is such that L(R, μ) |= AD + ω1 is R-super-
compact. Then, either Pμ(R) ⊆ PC(R) or PC(R) ⊆ Pμ(R).

Proof. Suppose neither Pμ(R) ⊆ PC(R) nor PC(R) ⊆ Pμ(R). Let Γ = PC(R) ∩ Pμ(R). 
By Theorem 3.7.1 of [23] L(R, Γ) |= ADR. Hence by the theorem of Solovay mentioned in 
the first paragraph of Section 1.3, if ν is the club filter defined in L(R, Γ), then L(R, ν) |=
AD + ν is an R-supercompactness measure. Moreover, we have that ν is a subset of C, 
so by Lemma 28 we have L(R, ν) = L(R, C), which readily gives a contradiction. �

We will need the notion of the envelope of a point-class. For a complete exposition 
of this subject the reader may consult Chapter 3 of [23]. We will mostly be interested 
in envelopes of point-classes of the form ΣLp(R)|γ

1 . We recall the definitions below. It 
should be noted that the definition below is not the original definition of Envelope by 
D.A. Martin but it is due to Steel. In the context of AD, it is equivalent to the original 
definition.

Definition 55. Suppose that γ is an admissible ordinal of Lp(R). Let Γ = ΣLp(R)|γ
1 . For 

A ⊆ R

• We say A ∈ OD<γ if there is α < γ such that A is ODLp(R)|α.
• We say A ∈ Env(Γ) if for every σ ∈ Pω1(R) there is A′ ∈ OD<γ such that A ∩ σ =

A′ ∩ σ.

We also note that the definition of the envelope can be relativized to any real x. Recall 
that Env(Γ), the boldface envelope, is 

⋃
x∈R

Env(Γ(x)). The notion of the envelope is 

particularly useful when analyzing the Σ1-gaps and the pattern of scales in the structure 
Lp(R) (see [11], [14] and [9]).
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We turn now to prove that for any μ such that L(R, μ) |= AD + ω1 is R-supercompact, 
we have that Pμ(R) = PC(R).

Lemma 56. Suppose that μ is a subset of P(Pω1(R)) such that L(R, μ) satisfies 
AD + ω1 is R-supercompact. Then L(R, C) and L(R, μ) have the same sets of reals.

Proof. For contradiction, suppose that this is not the case. Without loss of generality 
we may assume that μ and C measure some subset of Pω1(R) differently, as otherwise 
the lemma would follow trivially. By Lemma 54 we have the following two cases.

Case 1: Pμ(R) is strictly contained in PC(R).
In this case without loss of generality, we will assume that μ is such that Pμ(R)

is minimal. In other words, given any other ν ⊂ P(Pω1(R)) such that L(R, ν) |=
AD + ω1 is R-supercompact, Pμ(R) ⊆ Pν(R).

By (R, μ)�, we mean the theory of the reals and indiscernibles of L(R, μ) in a language 
with predicates for membership and μ and constant symbols ẋ for each real x. Let B
belong to PC(R) but not to Pμ(R). Then (R, μ)� = ⊕n∈ωT μ

n , where each T μ
n is Wadge 

reducible to B; here, T μ
n is the theory of the first n indiscernibles with real parameters 

in L(R, μ). Since there is a real x that codes all these reductions, (R, μ)� ∈ L(R, C). Also, 
recall that Lδ2

1
(C)(R, C) ≺1 L(R, C) (see [21]), hence there is such a sharp in Lδ2

1
(C)(R, C). 

Let μ̄ be such that (R, μ̄)� ∈ Lδ2

1
(C)(R, C) and L(R, μ̄) |= AD + ω1 is R-supercompact.

Claim. In L(R, C), M�
ω2 exists and is ω1 + 1-iterable.

Proof of the claim. Let us work in L(R, C). First, by results of [22] we have that 
PC(R) ⊆ Lp(R)L(R,C) and Pμ̄(R) ⊆ Lp(R)L(R,μ̄). Note that if M is an R-mouse in L(R, μ̄)
projecting to R, there is a set of reals in Pμ̄(R) coding it. Thus M ∈ Lδ2

1
(C)(R, C). Also, 

if M is countably iterable in L(R, μ̄), by definition, if M̄ is a countable hull of M it is 
(ω1 + 1)-iterable in L(R, μ̄). As R ⊂ L(R, C) any such M̄ is ω1-iterable in L(R, C). But 
ω1 is measurable in L(R, C) hence M̄ is (ω1 + 1)-iterable in L(R, C). So by definition of 
Lp(R), M is an initial segment of Lp(R) in L(R, C). This gives us that:

Lp(R)L(R,μ̄) � (Lp(R)|δ2
1(C))L(R,C).

This implies that δ2
1(μ̄) starts a Σ1-gap in Lp(R)L(R,C) (and not the last gap).8 This is 

because “starting a Σ1-gap” is downward absolute and also δ2
1(C) starts the last gap of 

(Lp(R)|δ2
1(C))L(R,C). Let

Γ = ΣLp(R)L(R,μ̄)

1 .

We claim that Env(Γ) = Pμ̄(R), where the envelope is as defined in L(R, C).

8 [α, β] is a Σ1-gap in Lp(R) if Lp(R)|α ≺1 Lp(R)|β, ∀γ < α ¬(Lp(R)|γ ≺1 Lp(R)|α), and ∀γ >
β ¬(Lp(R)|β ≺1 Lp(R)|γ). See [17] for more detailed discussions and precise definition of ≺1.
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For this note that by results of [14], we have Env(Γ) = P (R)Lp(R)|γ , where γ is the 
largest ordinal such that Lp(R)|δ2

1(μ̄) ≺1 Lp(R)|γ. Note that γ ≥ ΘL(R,μ̄), and for all we 
know this inequality could be strict. However, since [δ2

1(μ̄), γ] is a Σ1-gap and γ < δ2
1(C), 

we have that Lp(R)|(γ+1) is the first initial segment of L(R)L(R,C) that has a subset of the 
reals not in Lp(R)L(R,μ̄), in fact (R, μ̄)� ∈ Lp(R)|(γ + 1). Thus Pμ̄(R) = P(R) ∩ Lp(R)|γ
and so Env(Γ) = Pμ̄(R), as wanted.

Let �B be a self-justifying system sealing Env(Γ).9 Since �B is countable, there exists a 
real x such that each element in �B is ODL(R,μ̄)

x . Let Mμ,∞(x) as defined in Lemma 52. For 
ease of notation put M = Mμ,∞(x). Then M has ω2-many Woodin cardinals and terms 
capturing every B in �B at every Woodin cardinal δ of M. Let τB,δ be the standard term10

witnessing this. Let κ >> ΘL(R,μ) be an inaccessible cardinal in M and a V -cardinal and 
let us define N = HullM|κ({τB,δ | B ∈ �B and δ Woodin in M}); note that N is a model 
of ZFC. Hence N is an x-mouse that captures all the elements of a self-justifying system. 
Thus, by a theorem of Woodin, the strategy that picks branches that are realizable into 
M11 and moves these term relations correctly is an iteration strategy for N (see [8]). 
In other words, N is ω1-iterable in L(R, C), and N � exists and is ω1-iterable (hence 
ω1 + 1-iterable) in L(R, C) (sketch: since ω1 is measurable, and N is countable, N �

exists. Furthermore, the Woodin cardinals of N remain Woodin in N � because we have 
put τB,δ’s in the hull.). Therefore M�

ω2 exists and it is ω1 (and hence ω1 +1) iterable. �
We claim that if ν is the club filter in L(R, C), then L(R, ν) |= AD + ω1 is R-super-

compact. We cannot apply Proposition 12 directly but we can work our way into a 
situation where the proof can be adapted. For this, let α be large such that Lα(R, C) �
ZF + DC. Therefore, there is a countable set N , such that N ≺ Lα(R, C); furthermore, 
we get that M�

ω2 and its unique strategy are in N . Let N̄ be the transitive collapse of N . 
Then Proposition 12 and the remark after it imply that N̄ believes that “if ν̄ is the club 
filter, then L(R, ̄ν) |= AD + ω1 is R-supercompact”. By elementarity and the choice of 
α, we get that L(R, C) believes this as well. Also, ν ⊆ C, and so by Lemma 28 we get 
L(R, ν) = L(R, C), implying L(R, C) = L(PC(R)). Now, Theorem 9.100 of [26] implies 
L(R, C) |= ADR but this is impossible since L(R, C) |= Θ = θ0.

Case 2: PC(R) is strictly contained in Pμ(R).
By Σ1-reflection we have that in L(R, μ) there is C̄ in Lδ2

1
(μ)(R, μ) such that L(R, C̄)

is a model of AD + ω1 is R-supercompact. By Case 1, PC(R) ⊆ PC̄(R) and so PC(R) ∈
Lδ2

1
(μ)(R, μ). By [21] we have that μ ∩Lδ2

1
(μ)(R, μ) is a subset of the club filter of L(R, μ). 

So if A ∈ PC(R) ∩ μ then A contains a club in V . Hence C∩L(R, C) ⊆ μ and so Lemma 28
implies L(R, C) = L(R, μ). �

9 See e.g. [23] for a detailed discussion of self-justifying systems and sealing. Roughly, �B is a countable 
sequence of sets of reals telling us where the gap ends and where the next scaled pointclass begins.
10 This was defined after Definition 34.
11 Suppose π : N → M is the uncollapse map and let T be an iteration tree on N . b is a branch of T that 
is realizable into M if whenever iT

b exists, there is a map σ : MT
b → M such that π = σ ◦ iT

b .
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Note that the proof of Lemma 56 implies that any two models, L(R, μ) and L(R, ν)
that satisfy AD + ω1 is R-supercompact would have the same Θ and so they would also 
share the same δ2

1. This justifies referring to Θ(μ) and δ2
1(μ) simply as Θ and δ2

1 respec-
tively.

3.3. The proof of Theorem 10

Let us fix a μ such that L(R, μ) is a model of AD + ω1 is R-supercompact.
The crux of the main theorem of this section is the following observation.
Note that by Lemma 56 we have that PC(R) = Pμ(R). This implies that the notion of 

suitability is the same in L(R, C) and L(R, μ). The notion of ordinal definability might 
however be different. Recall that T μ

n is the theory of n many indiscernibles with real 
parameters of L(R, μ).

We have that for any n there is k such that T C
n ≤W T μ

k , and vice versa, for any n
there is a k such that T μ

n ≤W T C
k . From now on let us fix a real number x that codes 

all of these reductions in a natural way.12 We also choose x so that T C
k is ODL(R,μ)

x for 
all k. If P is a suitable initial segment of a Σx-iterate of M�

ω2(x) then by Lemmas 36
and 42 we have that P is strongly T C

n -iterable. Furthermore as x ∈ P by Lemma 5.9 of 
[13] we have that P captures T μ

n for every natural n. Moreover we have that if x codes 
a reduction T μ

n ≤W T C
k then for any i < o(P ), τP

T μ
n ,i

∈ H(P, T C
k ) and moreover every 

T C
k -iteration of P is also a T μ

n iteration. The following lemma will show that as in the 
case of L(R, C) the pairs of the form (P, T C

n ) are dense in Dμ in the sense of Lemma 44. 
In other words.

Lemma 57. Suppose L(R, μ) |= AD + ω1 is R-supercompact. Let A be ODL(R,μ)
x and P

is an x-mouse that is A-iterable. Then there is a natural number n and a suitable initial 
segment of a correct iterate of M�

ω2(x), say Q, that is A ⊕ T C
n -iterable, τQ

A ∈ H(Q, T C
n )

and (P, A) � (Q, T C
n ).

Proof. Here just note that {T C
n | n ∈ ω} is Wadge cofinal in the Wadge hierarchy of 

L(R, μ). Also for every n we have that T C
n is ODL(R,μ)

x . We can then apply Lemma 45
and comparison to get the desired Q. �
Theorem 58. Suppose that L(R, μ) |= AD + ω1 is R-supercompact. Then for a Turing 
cone of y ∈ R we have that HODL(R,μ)

y = HODL(R,C)
y .

Proof. Using Lemma 57, the proof of Theorem 46 can be adapted to yield

M∞,μ(x) = M+
∞(x)|λM+

∞(x)
ω2

12 Fix z �→ 〈(z)i〉i∈ω a recursive bijection between R and Rω and fix x such that given n ∈ ω there exists 
i and j naturals such that (x)i codes a continuous reduction witnessing T μ

n ≤W T C
k (for some k) and the 

similarly (x)j codes a reduction T C
n ≤W T μ

k (fore some other k).
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Also, essentially, by Theorem 46 M∞(x) = M+
∞(x)|λM+

∞(x)
ω2 . Hence we have that

M∞,μ(x) = M∞(x).

Note that by Theorem 51 we only need to show the following claim.

Claim. Σμ,x = Σx when restricted to countable stacks of trees based on M∞(x)−.13

Proof of the claim. We will prove inductively that if �T is a stack of n trees, and is 
according to both Σx and Σμ,x then these strategies pick the next branch the same way. 
Note that by the definitions of Σx and Σμ,x we have that Σx(�T ) = b if and only if �T �b

is an T C
n

∗-iteration on M−
x for all n ∈ ω (here again the key fact is that the ξM−

x

T C
n

and the 

ξ
M−

x

T μ
n

are cofinal in δM−
x

o ). As discussed in the discussion at the beginning of this section 

this implies that �T �b is a T μ
n

∗-iteration for all n ∈ ω, in other words Σμ,x(�T ) = b, which 
finishes the proof of the claim. �

But then this implies HODL(R,C)
x = HODL(R,μ)

x by Theorem 51. Note also that if 
y ≥T x then same proof relativized to y is still valid. This completes the proof of the 
theorem. �
Proof of Theorem 10. First let us suppose that Σ extends to W , so all the previous 
results of this section hold. By Theorem 58 we can fix a real x such that HODL(R,μ)

x =
HODL(R,C)

x . Also, by [21] we have that

L(R, μ) = HODL(R,μ)
x (R) and HODL(R,C)

x (R) = L(R, C),

which clearly implies L(R, C) = L(R, μ).
Now, if Σ is just an ω1 + 1-iteration strategy, by contradiction suppose that there 

is μ such that L(R, μ) |= AD + ω1 is R-supercompact but L(R, C) �= L(R, μ). Pick γ

such that Vγ is a model of ZF-PowerSet, and reflects the existence of such μ. Let N ≺
Vγ be countable and H its transitive collapse. Then we are in the same situation as 
when proving Proposition 12. Hence the result follows word by word from the proof of 
Proposition 12. �
4. The AD case

We give in this section a proof of Theorem 9. We will first assume AD+ and for 
contradiction suppose that the theorem does not hold and then we reflect this statement 
to a Suslin co-Suslin set. Then we can use [19] and [8] to construct models with Woodin 

13 We refer as Σx the strategy given by Lemma 48 and Σμ,x the one defined in the paragraph before 
Theorem 51.
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cardinals and run a version of the last chapter’s arguments. Lastly we show how to reduce 
the hypotheses to AD + DCR. We start by noting some preliminary facts.

Lemma 59. Suppose V = L(P(R)) + AD+ and let μ be a filter such that L(R, μ) satisfies 
AD + ω1 is R-supercompact. Then Pμ(R) �= P(R).

Proof. Otherwise we have that V = L(P(R)) believes there is a supercompact measure 
on Pω1(R). Also V = L(R, μ), so by [26, Theorem 9.100] L(R, μ) |= ADR but this is 
impossible since we have L(R, μ) |= Θ = θ0 by [22]. �

From now on we will also assume that V = L(P(R)) |= Θ = θ0, as otherwise by 
Theorem 17 there exists a non-tame mouse and hence M�

ω2 exists and it is iterable so 
the results of last section would hold. Since Θ = θ0 we have that, in particular, DC holds 
in V . We now prove the first approximation to our main result.

Theorem 60. Suppose V = L(P(R)) + AD+. Then there is at most one model of the 
form L(R, μ) satisfying AD + ω1 is R-supercompact. Moreover if such model exists then 
the unique such model is L(R, C) where C is the club filter on Pω1(R).

Proof. Suppose that there is μ ⊆ P(Pω1(R)) such that L(R, μ) |= AD + ω1 is R-super-
compact. Let μ be chosen such that Pμ(R) is minimal in that given any ν such that 
L(R, ν) |= AD + ω1 is R-supercompact then we have that Pμ(R) ⊆ Pν(R). Note that by 
Lemma 59 we have that there is a set of reals B of Wadge rank bigger than the Wadge 
rank of any sets of reals in L(R, μ). For x ∈ R, let Ex be the Wadge reduction of B

coded by x. Let

Ā = {x ∈ R | Ex ∈ μ}.

Let A be a set of reals from which Ā and B are definable. Then, in L(R, A) μ is definable 
from parameters and moreover by AD+ we have (R, μ)� ∈ L(R, A). Now by Theorem 6
and minimality of μ we may assume that A is Suslin and co-Suslin.

Let us work from now on in L(R, A). By minimality of μ we get that (R, μ)� is Suslin 
and co-Suslin in L(R, A). The presence of (R, μ)� and the proof of Lemma 56 imply the 
existence of N = (M∞,μ)�. Here we identify N with the least active mouse extending 
M∞,μ. Let Γ be ΣL(R,μ)

1 and �B a self-justifying system sealing Env(Γ). Let us fix ζ to 
be the largest Suslin cardinal in L(R, A).

Claim 1. Env(Γ) ⊂ Lp(R).

Proof of Claim 1. Let C ∈ Env(Γ). First, note that C is in Lζ(Pζ(R)); this is because 
by the choice of A, B is Wadge reducible to A and the Wadge rank of A is at most ζ. 
By the definition of Env, for any σ ∈ Pω1(R), we have that C ∩ σ ∈ ODL(R,μ)

{σ,A}∪σ; so by 
mouse capturing in L(R, μ) we have that C ∩ σ ∈ Lp(σ). We then have that C ∩ σ ∈ Mσ
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where Mσ = HODLζ(Pζ(R))
{C,σ}∪σ ; this is because Lp(σ)L(R,μ) ∈ Mσ. Define Mσ � Lp(σ) to 

be the least initial segment of Lp(σ) having C ∩ σ as an element. Note that Mσ ∈ Mσ

and Mσ |= “Mσ is countably iterable” because the unique iteration strategy for Mσ is 
definable from σ, C.

Also the club filter C is an ultrafilter on Pζ(R) (basically by Moschovaki’s third 
periodicity theorem, see [22]). So, we can define M =

∏
σ∈Pω1

Mσ/C, where the func-

tions of this ultraproduct are f : Pω1(R) →
∏

σ∈Pω1
Mσ and f ∈ Lζ(Pζ(R)). Note 

that by [21], C is normal and countably complete. Then we have that Σ1-Łos holds, 
since Lζ(Pζ(R)) satisfies Σ1-replacement. Let M = [σ �→ Mσ]C ; we claim that M

believes “M is countably iterable”. To see this let M̄ be a countable transitive hull 
of M, then we have that M̄ ∈ σ for club-many σ. Also [σ �→ M̄]C = M̄ (by 
countable completeness of C). Now by Σ1 -Łos we have that for club-many σ, M̄
is a countable hull of Mσ and so Mσ |= “M̄ is ω1-iterable”. Let Σσ be the unique 
iteration strategy of M̄, then the function σ �→ Σσ is in Lζ(Pζ(R)) and is such 
that Mσ |= (HC, Σσ)“ |= Σσ is an ω1 strategy for M̄”. By Łos, again, we get that 
M |= “M̄ is ω1-iterable”.

Also, C = [σ �→ C ∩σ]C hence C ∈ M. Note that in L(R, A), M is actually countably 
iterable, so we have M � Lp(R) and so C ∈ Lp(R). �

Arguing as in the proof of the claim in Lemma 56 we then get that Env(Γ) = Pμ(R). 
Let �B be a self-justifying system sealing Env(Γ). Recall that N captures every B in �B, 
say via τB . Define then

M = HullN ({τN
B | B ∈ �B}).

Here we think of M as the transitive collapse of this hull. Then as in the proof of 
the claim in Lemma 56, we have that M is ω1 + 1 iterable and so M�

ω2 exists and is 
ω1 + 1-iterable.

Claim 2. L(R, C) is a model of “AD + ω1 is R-supercompact” and the only such model.

Proof of Claim 2. Here we use the results of Section 2. The key point is that the iteration 
strategy for M�

ω2 might not extend to big generic collapses. For this though we use 
instead a countable elementary substructure of Lα(R, A), where α >> ΘL(R,A) large and 
is such that Lα(R, A) � ZF + DC-PowerSet and contains all relevant objects. Let N ≺
Lα(R, A) be countable and elementary such that M�

ω2 ∈ N (here we use that DC holds 
in V ). Let H̄ be the transitive collapse of N . Then as in the proof of Proposition 12 the 
results of Section 2 give that H̄ models “L(R, C) satisfies AD + ω1 is R-supercompact”, 
but then N does and so does V .

The same argument combined with the results of Section 3 will show that since M�
ω2

exists, L(R, C) is the unique model of AD + ω1 is R-supercompact. This concludes the 
proof. �
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Let us mention that the key fact about AD+ we used in the proof of Theorem 60 is 
that given μ such that L(R, μ) |= AD + ω1 is R-supercompact, then one can reflect the 
existence of such a μ to the Suslin co-Suslin part of a model of the form L(R, A), where 
A is a set of reals. This is particularly useful as then one can take ultraproducts using 
the club filter. In the absence of AD+ this can be a little bit more tricky as we may not 
be able to reflect, but we show how to overcome this difficulty and get the proof of the 
result under AD + DCR.

Proof of Theorem 9. First let us assume AD+ holds, and then we will use this proof 
to get a proof under AD + DCR. Suppose that there are μ and ν such that L(R, μ) and 
L(R, ν) are models of AD + ω1 is R-supercompact. We may assume with no loss that 
V = L(R, μ, ν) and Θ = θ0, as otherwise there is a non-tame mouse and we would finish 
the proof as before.14

Note that the proof of Lemma 56 holds in this case too, so Pμ(R) = Pν(R).

Claim. P(R) is strictly larger that Pμ(R).

Proof of the claim. Otherwise we have that P(R) = Pμ(R) = Pν(R). We can fix then 
an ODL(P(R)) tree T that projects to a universal Σ2

1. Following [22] we let D = {〈di | i ∈
ω〉 | ∀i ∈ ω di is a Σ2

1 degree and di <Σ2
1

di+1}.15 We recall in the following lines the 
definition of the auxiliary measures μ̄ and ν̄ on D from [22].

For A ⊆ D, let S ⊂ ON be an ∞-Borel code for A, then

A ∈ μ̄ iff ∀∗
μσL[T, S](σ) |= “ AD+ + σ = R and ∃(∅, U) ∈ P̄ (∅, U) � Ġ ∈ AS”

where P̄ is the usual Prikry forcing using Σ2
1-degrees in L[S, T ](σ) and the Martin measure 

(see section 6.3 of [3]), also Ġ is the name of the corresponding Prikry sequence and AS

is the interpretation of the set of reals coded by S.
By results of [22] we have:

• For any S ⊂ ON we have that ∀∗
μσL[T, S](σ) |= “ AD+ +σ = R”.

• Whether A ∈ μ̄ does not depend on the code S.
• Let A ⊆ Pω1(R) and for d ∈ D let

σd = {y | there are i and x such that y ≤Σ2
1

d(i)}.

Then we have that if Ā = {d ∈ D | σd ∈ A}

14 Here L(R, μ, ν) is constructed by induction as follows. L0(R, μ, ν) = R, for α ∈ ON we let Lα+1(R, μ, ν)
be the collection definable sets over (Lα(R, μ, ν), ∈, ν ∩ Lα(R, μ, ν), μ ∩ Lα(R, μ, ν)) and taking unions at 
limit stages.
15 Define x ≤Σ2

1
y if and only if x ∈ L[T, y], x ≡Σ2

1
y if and only if x ≤Σ2

1
y and y ≤Σ2

1
x, and x <Σ2

1
y

if and only if x ≤Σ2
1

y and ¬(x ≡Σ2
1

y). A Σ2
1 degree is a ≡Σ2

1
-equivalence class. It can be shown that the 

above definition of ≤Σ2 does not depend on the choice of T ; in fact, x ≤Σ2 y if and only if x ∈ HODy.

1 1
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A ∈ μ if and only if Ā ∈ μ̄.

Let us recall the construction of the Prikry Forcing done in Section 2 of [22]; we 
however, will alternate using μ and ν when choosing measure one sets. More precisely, 
for n ∈ ω, given X ⊆ D

n+1 we say X ∈ Un if

∀∗
μ̄�z(0)∀∗

ν̄�z(1) · · · ∀∗
G�z(n) (〈�z(i) | i < n + 1〉 ∈ X).

In the definition above, G = μ̄ if n is even and G = ν̄ otherwise. We also define P as 
follows. Conditions will be pairs (p, �U), with �U(n) ∈ Un for all n ∈ ω and such that 
p = 〈�di | i < n〉 is a sequence of elements in D, such that �di is in L[x, T ] for any (all) 
x ∈ �di+1(0) and it is countable there. We say (q, �W ) ≤P (p, �U) if ∃n∃r ∈ D

n q = p�r

and r�s ∈ �U(n + k) for all k and all s ∈ �W (k). As in Section 6 of [3] we will have 
that P has the Prikry property, which is to say that given a forcing statement Φ and a 
condition (p, �U) ∈ P, there is �W such that (p, �W ) decides Φ. We summarize the facts of 
this forcing that we will use (see [22]).

• For a given set a that admits a well order rudimentary in a, there is a cone of reals 
x such that HODL[T,x]

T,a |= ω
L[T,x]
2 is Woodin. For a real x we let δ(x) = ω

L[T,x]
2 . And 

for a Σ2
1-degree d, we let δ(d) = δ(x) for any (all) x ∈ d.

• Given 〈�di | i < n〉 ∈ D
n, we let

Q0(�d) = HODL[�d0,T ]
�d0,T

| sup{δ(d0(n)) | n ∈ ω},

and

Qi+1(�d) = HODL[T,�di+1]
Qi,�di+1,T

|(sup{δ(di+1(n)) | n ∈ ω}).

• Given G generic for P define g =
⋃

{p | (p, �U) ∈ G for some �U}. Let Qi(g) be 
Qi(g � i). Then L[∪i∈ωQi(g), T ] has ω2 many Woodin cardinals.

• If σi = {x | ∃n(x ∈ �di(n))} then the tail filter F generated by (σi : i ∈ ω) is such 
that L(R, F) |= AD + ω1 is R-supercompact.

Let us fix G a V-generic filter for P and let F be its associated tail filter. We claim 
that L(R, μ) = L(R, F) = L(R, ν). For this, suppose that A ∈ F ∩ V , we will show 
A ∈ μ. Otherwise we have A /∈ μ. Let (p, �U) � A ∈ F . Let �W be defined as �W (2n) =
�U(2n) ∩ D \ Ā, and �W (2n + 1) = �U(2n + 1) for n ∈ ω (here Ā is the translation of A to 
D as defined before). But then it is clear that (p, �W ) � A /∈ F , a contradiction. Hence 
Lemma 28 implies that L(R, μ) = L(R, F), similarly L(R, ν) = L(R, F). So V = L(R, μ)
which is impossible. �



392 D. Rodríguez, N. Trang / Advances in Mathematics 324 (2018) 355–393
Hence P(R) is strictly larger than Pμ(R), and we can choose A ⊆ R such that L(R, μ)
and L(R, ν) are definable (from parameters) in L(R, A) and hence the result follows from 
Theorem 60.

Now, assume AD+ does not hold, then we have that Pμ(R) is strictly smaller than 
P(R) (because AD+ holds in L(R, μ)). Let Γ = {A ⊂ R | L(R, A) |= AD+}. By [26, 
Theorem 9.14], we have that L(R, Γ) |= AD+. We have two cases. If Γ strictly contains 
Pμ(R), then we have that L(R, μ) is definable from parameters in L(R, Γ) and hence one 
can work in L(R, Γ) and the theorem follows from Theorem 60.

If Γ = Pμ(R), then Γ �= P(R) and, by Theorem 9.14 of [26] again, we get L(R, Γ) |=
ADR, and so L(R, μ) |= ADR, which is a contradiction. �
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