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Abstract—Proper integration of energy storage systems (ESS)
into existing or future grids will depend on the effectiveness
of models which seek optimal placement and sizing at the
transmission and distribution levels. Current literature reviews
reveal sizing methodologies can be improved to ease infras-
tructure integration, and those works with models useful for
planning focus solely on micro-grids, wind power and forecasting,
photovoltaics, or small communities. It is of interest to create
an efficient, reliable ESS sizing model for large scale grids that
contains interpretable models, has less sensitivity due to low
model uncertainty, yet still is dependable due to an imposed
reliability criterion. This work determined the minimum feasible
size ESS to satisfy reserve requirements for a power grid with a
high penetration of renewable sources. Results showed imposing a
reliability criterion through loss of load expectation (LOLE) and
energy index of reliability (EIR) resulted in more conservative
capacity needs.

I. INTRODUCTION

As energy portfolios grow more diverse, a larger penetration

of renewable sources, such as wind and solar power, can be

found on the power grid. Integrating high levels of renewables

presents challenges for system generation scheduling and

ancillary services due to their intermittency [1]. The flexibility

required by the future power grid can not be supported

solely by existing infrastructure. Generation variability and

uncertainty in production can impact reliability, power quality,

efficiency, and many other aspects of both generation and

transmission. Energy storage systems (ESS) have the potential

to lessen the flexibility requirement by compensating when

power generation and demand differ significantly [2].

Proper integration of ESS into existing or future grids will

depend on the effectiveness of models which seek optimal

placement and sizing at the transmission level. Existing models

for sizing ESS lack the ability to translate results into a useful

manner for utilities and planning [1]. In 2010, researchers at

Pacific Northwest National Laboratory (PNNL) compiled a

literature review of models and analytical tools which seek

to optimize the siting, sizing, and economic value of energy

storage in a smart grid infrastructure. Despite the breadth of

models compared, the authors concluded that there was no

tool ”...that specifically [dealt] with sizing and locating energy

storage under any optimality criterion that would be useful

for infrastructure development” [1]. Ru, Klessi, and Martinez

claimed in 2014 that, thus far, contributions to the theoretical

analysis of storage sizing had been limited [3].

Moreover, many sizing models with analytical methods

useful for planning focus solely on micro-grids, only wind

power and wind forecasting, only photovoltaics, or small

communities [3]–[11]. In a review of methods for ESS siting

and sizing from 2016 [12], results show that only two works,

[13] and [14], utilize analytical methods without mathematical

optimization tools to size energy storage with reliability con-

straints. Of the two previously mentioned results from [12],

the former presents a general methodology to determine the

size of a backup storage unit for ”a hospital, process plant, or

a military base” [13]. The latter’s method is demonstrated on

a micro-grid [14]. Sizing ESS at this scale does not produce

a need for reliability constraints because they only service

single consumers. Thus, a universal methodology for determin-

ing reserve requirements for storage to manage demand and

supply imbalance with ease of implementation and reliability

guarantees for large scale power grids is necessary.

A. Reserve Sizing Methods

Various techniques have been explored to estimate energy

storage requirements in the presence of a high penetration

of renewables. A popular method, seen in [10], [15], [16],

is to use stochastic optimization to find optimal ESS size

while minimizing operation cost and considering transmission

constraints. This is known as a system simulation approach

[10], [17]. Results from Monte Carlo simulations or multiple

scenarios provide the cost of a predefined level of reserves and

an accurate computation of reliability [17], [18].

Deterministic and probabilistic techniques can be used to

size reserves. Both approaches can be static or dynamic in

reference to system conditions. An overview of both these

methods can be found in [19]. Deterministic methods size

reserves according to a specific event (e.g. largest credible

contingency) and are advantageous because of their simplicity.

No production cost models or comprehensive storage models

are required for results. However, results may lead to an

overestimate of reserves and costs for the system since there



is no account for the probability of events. Seen in [20], the

maximum feasible ESS size was determined by identifying

different cycling components of the balancing power. Xiao,

et. al. use a similar method to [20], but instead coordinate

ESS sizing with a diesel generator for micro-grid applications

[5]. Ru, et. al. size ESS as a finite horizon deterministic

optimization problem, but results produce only lower and

upper bounds of storage requirements [8]. In [6], methods

from [20] are compared to a discrete wave transform (DWT)

method for sizing hybrid ESS (NaS battery and compressed

air), using wind power forecast error (WPFE) to size reserves.

In addition, the authors utilize ESS properties to better size

the reserve requirement.Dynamic probabilistic assessments

are demonstrated in [21] to allocate the necessary storage

requirement for hedging operational uncertainty induced by

the wind power forecasts.

Though more complex and computationally intensive, prob-

abilistic methods allow for reserve sizing based on an im-

posed reliability criterion. Using a probability density function

(PDF), desired reliability can be used as a cutoff to determine

the amount of reserves. In [9], a probabilistic approach is

used to determine requirements for a hybrid energy storage

system composed of a lead-acid battery and super capacitor

for a single wind farm. A similar approach in [17] is used

to estimate reserve requirements and further categorize the

reserves based on imbalance drivers for North Sea Country.

However, reserves are only sized to suit uncertainty in WPFE,

similar to [6].

B. Need for Simpler ESS Sizing Models

It is of interest to create an efficient, reliable ESS sizing

model that does not use optimization, but utilizes a proba-

bilistic approach. The benefits of such a model are that it

has a more physically interpretable model, has less sensitivity

due to low model uncertainty, yet still is dependable due to

an imposed reliability criterion. At the time this paper was

completed, there was no existing work which sought to satisfy

all of the above requirements for a large scale grid except for

[17]. This work differs from the aforementioned paper in the

use of reserves sized. Our work assumes that both highly-

variable and unpredictable generation will contribute to the

amount of reserves instead. This means that concurrent ESS

used to satisfy reserve requirements will cater to a portion

of predictable generation, in addition to the unpredictable

generation. This will be further specified in II.

The objective of this research is to determine the minimum

feasible size of ESS to satisfy reserve requirements for a

power grid with a high penetration of renewable sources.

The methodology used in [20] will be followed to identify

the reserve requirements from imbalance power. Subsequently,

a loss of load probability (LOLP) will be specified and the

required power and energy capacities will be chosen. Results

with and without the imposed LOLP will be compared. Lastly,

the selected LOLP will be equated to an additional reliability

index for thoroughness and to enhance interpretability.

II. METHODOLOGY

The required capacity of ESS depends on both load and

the controllable generation that supplies part of the net load,

the latter being load minus the renewable generation. We start

with definitions of these quanities.

A. Decomposition of Balancing Power

The ability of a generator to dynamically vary output can be

quantified by ramp rate and ramp duration. When unexpected

events occur, such as a large step change in generation set-

point, generators may be required to modify their output

to meet demand. If this adjustment requires faster ramp

rates with shorter ramp durations, existing generators may

have difficulty adapting. Varying generation set-points often

require these ramp characteristics. As the power grid sees

higher penetrations of renewable sources, varying generation

set-points become more common. With this, the difference

between demand and generation will be large, resulting in

frequency deviations and possible generator shut down as

a contingency measure. ESS can assist in managing this

mismatch or imbalance by acting as regulating or ramping

reserves as defined in Table I by Holttinen [19].

In an ideal setting, total demand, D(t), equals total gener-

ation G(t) plus the power delivered by the ESS, S(t):

D(t) = G(t) + S(t), (1)

where all three quantities have the unit of power (Watt). The

quantity S(t) can be positive or negative; S(t) > 0 means the

ESS is discharging (acting as a generator) and S(t) < 0 means

it is charging (acting as a load) at time t. Power generation

can be separated into two components, Gc(t) and Gr(t):

G(t) = Gc(t) +Gr(t). (2)

Controllable generation; nuclear, hydro, fossil, and biomass, is

represented by Gc(t). The symbol Gr(t) refers to the uncon-

trollable renewable generation from solar and wind sources.

Because D(t) and Gr(t) are known, they can be rewritten

as D̃(t), the net-load signal in (3), and must be supplied by

controllable generation and ESS.

D̃(t)
∆
= D(t)−Gr(t) (3)

Net-load will also be referred to as net-demand or imbal-

ance power. Decomposing D̃(t) into low and high frequency

components using an appropriately designed filter allows a

balancing authority to identify portions of the net-load to be

supplied by controllable sources and energy storage devices.

In particular, the slowly-varing “low-pass” component of the

net-demand can be supplied by controllable generators, while

the remaining high-pass component is assumed to be supplied

by ESS. We denote the low-pass component of the net-load

as D̃LP (t). Thus,

D̃(t) = D̃LP (t) + D̃HP (t) (4)

where D̃HP (t) is the high pass component. The cutoff fre-

quency of the low-pass filter, which we denote by ω, is



the highest frequency sinusoid that can be tracked by the

controllable generators. This frequency is determined by the

ramp rate constraints of all the controllable generators.

Substituting (2) and (4) into (1), produces (5) below.

D̃LP (t) + D̃HP (t)−Gc(t)− S(t) = 0 (5)

For an ideal, isolated system, the low-frequency component

of the net-load signal should be nearly equal to controllable

generation.

D̃LP (t) = Gc(t) (6)

This reduces (5) to a simple equality where the high-pass

component of the net-load signal should be equal to the

amount of required storage.

D̃HP (t) = S(t) (7)

Therefore, the required power capacity for an energy storage

device up to time k in an interval [0,K] is given by (8). It

follows, the required energy capacity is the sum of power

capacity up to time k multiplied by time increment, ∆t.

Pk
∆
= D̃HP (t) Ek

∆
=

k∑

j=1

Pj∆t (8)

To explain further , consider an alternate form of (6) and

(7). Substituting (3) into (6) and (7), results in (9) and (10).

This result illustrates that the high-frequency component of

the demand signal and renewable energy generation will be

serviced by ESS. Energy storage ramping capabilities are

better suited for fast regulation and load following, which

are synonymous with the intermittent nature of renewable

sources. Also, a portion of D(t) and Gr(t) can be serviced

by Gc(t). Renewable generation is much less predictable than

demand, so Gr(t) can be considered random while D(t) can

be modeled as deterministic, making S(t) a stochastic variable.

Further, the net load is modeled as a stochastic process.

The remaining, low pass component will be well serviced

by generator set-points arising out of the real-time planning

process by the grid operator, which are based on the pre-

dictable portion of the demand and renewable generation.

What is more, it is useful to mention Gc(t) is not random,

and considered to be known since their power consumption

can be varied slowly.

(D(t)−Gr(t))LP = Gc(t) (9)

(D(t)−Gr(t))HP = S(t) (10)

For a bulk power system, ω can be identified by an assessment

of the Fourier Transform of Gc(t). Aside, the reference method

[20], divides D̃(t) into four ranges: slow-cycling, intra-day,

intra-hour, and real-time. However, theit partial balance results

state that slow-cycling and intra-day are assumed to be handled

by existing generators and ESS will compensate for the intra-

hour and real-time frequency components of the net-load.

Thus, the reference method divides the imbalance signal in

a similar, almost identical, fashion to this work.

B. Capacity Formula

The proposed method seeks to determine the storage ca-

pacity CP,E such that the probability of failing to deliver the

charging/discharging requirement S(t) is smaller than α for

some small α > 0. The number α is called the Loss of Load

Probability (LOLP)[22]. A smaller choice of α will necessitate

a larger and thus more expensive ESS, but the probability of

failing to meet the demand will be reduced. A larger α will

have the opposite effect.

For computing the relevant quanitities, we need a proba-

bilistic model of the storage requirement. To facilitate this

development, we introduce two intermediate stochastic pro-

cesses. The first one, called daily required power, P
req,d
i is

defined as

P
req,d
i

∆
= max

k∈K(i)
|Pk| E

req,d
i

∆
= max

k∈K(i)
|Ek| (11)

where K(i) is the set of time indices corresponding to the i-th

day. In short, (P req,d
i , E

req,d
i ) is the minimum capacity of a

battery that can fulfill the requirements on the i-th day.

We assume that the P
req,d
i , E

req,d
i are stationary stochastic

processes. In the sequel we denote by P req,d, Ereq,d two

random variables whose pdfs describe the marginal pdfs

of the any of the P
req,d
i , E

req,d
i ’s. The minimum capacity

Pstore, Estore for a given LOLP α is now defined as

Pstore
∆
= min

CP

{CP |Pr(Preq,d ≤ CP ) ≥ 1− α} (12)

Estore
∆
= min

CE

{CE |Pr(Ereq,d ≤ CE) ≥ 1− α} (13)

The rationale for introducing these is the stationarity as-

sumption. A stationary model is much more convenient to

deal with than a non-stationary model. A fast sampling period

is necessary to capture all the large spikes in net demand

that have a strong impact on grid balancing. With a fast

sampling, the stochastic processes Pk, Sk will exhibit highly

non stationary behavior due to the intra-hour or intra-day vari-

ations in the statistics of renewable generation. These strong

daily variations get aggregated in the daily requirements. Even

though seasonal variations remain, a stationary assumption on

the daily requirements is much more defensible than on the

minute-by-minute requirements.

III. APPLICATION TO BPA DATA

To illustrate how the proposed method in Section II can be

applied to an existing power system, we apply the method to

a year of 5-minute sampled data available from Bonneville

Power Administration [23]. This time interval was chosen to

correspond with the common expression of LOLP in units of

days per year [22].

Since ramp rate constraints of all the generators in BPA’s

jurisdiction were not available, we estimate the frequency ω

described in Section II-A from a Fast Fourier Transform (FFT)

of the conventional generation data. FFT analysis showed that

the highest frequency serviced by conventional generators was

roughly 1
30minutes

; the amplitude of generation FFT reduces

significantly at frequencies higher than this point. A second








