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Abstract—Proper integration of energy storage systems (ESS)
into existing or future grids will depend on the effectiveness
of models which seek optimal placement and sizing at the
transmission and distribution levels. Current literature reviews
reveal sizing methodologies can be improved to ease infras-
tructure integration, and those works with models useful for
planning focus solely on micro-grids, wind power and forecasting,
photovoltaics, or small communities. It is of interest to create
an efficient, reliable ESS sizing model for large scale grids that
contains interpretable models, has less sensitivity due to low
model uncertainty, yet still is dependable due to an imposed
reliability criterion. This work determined the minimum feasible
size ESS to satisfy reserve requirements for a power grid with a
high penetration of renewable sources. Results showed imposing a
reliability criterion through loss of load expectation (LOLE) and
energy index of reliability (EIR) resulted in more conservative
capacity needs.

I. INTRODUCTION

As energy portfolios grow more diverse, a larger penetration
of renewable sources, such as wind and solar power, can be
found on the power grid. Integrating high levels of renewables
presents challenges for system generation scheduling and
ancillary services due to their intermittency [1]. The flexibility
required by the future power grid can not be supported
solely by existing infrastructure. Generation variability and
uncertainty in production can impact reliability, power quality,
efficiency, and many other aspects of both generation and
transmission. Energy storage systems (ESS) have the potential
to lessen the flexibility requirement by compensating when
power generation and demand differ significantly [2].

Proper integration of ESS into existing or future grids will
depend on the effectiveness of models which seek optimal
placement and sizing at the transmission level. Existing models
for sizing ESS lack the ability to translate results into a useful
manner for utilities and planning [1]. In 2010, researchers at
Pacific Northwest National Laboratory (PNNL) compiled a
literature review of models and analytical tools which seek
to optimize the siting, sizing, and economic value of energy
storage in a smart grid infrastructure. Despite the breadth of
models compared, the authors concluded that there was no
tool ”...that specifically [dealt] with sizing and locating energy
storage under any optimality criterion that would be useful
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for infrastructure development” [1]. Ru, Klessi, and Martinez
claimed in 2014 that, thus far, contributions to the theoretical
analysis of storage sizing had been limited [3].

Moreover, many sizing models with analytical methods
useful for planning focus solely on micro-grids, only wind
power and wind forecasting, only photovoltaics, or small
communities [3]-[11]. In a review of methods for ESS siting
and sizing from 2016 [12], results show that only two works,
[13] and [14], utilize analytical methods without mathematical
optimization tools to size energy storage with reliability con-
straints. Of the two previously mentioned results from [12],
the former presents a general methodology to determine the
size of a backup storage unit for “a hospital, process plant, or
a military base” [13]. The latter’s method is demonstrated on
a micro-grid [14]. Sizing ESS at this scale does not produce
a need for reliability constraints because they only service
single consumers. Thus, a universal methodology for determin-
ing reserve requirements for storage to manage demand and
supply imbalance with ease of implementation and reliability
guarantees for large scale power grids is necessary.

A. Reserve Sizing Methods

Various techniques have been explored to estimate energy
storage requirements in the presence of a high penetration
of renewables. A popular method, seen in [10], [15], [16],
is to use stochastic optimization to find optimal ESS size
while minimizing operation cost and considering transmission
constraints. This is known as a system simulation approach
[10], [17]. Results from Monte Carlo simulations or multiple
scenarios provide the cost of a predefined level of reserves and
an accurate computation of reliability [17], [18].

Deterministic and probabilistic techniques can be used to
size reserves. Both approaches can be static or dynamic in
reference to system conditions. An overview of both these
methods can be found in [19]. Deterministic methods size
reserves according to a specific event (e.g. largest credible
contingency) and are advantageous because of their simplicity.
No production cost models or comprehensive storage models
are required for results. However, results may lead to an
overestimate of reserves and costs for the system since there



is no account for the probability of events. Seen in [20], the
maximum feasible ESS size was determined by identifying
different cycling components of the balancing power. Xiao,
et. al. use a similar method to [20], but instead coordinate
ESS sizing with a diesel generator for micro-grid applications
[5]. Ru, et. al. size ESS as a finite horizon deterministic
optimization problem, but results produce only lower and
upper bounds of storage requirements [8]. In [6], methods
from [20] are compared to a discrete wave transform (DWT)
method for sizing hybrid ESS (NaS battery and compressed
air), using wind power forecast error (WPFE) to size reserves.
In addition, the authors utilize ESS properties to better size
the reserve requirement.Dynamic probabilistic assessments
are demonstrated in [21] to allocate the necessary storage
requirement for hedging operational uncertainty induced by
the wind power forecasts.

Though more complex and computationally intensive, prob-
abilistic methods allow for reserve sizing based on an im-
posed reliability criterion. Using a probability density function
(PDF), desired reliability can be used as a cutoff to determine
the amount of reserves. In [9], a probabilistic approach is
used to determine requirements for a hybrid energy storage
system composed of a lead-acid battery and super capacitor
for a single wind farm. A similar approach in [17] is used
to estimate reserve requirements and further categorize the
reserves based on imbalance drivers for North Sea Country.
However, reserves are only sized to suit uncertainty in WPFE,
similar to [6].

B. Need for Simpler ESS Sizing Models

It is of interest to create an efficient, reliable ESS sizing
model that does not use optimization, but utilizes a proba-
bilistic approach. The benefits of such a model are that it
has a more physically interpretable model, has less sensitivity
due to low model uncertainty, yet still is dependable due to
an imposed reliability criterion. At the time this paper was
completed, there was no existing work which sought to satisfy
all of the above requirements for a large scale grid except for
[17]. This work differs from the aforementioned paper in the
use of reserves sized. Our work assumes that both highly-
variable and unpredictable generation will contribute to the
amount of reserves instead. This means that concurrent ESS
used to satisfy reserve requirements will cater to a portion
of predictable generation, in addition to the unpredictable
generation. This will be further specified in IIL.

The objective of this research is to determine the minimum
feasible size of ESS to satisfy reserve requirements for a
power grid with a high penetration of renewable sources.
The methodology used in [20] will be followed to identify
the reserve requirements from imbalance power. Subsequently,
a loss of load probability (LOLP) will be specified and the
required power and energy capacities will be chosen. Results
with and without the imposed LOLP will be compared. Lastly,
the selected LOLP will be equated to an additional reliability
index for thoroughness and to enhance interpretability.

II. METHODOLOGY

The required capacity of ESS depends on both load and
the controllable generation that supplies part of the net load,
the latter being load minus the renewable generation. We start
with definitions of these quanities.

A. Decomposition of Balancing Power

The ability of a generator to dynamically vary output can be
quantified by ramp rate and ramp duration. When unexpected
events occur, such as a large step change in generation set-
point, generators may be required to modify their output
to meet demand. If this adjustment requires faster ramp
rates with shorter ramp durations, existing generators may
have difficulty adapting. Varying generation set-points often
require these ramp characteristics. As the power grid sees
higher penetrations of renewable sources, varying generation
set-points become more common. With this, the difference
between demand and generation will be large, resulting in
frequency deviations and possible generator shut down as
a contingency measure. ESS can assist in managing this
mismatch or imbalance by acting as regulating or ramping
reserves as defined in Table I by Holttinen [19].

In an ideal setting, total demand, D(t), equals total gener-
ation G(t) plus the power delivered by the ESS, S(t):

D(t) = G(t) + 5(1), (1)

where all three quantities have the unit of power (Watt). The
quantity S(t) can be positive or negative; S(¢) > 0 means the
ESS is discharging (acting as a generator) and S(¢) < 0 means
it is charging (acting as a load) at time ¢. Power generation
can be separated into two components, G.(t) and G,(t):

G(t) = Gc(t) + G, (t) (2)

Controllable generation; nuclear, hydro, fossil, and biomass, is
represented by G.(t). The symbol G,.(t) refers to the uncon-
trollable renewable generation from solar and wind sources.

Because D(t) and G,.(t) are known, they can be rewritten
as D(t), the net-load signal in (3), and must be supplied by
controllable generation and ESS.

D(t) £ D(t) - G, (1) 3)
Net-load will also be referred to as net-demand or imbal-
ance power. Decomposing D(t) into low and high frequency
components using an appropriately designed filter allows a
balancing authority to identify portions of the net-load to be
supplied by controllable sources and energy storage devices.
In particular, the slowly-varing “low-pass” component of the
net-demand can be supplied by controllable generators, while
the remaining high-pass component is assumed to be supplied
by ESS. We denote the low-pass component of the net-load
as Dpp(t). Thus,

D(t) = Drp(t) + Dup(t) 4)

where Dy p(t) is the high pass component. The cutoff fre-
quency of the low-pass filter, which we denote by w, is



the highest frequency sinusoid that can be tracked by the

controllable generators. This frequency is determined by the

ramp rate constraints of all the controllable generators.
Substituting (2) and (4) into (1), produces (5) below.

Drp(t) + Dyp(t) — Ge(t) — S(t) =0 (5)

For an ideal, isolated system, the low-frequency component
of the net-load signal should be nearly equal to controllable
generation.

Drp(t) = Ge(t) (6)

This reduces (5) to a simple equality where the high-pass
component of the net-load signal should be equal to the
amount of required storage.

Dpp(t) = 5(t) ©)

Therefore, the required power capacity for an energy storage
device up to time k in an interval [0, K] is given by (8). It
follows, the required energy capacity is the sum of power
capacity up to time k multiplied by time increment, At.

k
Po2Dyup(t)y  Ex2Y Pt (8)

j=1

To explain further , consider an alternate form of (6) and
(7). Substituting (3) into (6) and (7), results in (9) and (10).
This result illustrates that the high-frequency component of
the demand signal and renewable energy generation will be
serviced by ESS. Energy storage ramping capabilities are
better suited for fast regulation and load following, which
are synonymous with the intermittent nature of renewable
sources. Also, a portion of D(t) and G,(t) can be serviced
by G.(t). Renewable generation is much less predictable than
demand, so G,.(t) can be considered random while D(t) can
be modeled as deterministic, making S(t) a stochastic variable.
Further, the net load is modeled as a stochastic process.

The remaining, low pass component will be well serviced
by generator set-points arising out of the real-time planning
process by the grid operator, which are based on the pre-
dictable portion of the demand and renewable generation.
What is more, it is useful to mention G.(¢) is not random,
and considered to be known since their power consumption
can be varied slowly.

(D(t) = Gr(t))Lp = Gel(t) ©)
(D) = Gr(t))up = S(t)

For a bulk power system, w can be identified by an assessment
of the Fourier Transform of G.(t). Aside, the reference method
[20], divides D(t) into four ranges: slow-cycling, intra-day,
intra-hour, and real-time. However, theit partial balance results
state that slow-cycling and intra-day are assumed to be handled
by existing generators and ESS will compensate for the intra-
hour and real-time frequency components of the net-load.
Thus, the reference method divides the imbalance signal in
a similar, almost identical, fashion to this work.

(10)

B. Capacity Formula

The proposed method seeks to determine the storage ca-
pacity Cp g such that the probability of failing to deliver the
charging/discharging requirement S(¢) is smaller than « for
some small o > 0. The number « is called the Loss of Load
Probability (LOLP)[22]. A smaller choice of a: will necessitate
a larger and thus more expensive ESS, but the probability of
failing to meet the demand will be reduced. A larger o will
have the opposite effect.

For computing the relevant quanitities, we need a proba-
bilistic model of the storage requirement. To facilitate this
development, we introduce two intermediate stochastic pro-
cesses. The first one, called daily required power, P/ “?% is
defined as

Eread 2 max |Ey

Pireq,d A max |Pk| x
ket

ke

(an

where K is the set of time indices corresponding to the i-th
day. In short, (P EI“®%) is the minimum capacity of a
battery that can fulfill the requirements on the i-th day.

We assume that the P/“", ET°? are stationary stochastic
processes. In the sequel we denote by P7¢%4 ETeed two
random variables whose pdfs describe the marginal pdfs
of the any of the Pireq’d,EiT “@d>s The minimum capacity
Psiore, Estore for a given LOLP « is now defined as

Psiore é Igin{CP|Pr(Preq,d < CP) >1- a} (12)
P

Estore é IgiEn{CE‘Pr(Ereq,d < CE) > 1- a} (13)

The rationale for introducing these is the stationarity as-
sumption. A stationary model is much more convenient to
deal with than a non-stationary model. A fast sampling period
is necessary to capture all the large spikes in net demand
that have a strong impact on grid balancing. With a fast
sampling, the stochastic processes P, .S, will exhibit highly
non stationary behavior due to the intra-hour or intra-day vari-
ations in the statistics of renewable generation. These strong
daily variations get aggregated in the daily requirements. Even
though seasonal variations remain, a stationary assumption on
the daily requirements is much more defensible than on the
minute-by-minute requirements.

III. APPLICATION TO BPA DATA

To illustrate how the proposed method in Section II can be
applied to an existing power system, we apply the method to
a year of 5-minute sampled data available from Bonneville
Power Administration [23]. This time interval was chosen to
correspond with the common expression of LOLP in units of
days per year [22].

Since ramp rate constraints of all the generators in BPA’s
jurisdiction were not available, we estimate the frequency w
described in Section II-A from a Fast Fourier Transform (FFT)
of the conventional generation data. FFT analysis showed that
the highest frequency serviced by conventional generators was
roughly z5—bL——: the amplitude of generation FFT reduces
significantly at frequencies higher than this point. A second
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Fig. 1: Power Profile for One Week in 2016.

TABLE I: Comparison of the ESS Capacities for 2016

Makarov’s | Proposed Percent
Method Method Reduction
[20]
Power Capacity 4.2 GW 2.4 GW 53.2%
Energy Capacity | 70.5 GWh | 60.9 GWh 14.7%
order high-pass Butterworth filter with w = m was

used to find Pj. Energy capacity Ej is computed as the
cumulative trapezoidal integral of Py, with spacing At. The
samples of P for one are shown in Fig. 1 for reference.

Once samples of P, and E}, were obtained for a particular
time interval, the daily requirements were computed over the
same interval. We first used the data for 2016, which yielded
365 samples of the random variable’s P("¢¢4) and E(rea.d),
PDFs of P("¢¢®) and E(¢%) are first estimated using a
Kernel Density Estimator (KDE) in Matlab© using these
365 samples. A Gaussian kernel with optimal bandwidth is
used in the KDE estimation. Then, the PDFs are summed
and smoothed to create a single PDF for time period [0, K].
Using ideal bandwidth from MATLAB’s fitdist function, PDF
results showed multi-modal, non-symmetric distributions with
heavy-tails. Finally, the probabilities in (12) and (13) are
computed from the estimated pdfs. The ESS capacities can be
simply determined from the cumulative distribution functions
(CDF) as the capacity values corresponding to 1 — .. Table I
shows the resulting capacities for 2016, with a« = 0.01. For
comparison, results obtained by using the deterministic sizing
method of [20] are also shown. As expected, the proposed
probabilistic method leads to a smaller capacity requirement
than the deterministic method of Makarov. It is noticeable that
relaxing the reliability to 99% from 100% (i.e., deterministic)
reduces the power capacity by nearly half which is anticipated
to have a large impact on cost. However, a cost discussion is
beyond the scope of this work.

For o« = 0.01, with an ESS of this capacity the balancing
authority is expected to meet the demand at least 99% of time,
or 361.35 days per year. Increasing the chosen « results in
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Fig. 2: Resulting capacity from varied o values (2016).

smaller capacities, as expected, but the amount of days demand
is met would decrease. Fig. 2 shows how the capacities vary
with a.

Although LOLP defines the probability of shortage, it
does not describe the severity. An alternate metric that does
capture the severity of shortage is Expected Energy Not Served
(EENS) [10]:

365
Al i
BENS £ =3 (B — Baore)l g o, (14
=1

EENS is a measure of lost electricity demand when demand
exceeds available generation. As seen in (14), EENS is the sum
of probabilities on the days when required energy is greater
than ESS energy capacity.

Expected energy demand (EE) is the total energy demanded
by the grid, which would be the sum of all E}, at each time

index 1.
365

EEZ2 % 3" Breg(i) (15)
i=1

Normalizing EENS by EE produces the energy index of reli-
ability (EIR), an additional metric normally used by transmis-
sion system operators (TSO) to assess adequacy of generation
and transmission systems. It ensures that both large and small
systems can be compared on an equal basis and that the
evolution of load in a system can be tracked [24]. Use of EIR
is becoming more popular because it reflects the true risk of
not meeting demand and has more physical significance than
LOLP [25]. Eq. (16) was used to compute EIR values [10].

EENS
EE

In this context, EIR quantifies the risk of ESS being too small,
or the effect of ignoring the amount of load lost if the ESS
is sized based on Py and Eg,,.. but the true need exceeds
these values. Fig. 3 shows a how varying « correlates to EIR.
The relationship between 1 — o and EIR is almost directly
proportional as expected, indicating that when load can be
met for more days per year the severity of deficiencies is

EIR=1-

(16)



TABLE II: Comparing o using the Proposed Method

LOLP
1 day/year | 3.65 days/year | Percent
Reduction
«a 0.00216 0.01 N/A
Power Capacity 3.2 GW 2.4 GW 28.7%
Energy Capacity | 70.5 GWh | 60.9 GWh 14.7%
EIR 1.000 0.9998 0.02%
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smaller (close to 1). However, when load cannot be met as
often (higher o, lower 1—a), EIR reduces significantly leading
to more consumer impact. With our method, it is possible to
provide ESS capacity estimates up to a LOLP of 0.79 days
per year, or o = 0.00216. Table II shows a comparison of the
aforementioned LOLP and capacities.

A. Future Work

Follow-up to this investigation will be the development of
a parametric model to generate time series PDFs used in the
prediction of future ESS needs. No clear trends were found in
the comparison of yearly PDFs, seen in Fig. 4. Moreover, there
was poor correlation between installed BPA wind capacity
and our ESS capacity results, shown in Fig. 5, indicating that
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Fig. 6: ESS Power Capacity and Average Renewable Genera-
tion Trends for BPA 2013-2017

installed renewable energy capacity is not a good predictor
of ESS needs for large scale power grids. Alternative metrics
must be used to assist in this more difficult planning problem.

Average demand and renewable generation proved to be
more useful metrics which followed similar trends to the
sizing requirements produced by our method. As shown in
Fig. 6, there was a correlation coefficient of roughly 0.7
between average renewable energy generation per year and
required ESS power capacity. Plus, average demand and
energy capacity revealed a correlation of about 0.85, seen
in Fig. 7. These strong correlations give us confidence in
our capacity estimates, and hence, our method. Furthermore,
these dominant relationships will assist in providing a more
interpretable model for future use in predicting ESS capacity
needs. Compiling Fig. 5 with correlating trends in Fig. 6 and
Fig. 7, a model which takes the year as an input index and
outputs the required capacities can be created.

IV. CONCLUSION

Load and renewable generation data from Bonneville Power
Administration (BPA) were used to identify regulating reserve
requirements from imbalance power for yearly intervals. Re-
sults showed imposing a reliability criterion through loss of
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load probability (LOLP) resulted in more conservative capac-
ity needs for an energy storage system (ESS). Additionally,
the interchangeability of LOLP with energy index of reliability
(EIR) was shown to illustrate this method’s ease of implemen-
tation for balancing authorities. The outcome of this work can
be used to answer a key decision problem resource adequacy
planning: How much regulating and ramping reserves are
necessary in a specified time frame? And, how can ESS
satisfy those reserves? Future work will explore a predictive
model generated by similar methodology for ESS in future
grid development.
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