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Green Simulation: Reusing the Output

of Repeated Experiments

MINGBIN FENG, University of Waterloo

JEREMY STAUM, Northwestern University

We introduce a new paradigm in simulation experiment design and analysis, called “green simulation,” for

the setting in which experiments are performed repeatedly with the same simulation model. Green simu-

lation means reusing outputs from previous experiments to answer the question currently being asked of

the simulation model. As one method for green simulation, we propose estimators that reuse outputs from

previous experiments by weighting them with likelihood ratios, when parameters of distributions in the sim-

ulation model differ across experiments. We analyze convergence of these estimators as more experiments

are repeated, while a stochastic process changes the parameters used in each experiment. As another method

for green simulation, we propose an estimator based on stochastic kriging. We find that green simulation

can reduce mean squared error by more than an order of magnitude in examples involving catastrophe bond

pricing and credit risk evaluation.
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1 INTRODUCTION

Consider a setting in which simulation experiments are performed repeatedly, using the same sim-
ulation model with different values of its inputs. As we discuss in detail below, such settings occur
when a simulation model is used routinely to support a business process, and over the lifecycle of
a simulation model as it goes from development to application in repeated simulation studies. In
these settings, the standard practice is that each new simulation experiment is designed to answer
a particular question without using the output of previous simulation experiments. We advocate
a paradigm of green simulation for repeated experiments, meaning that one should reuse output
from previous experiments to answer new questions. The benefit of green simulation is greater
computational efficiency. In this article, we show that when old simulation output is reused well,
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Fig. 1. Setting of repeated simulation experiments.

it provides greater accuracy when combined with a new simulation experiment than would be
achieved by the same new simulation experiment alone.
Green simulation entails a new perspective on management of simulation experiments. The

standard practice is to discard or ignore the output of a simulation experiment after it has deliv-
ered the desired answer. When a new question arises, a new simulation experiment is designed
to answer it without using the output of previous simulation experiments. From this perspec-
tive, running the simulation model is a computational cost or expense. From the green simulation
perspective, running the simulationmodel is a computational investment that provides future ben-
efits, because simulation output is a valuable resource to be used in answering questions that will
be asked of the simulation model in the future.

1.1 Settings

One setting of repeated simulation experiments occurs when simulation supports a business pro-
cess. For example, in finance and insurance, simulation models support pricing and risk manage-
ment decisions that are made periodically. At each period, current information, such as prices and
forecasts, is used to update the inputs to the model, and a simulation experiment is performed to
answer a question about price or risk. Similarly, in manufacturing, service, and logistics systems,
simulation models can be used routinely to provide information about expected completion times
and to support decisions about such matters as dispatching and staffing. A simulation experiment
is run whenever information is required, using inputs that describe the current state of the system.
Another setting of repeated simulation experiments occurs in the lifecycle of a simulationmodel

as it goes from development to application in simulation studies. First, experiments are performed
for purposes of verification and validation of the model. They may also be performed for model
calibration: to choose realistic values of unknown inputs. For these purposes, the simulation model
is run many times with different values of its inputs, to see how its outputs change with its input,
and where this behavior is reasonable and realistic. Once model development is complete, experi-
ments are performed for purposes such as making predictions for particular values of the inputs,
metamodeling, sensitivity analysis, and optimization. Moreover, some simulation models are used
in many simulation studies. Consequently, each model is used in several or many experiments.
Figure 1 illustrates a sequence of two repeated experiments, each with a single run. To clarify

our terminology, by “a run,” we mean one or more replications of simulation output generated
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with the inputs to the model held fixed. By a simulation “experiment,” we mean a collection of one
or more runs of a simulation model, designed for the purpose of answering a specific question. In
Figure 1, the first experiment has a single runwith input x1, and the second experiment has a single
run with input x2. Each run has r replications. The purpose of the nth experiment is to estimate
μ (xn ), the mean output of the simulation model when the input is xn . The standard practice is
to estimate μ (x2) in the second experiment using only the single run with input x2. The green
question mark in Figure 1 indicates the question answered in this article: “How can we reuse the
simulation output from the first experiment to improve our answer in the second experiment?”

1.2 Contributions

The main contribution of this article is to introduce the paradigm of green simulation for repeated
experiments and to demonstrate theoretically and experimentally that it yields significant benefits
in computational efficiency. Specifically, we investigate the case in which a simulation experiment
is run routinely (e.g., to support a business process) with updated values of inputs to the simula-
tion model. For this case, we propose, analyze, and test green simulation estimators based on the
likelihood ratio (LR) method and on stochastic kriging (SK). For the LR estimators to be applicable,
the changing inputs to the model must serve as parameters of distributions of random variables
generated in the simulation. In particular, we prove a novel theorem about how the LR estimators
converge as the number of repeated experiments increases, while the number of simulation repli-
cations per experiment remains constant. In this setting, the estimator based on standard practice
does not converge at all, but our LR estimators converge at the canonical rate for Monte Carlo:
variance inversely proportional to total computational budget. They converge at this rate even
though the total computational budget includes all previous experiments, which are not obviously
relevant to answering the question currently being asked of the simulation model. A secondary
contribution of this article is to import methods from multiple importance sampling (where im-
portance sampling is used for variance reduction) into the LR method (which reuses simulation
output), and to provide evidence that there can be great practical value to using one particular
weighting scheme in the LR method.

1.3 Literature Review

The core idea of green simulation, reusing simulation output, has been applied to isolated
experiments that contain multiple runs. Many types of simulation experiments use multiple
runs to learn about the model’s response surface, the function that maps the model’s inputs to a
performance measure. In stochastic simulation, this performance measure is often the expected
output of the simulation model. There are metamodeling and sensitivity analysis experiments that
run the model at different input values to learn about how the response surface varies, globally
or locally. In nested simulation experiments, an outer-level simulation generates random values
of the inputs at which it is desired to learn the value of the response surface of an inner-level
simulation. For example, in assessing the impact of uncertainty about a simulation model’s
input on the conclusions of a simulation study, this model is the inner-level simulation model,
and the outer-level simulation samples values of the inputs from an appropriate distribution. In
optimization via simulation experiments, the model is run at different input values in a search for
optimal input values. If simulation output from runs at some values of the inputs can be reused
in estimating the value of the response surface at another value of the inputs, then experiment
designs that involve multiple runs can be modified to be cheaper. It is unnecessary to run many
replications at every value of the inputs for which it is desired to estimate the value of the response
surface if estimates of these values can reuse output from runs at other values of the inputs. For
example, the nested simulation methods of Barton et al. (2014) and Xie et al. (2014) use stochastic
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kriging (Ankenman et al. 2010) to reuse output from a moderate number of runs to estimate the
value of the response surface for many values of the inputs, thus reducing the required number
of runs in the simulation experiment. The LR method, also known as the score function method,
has also been applied to reuse output within isolated experiments for metamodeling, sensitivity
analysis, and optimization, see, for example, L’Ecuyer (1990, 1993), Rubinstein and Shapiro (1993),
Kleijnen and Rubinstein (1996), Glasserman and Xu (2014), and Fu et al. (2015). We adopt the LR
method and SK as tools for reusing output across experiments.
In applications and surveys of the LR method that we have seen, such as Beckman and McKay

(1987), Rubinstein and Shapiro (1993), Kleijnen and Rubinstein (1996), and Glasserman and Xu
(2014), there is an isolated experiment within which each estimator reuses the output from a single
run. The exception isMaggiar et al. (2015): they construct an estimator by reusing output frommul-
tiple runs in an isolated experiment. We reuse output from multiple runs that come from multiple
experiments. More specifically, we propose to exploit the temporal view of inputs as experiments
are repeated over time. Even in the simple setting of a single run per experiment, which we ana-
lyze in this article, reusing output from multiple experiments entails reusing output from multiple
runs. Estimation using multiple simulation runs, weighted based on likelihood ratios, was given
the name multiple importance sampling by Veach (1997). On multiple importance sampling, see,
for example, Hesterberg (1988, 1995), Owen and Zhou (2000), Veach and Guibas (1995), and Veach
(1997). Drawing on this literature on multiple importance sampling, Maggiar et al. (2015) and Feng
and Staum (2015) use two of the LR estimators we use, the individual likelihood ratio (ILR) estima-
tor (Section 2.1) and the mixture likelihood ratio (MLR) estimator (Section 2.3); we also treat two
new green estimators: the weighted likelihood ratio (WLR) estimator (Section 2.2) and the green
stochastic kriging (GSK) estimator (Section 3).
The work of Maggiar et al. (2015) and our work differ in setting and findings. The key differ-

ences are that their work focuses on an isolated experiment with a deterministic simulation model,
whereas ours focuses on repeated experiments with a stochastic simulation model. Their goal is
optimization of the response surface after smoothing by convolution with a Gaussian kernel, to
reduce the influence of numerical noise in the deterministic simulation. They apply the likeli-
hood ratio method to the corresponding Gaussian random variable. Their convergence theorem
describes convergence to an optimal solution within an isolated optimization experiment with
an increasing number of iterations. Our green simulation paradigm applies broadly to stochastic
simulation, and we emphasize the setting of repeated experiments. Our convergence theorems
describe convergence of estimators of values of the response surface at some or all points as the
number of repeated experiments increases. Another difference between the work of Maggiar et al.
(2015) and our work is in the findings about the ILR and MLR estimators. They report that the
choice between ILR and MLR estimators makes “only a small difference on the performance” of
their optimization procedure when applied to a test bed of optimization problems. In Section 6, we
find that the difference between ILR and MLR estimators could be large, depending on the simu-
lation model and sequence of repeated experiments. We recommend the MLR estimator, which is
theoretically superior, because we find that it can work well in practice, even in cases where the
ILR estimator yields poor results.

2 GREEN SIMULATION VIA THE LIKELIHOOD RATIO METHOD

We develop green simulation estimators via the LR method in a setting of repeated experiments
with the same simulation model and some changing parameters that affect the likelihood of simu-
lated random variables. LetXn represent the parameters in the nth experiment, for example, prices
observed in the market on dayn or forecasted arrival rates for periodn. We treat {Xn : n = 1, 2, . . .}
as a discrete-time stochastic process taking values in a Polish space X. We use “state” to refer to
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an element of X or a random variable taking values in X, and “current” to refer to quantities asso-
ciated with the nth experiment. Thus, Xn is the current state. We suppose that the current state is
observable at the current time step n, when the current experiment needs to be run, but was not
observable earlier.
Given the current state Xn , the current simulation experiment samples a random vector Yn

according to the conditional likelihood h (·;Xn ). For example, h (y;x ) could be the conditional
probability density for a stock’s price to be y in one year given that the stock’s current price is
x . As another example, h (y;x ) could be the conditional probability density for the vector y of
interarrival times and service times given the arrival rate x , regarding service rate as fixed and not
included in x . We will write expectations in the form of integrals, which implicitly assumes that
Yn has a conditional probability density h (·;Xn ), but this is not essential; the setting allows for
continuous, discrete, and mixed conditional distributions.
The simulation output or simulated performance of the stochastic system is F (Yn ), where the

function F : Y �→ R represents the logic of the simulation model. For example, F (y) could be the
discounted payoff of a stock option if the stock’s price in one year isy, or F (y) could be the average
customer waiting time in a queue given the vector y of interarrival times and service times.
In the current experiment, we wish to estimate the conditional expected performance μ (Xn )

of the stochastic system given the current state Xn ; μ (Xn ) can also be described as the current
expected performance. The expected performance for state x is

μ (x ) = E [F (Yn ) |Xn = x] =

∫
Y
F (y) h (y;x ) dy, (1)

which is the same for all n. The current expected performance μ (Xn ) is a random variable, because
the current state Xn was not observable at time step 0. Figures of merit for an estimator, such as
bias and variance, should be evaluated conditional on the current state Xn .
The standard practice in the setting of repeated experiments is to estimate μ (Xn ) by the Standard

Monte Carlo (SMC) estimator,

μ̂SMC
r (Xn ) =

1

r

r∑
j=1

F
(
Y (j )
n

)
, (2)

based on running r replications of the simulation model with the parameters set according to the
current state Xn . For simplicity in notation, we have assumed that the number r of replications

is fixed, but this is not essential. We refer to {F (Y (j )
n ) : j = 1, . . . , r } as the output of the current

experiment. Clearly, μ̂SMC
r (Xn ) is conditionally unbiased for μ (Xn ), given Xn . The variance for

state x is

σ 2 (x ) = Var [F (Yn ) |Xn = x] =

∫
Y
(F (y) − μ (x ))2 h (y;x ) dy, (3)

which is the same for all n. The conditional variance of the SMC estimator, given the current state
Xn , is σ

2 (Xn )/r . Thus, to reduce the conditional variance of the SMC estimator, one must increase
the number r of replications in the current experiment.
We propose three LR estimators that reuse the output of the n − 1 previous experiments and

combine it with the current (nth) experiment’s output. In the current experiment, the target distri-
bution appears in the conditional expectation μ (Xn ) = E [F (Yn ) |Xn] that we are estimating. The
target distribution has the likelihood h (·;Xn ). In a previous experiment at time step k < n, the
sampling distribution had likelihood h (·;Xk ). To use the output of a previous experiment in esti-
mating μ (Xn ) in a way that is conditionally unbiased given the state history X1, . . . ,Xn , we can
adjust the old output by using the likelihood ratio between the target distribution and the sampling

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 4, Article 23. Publication date: October 2017.



23:6 M. Feng and J. Staum

distribution:

E

[
h (Yk ;Xn )

h (Yk ;Xk )
F (Yk ) |X1, . . . ,Xn

]
=

∫
Y

h (y;Xn )

h (y;Xk )
h (y;Xk ) F (y) dy = E [F (Yn ) |Xn]. (4)

In Section 5, we show that, under some conditions, the conditional variance of the LR estimators
goes to zero as the number n of experiments goes to infinity, even if the number r of replications
per experiment is fixed.
We make the following assumptions to support the LR estimators. Although not all of the as-

sumptions in the theorems are transparent, we show in the Appendix A that they can be verified
in a realistic example.

(A1) The nth simulation experiment is affected by n and the stochastic process
{Xn : n = 1, 2, . . .} only through the conditional likelihood h (·;Xn ) of the random vector
Yn . Specifically, the simulation logic F does not depend on Xn .

(A2) For any n, n′ � n, j, and j ′, given the state Xn , Y
(j )
n |Xn is conditionally independent of

the state Xn′ and the simulated random vector Y (j′)
n′ |Xn′ .

(A3) For any n, j, and j ′ � j, given the state Xn , the random vector Y (j )
n simulated in the jth

replication of the nth experiment is conditionally independent of Y (j′)
n .

(A4) For all x ∈ X, the likelihoods h (·;x ) have the same support Y .
(A5) For any state x ∈ X and any y ∈ Y , the likelihood h (y;x ) can be evaluated.
(A6) For any states x ,x ′ ∈ X, the target-x-sample-x ′ variance defined as

σ 2
x (x

′) =

∫
Y

(
F (y)

h (y;x )

h (y;x ′)
− μ (x )

)2
h (y;x ′) dy, (5)

and the expected performance μ (x ) defined in Equation (1) are finite.

In Assumption 1, it is essential for the LR method that the parameters that change affect only like-
lihoods, not the simulation logic F . Assumptions (A1) and (A2) imply that the current simulation
experiment is not affected directly by its time index n or by any past state Xn′ for n

′ < n or by
any of the output of a past experiment. We use these assumptions on the sequence of repeated
experiments to support our analysis of the LR estimators. Assumption (A3), which asserts that
each simulation experiment has independent replications, is made for the sake of simplicity in the
analysis. It is not essential to the LR method or its analysis: for example, it would be acceptable to
use stratified sampling within each experiment, and this would introduce the usual complications
in analyzing and estimating variance. Assumptions (A4) and (A5) ensure that the likelihood ratio
h (y;x ) /h (y;x ′) is finite and can be computed; it is not enough merely to be able to sample accord-
ing to the likelihood h (·;x ). Assumption (A6) is needed to give the LR estimators finite conditional
variance.
The need to satisfy these assumptions limits the applicability of the LRmethod. Furthermore, the

LR estimators could work poorly if the variances associated with Equation (5) are too large. This
can happen, for example, if the input x affects the likelihood of many independent terms. These are
known limitations of the LR method in general, not specific to green simulation. Despite them, in-
teresting examples may fit well into the LR framework. One such example, in Section 6.1, involves
simulating a random number of independent random variables and summing them. It might ap-
pear to pose a difficulty for the LR method if Yn is a random vector including the number of terms
in the sum and every term in the sum. We avoid this difficulty by defining Yn to be the sum and
working with its likelihood, not with the joint likelihood of the number of terms in the sum and
every term in the sum. By using such techniques if necessary, the LR method can be made to apply
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even to non-trivial examples. It is not always possible to make the LR method work well; in such
situations, one can use other green simulation methods, such as stochastic kriging (SK) (Section 3).

2.1 Individual Likelihood Ratio Estimator

Based on the fundamental idea of LR estimation expressed in Equation (4), we get the following
unbiased estimator of μ (x ) from the kth experiment:

μ̂LRk,r (x ) =
1

r

r∑
j=1

h
(
Y (j )
k

;x
)

h
(
Y (j )
k

;Xk

) F (Y (j )
k

)
.

Averaging these estimators from all previous experiments and the current (nth) experiment yields
the Individual Likelihood Ratio (ILR) estimator of μ (x ):

μ̂ I LRn,r (x ) =
1

n

n∑
k=1

μ̂LRk,r (x ) =
n∑

k=1

1

n
���
1

r

r∑
j=1

h
(
Y (j )
k

;x
)

h
(
Y (j )
k

;Xk

) F (Y (j )
k

)�	
 (6a)

=

r∑
j=1

n∑
k=1

1

nr

h
(
Y (j )
k

;x
)

h
(
Y (j )
k

;Xk

) F (Y (j )
k

)
. (6b)

The ILR estimator is so named because it contains likelihood ratios that each involve one individ-
ual sampling distribution; this distinguishes it from the mixture likelihood ratio (MLR) estimator
proposed in Section 2.3. In particular, μ̂ I LRn,r (Xn ) is our estimator of the current expected perfor-
mance μ (Xn ). However, the LR method enables us to estimate expected performance given a state
x that we never used in a sampling distribution.

The ILR estimator in Equation (6a) can be seen as the average of the individual LR estimators
μ̂LR
k,r

(x ) for k = 1, . . . ,n. If the target state is the current state, that is, x = Xn , then μ̂LRn,r (Xn ) is the

SMC estimator. It is worth emphasizing the difference between the present application of like-
lihood ratios and their typical application of importance sampling. In importance sampling, the
designer of the simulation experiment chooses the sampling distribution with the aim of reducing
variance. In this article, we do not address the choice of sampling distribution. We assume that
the sampling distribution in the current experiment is determined by the current state Xn , as is
standard practice in the setting of repeated experiments. We use likelihood ratios not to reduce
variance, but to enable reuse of simulation output based on different sampling distributions.
Of course, the effect of likelihood ratios on variance needs to be considered. The target-x-

sample-x ′ variance defined in Equation (5) could be more or less than the target-x-sample-x
variance σ 2

x (x ) = σ 2 (x ) associated with standard Monte Carlo. The target-x-sample-Xk variance
σ 2
x (Xk ) can be estimated by

σ̂ 2
x (Xk ) =

1

r

r∑
j=1

���
h
(
Y (j )
k

;x
)

h
(
Y (j )
k

;Xk

) F (Y (j )
k

)
− μ̂LRk,r (x )

�	

2

.

Based on Equation (6a), we have

Var
[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
=

1

n2r

n∑
k=1

σ 2
x (Xk ) , (7)

which can be estimated by
∑n

k=1 σ̂
2
x (Xk ) /(n

2r ). If none of σ 2
Xn

(X1) , . . . ,σ
2
Xn

(Xn ) is too large, then

the ILR estimator has lower conditional variance
∑n

k=1 σ
2
Xn

(Xk ) /(n
2r ) than σ 2 (Xn )/r , which is the

conditional variance of the SMC estimator. Considering that the variances σ 2
Xn

(X1) , . . . ,σ
2
Xn

(Xn )
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may be unequal, one might try to construct a lower-variance estimator by using unequal weights
instead of the equal weights 1/n in Equation (6a). This leads to the estimator proposed in Sec-
tion 2.2. Even better results are possible if we replace the equal weights 1/nr in Equation (6b) with

unequal weights that depend on the random vector Y (j )
k

. This topic is addressed in the research
literature on multiple importance sampling, which leads to the estimator proposed in Section 2.3.

2.2 Weighted Likelihood Ratio Estimator

Instead of the ILR estimator Equation (6a) with its equal weights 1/n, consider a weighted average
estimator of the form

∑n
k=1wk μ̂

LR
k,r

(x ) where the weights w1, . . . ,wn sum to one but may be un-

equal. Its conditional variance given the state history X1, . . . ,Xn is
∑n

k=1w
2
k
σ 2
x (Xk ) /r . Choosing

the weights

wWLR
k =

σ−2x (Xk )∑n
i=1 σ

−2
x (Xi )

(8)

that minimize the conditional variance yields the Weighted Likelihood Ratio (WLR) estimator

μ̂WLR
n,r (x ) =

n∑
k=1

wWLR
k μ̂LRk,r (x ) =

n∑
k=1

wWLR
k

⎡⎢⎢⎢⎢⎢⎣
1

r

r∑
j=1

F
(
Y (j )
k

) h
(
Y (j )
k

;x
)

h
(
Y (j )
k

;Xk

) ⎤⎥⎥⎥⎥⎥⎦ . (9)

Proposition 2.1. Under Assumptions (A1)–(A6), for any n, r ∈ N+ and x ,X1, . . . ,Xn ∈ X, the
weights given in Equation (8) minimize Var[

∑n
k=1wk μ̂

LR
k,r

(x ) |X1, . . . ,Xn] subject to the constraint∑n
k=1wk = 1. The resulting conditional variance is

Var
[
μ̂WLR
n,r (x )���X1, . . . ,Xn

]
=

1

r
∑n

k=1 σ
−2
x (Xk )

. (10)

Proof. The Lagrangian for this minimization problem is L(w1, . . . ,wn , λ) =
∑n

k=1w
2
k
σ 2
x (Xk ) +

λ(1 −∑n
k=1wk ). From the first-order condition ∂L(w1, . . . ,wn , λ)/∂w

WLR
k

= 2wWLR
k

σ 2
x (Xk ) − λ =

0 we getwWLR
k

= λ/2σ 2
x (Xk ). Therefore,w

WLR
k

is proportional to σ−2x (Xk ), and the denominator in

Equation (8) is what is required to satisfy the constraint
∑n

k=1w
WLR
k

= 1. Substituting wWLR
k

into

the conditional variance formula
∑n

k=1w
2
k
σ 2
x (Xk ) /r yields 1/r

∑n
k=1 σ

−2
x (Xk ). �

Proposition 2.3 and its proof show how much better the WLR estimator is than Equation (11),
the ILR estimator, and Equation (13), the SMC estimator, in terms of conditional variance. It also
shows in Equation (12) that the WLR estimator has a defensive property that the ILR estimator
lacks: the conditional variance of the WLR estimator is bounded above by that of the best LR esti-
mator generated from any single sampling distribution. The WLR estimator can only be improved
by including samples from another sampling distribution, even if the associated variance is large;
if so, the WLR estimator compensates by giving this sampling distribution a small weight. Propo-
sition 2.3 relies on the following lemma, which holds due to convexity of the function that maps a
to 1/a, or equivalently, due to the well-known inequality between arithmetic and harmonic mean.

Lemma 2.2. For any n and a1, . . . ,an ≥ 0,
∑n

k=1 a
−1
k
/n ≥ 1/(

∑n
k=1 ak/n), with strict inequality if

there exist k,k ′ such that ak � ak ′ .

Proposition 2.3. Under Assumptions (A1)–(A6), for any n, r ∈ N+ and x ,X1, . . . ,Xn ∈ X,

Var
[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
Var

[
μ̂WLR
n,r (x )���X1, . . . ,Xn

] = 1

n2
��

n∑
k=1

σ 2
x (Xk )�
 ��

n∑
k=1

σ−2x (Xk )�
 ≥ 1, (11)
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with strict inequality if σ 2
x (Xk ) � σ 2

x (Xk ′ ) for some k,k ′ ∈ {1, . . . ,n}; also
1

nr
min

k ∈{1, ...,n }
σ 2
x (Xk ) ≤ Var

[
μ̂WLR
n,r (x )���X1, . . . ,Xn

]
≤ 1

r
min

k ∈{1, ...,n }
σ 2
x (Xk ), (12)

and

Var
[
μ̂SMC
r (Xn )

���X1, . . . ,Xn

]
Var

[
μ̂WLR
n,r (Xn )

���X1, . . . ,Xn

] = σ 2
Xn

(Xn )
n∑

k=1

σ−2Xn
(Xk ) ≥ 1, (13)

with strict inequality if σ 2
Xn

(Xk ) < ∞ for some k < n.

Proof. By Lemma 2.2,
∑n

k=1 σ
−2
x (Xk )/n ≥ 1/(

∑n
k=1 σ

2
x (Xk )/n). Using this with Equations (7) and

(10), the inequality in Equation (11) follows. Equation (12) follows from Equation (10) and taking
the reciprocal of

max
k ∈{1, ...,n }

σ−2x (Xk ) ≤
n∑

k=1

σ−2x (Xk ) ≤ n max
k ∈{1, ...,n }

σ−2x (Xk ).

Equation (13) follows from Equation (10) and Var[μ̂SMC
r (Xn ) |X1, . . . ,Xn] = σ 2

Xn
(Xn )/r . �

Proposition 2.3 showcases the theoretical advantages of theWLR estimator using the weights in
Equation (8), which involve target-x-sample-Xk variances σ 2

x (Xk ). Unfortunately, these variances
are usually unknown. Therefore, in a practical implementation, one would replace these variances
by their estimates σ̂ 2

x (Xk ). The resulting weights would be suboptimal, and Proposition 2.3 would
not apply to this empirical WLR (EWLR) estimator. As our numerical experiments show, the EWLR
estimator could perform worse than the ILR and SMC estimators. We do not recommend using
EWLR unless the variances σ̂ 2

x (Xk ) can be accurately estimated. In the next section, we propose an
estimator that enjoys good theoretical properties, like theWLR estimator, and can be implemented
without losing its theoretical properties.

2.3 Mixture Likelihood Ratio Estimator

In our setting of repeated experiments, we have r replications sampled from each ofn distributions.
The collection of nr observations can be viewed as a stratified sample from an equally-weighted
mixture of thesen distributions. The likelihood of themixture is denoted by h̄ (·;X1, . . . ,Xn ), where

h̄ (y;x1, . . . ,xn ) =
1

n

n∑
k=1

h (y;xk ). (14)

Hesterberg (1988) and Veach and Guibas (1995) advocated replacing the equal weights 1/nr

in Equation (6b) with “balance heuristic” weights that, in our setting, are h(Y (j )
k

;Xk )/nrh̄(Y
(j )
k

;
X1, . . . ,Xn ). This leads to the mixture likelihood ratio (MLR) estimator

μ̂MLR
n,r (x ) =

n∑
k=1

r∑
j=1

1

nr

h
(
Y (j )
k

;x
)

h̄
(
Y (j )
k

;X1, . . . ,Xn

) F (Y (j )
k

)
. (15)

The MLR estimator is the likelihood ratio estimator that arises when we consider the pooled out-

puts of all simulation experiments performed so far, {Y (j )
k

: k = 1, . . . ,n, j = 1, . . . , r }, as stratified
sampling from the mixture distribution that has likelihood h̄ with r independent samples allocated
to each of n strata (Hesterberg 1995). It follows from this interpretation, or immediately from the
results of Veach and Guibas (1995, Section 3.2), that the MLR estimator is conditionally unbiased
for μ (x ) given X1, . . . ,Xn .
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Proposition 2.4. Under Assumptions (A1)–(A6), for any n, r ∈ N+ and x ,X1, . . . ,Xn ∈ X,
E[μ̂MLR

n,r (x ) |X1, . . . ,Xn] = μ (x ).

The conditional variance of the MLR estimator is better than that of the ILR estimator (Propo-
sition 2.5). The MLR estimator has a defensive property similar to that of the WLR estimator: an
upper bound on its conditional variance related to the conditional variance of the best LR estima-
tor generated from any single sampling distribution (Proposition 2.6). The conditional variance of
the MLR estimator can be estimated by

V̂ar
[
μ̂MLR
n,r (x )���X1, . . . ,Xn

]
=

1

r

r∑
j=1

���
n∑

k=1

h
(
Y (j )
k

;x
)
F
(
Y (j )
k

)
nh̄
(
Y (j )
k

;X1, . . . ,Xn

) − μ̂MLR
n,r (x )�	


2

.

The following proposition and proof are adopted from Martino et al. (2015, Theorem A.2), ex-
panded to provide sufficient conditions for a strict inequality. They involve the conditional expec-
tation of the kth term in Equation (15),

mk (x ;X1, . . . ,Xn ) = E

[
F (Yk ) h (Yk ;x )

h̄ (Yk ;X1, . . . ,Xn )

�����X1, . . . ,Xn

]
=

∫
Y

F (y) h (y;x )

h̄ (y;X1, . . . ,Xn )
h (y;Xk ) dy.

(16)

Proposition 2.5. Under Assumptions (A1)–(A6), for any n, r ∈ N+ and x ,X1, . . . ,Xn ∈ X,

Var
[
μ̂MLR
n,r (x )���X1, . . . ,Xn

]
≤ Var

[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
. (17)

This inequality is strict if there exist k,k ′ such thatmk (x ;X1, . . . ,Xn ) �mk ′ (x ;X1, . . . ,Xn ).

Proof. Let {Ỹ (j )
k

: k = 1, . . . ,n, j = 1, . . . , r } be an i.i.d. sample with the likelihood h̄(·;X1,
. . . ,Xn ) and define

μ̂Mix
n,r (x ) =

n∑
k=1

r∑
j=1

1

nr

h
(
Ỹ (j )
k

;x
)

h̄
(
Ỹ (j )
k

;X1, . . . ,Xn

) F (Ỹ (j )
k

)
.

The estimators μ̂Mix
n,r and μ̂MLR

n,r are similar: the latter is a stratified-sampling version of the former.

Therefore,E[μ̂Mix
n,r (x ) |X1, . . . ,Xn] = E[μ̂

MLR
n,r (x ) |X1, . . . ,Xn], which equals μ (x ) by Proposition 2.4.

We have

Var
[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
− Var

[
μ̂Mix
n,r (x )���X1, . . . ,Xn

]
=

1

nr

∫
Y
(F (y)h(y;x ))2 �� 1n

n∑
k=1

1

h(y;Xk )
− 1

h̄(y;X1, . . . ,Xn )
�
 dy ≥ 0,

because, by Lemma 2.2,

1

n

n∑
k=1

1

h (y;Xk )
≥ 1

1
n

∑n
k=1 h (y;Xk )

=
1

h̄ (y;X1, . . . ,Xn )
.

Next, we observe that μ̂MLR
n,r is a stratified-sampling version of μ̂Mix

n,r , with equal number of samples
allocated to the n equally weighted strata: the sampling likelihood of the kth stratum is h(·;Xk ).
Therefore, Var[μ̂MLR

n,r (x ) |X1, . . . ,Xn] ≤ Var[μ̂Mix
n,r (x ) |X1, . . . ,Xn]. The inequality is strict if there

exist strata k,k ′ with different meansmk (x ;X1, . . . ,Xn ) �mk ′ (x ;X1, . . . ,Xn ). �

The next proposition follows from Veach (1997, Theorem 9.2) and Owen and Zhou (2000, Equa-
tion (8)).
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Proposition 2.6. Under Assumptions (A1)–(A6), for any n, r ∈ N+ and x ,X1, . . . ,Xn ∈ X, if F is

a non-negative function or there exists k ∈ {1, . . . ,n} such that x = Xk , then

Var
[
μ̂MLR
n,r (x )���X1, . . . ,Xn

]
≤ 1

r
min

k ∈{1, ...,n }
σ 2
x (Xk ) +

(
1

r
− 1

nr

)
(μ (x ))2. (18)

In the context of green simulation Equation (18) provides two kinds of protections against po-
tential adversarial cases for ILR and (E)WLR: First, it suggests that MLR has finite variance if at
least one of the ILR component’s variance is finite, whereas finite ILR variance requires all compo-
nents to have finite variance. Secondly, it also suggests that MLR’s variance cannot be much worse
than the smallest variance among all variances of the ILR components’. Proposition 2.6 is a worst-
case bound on the performance of the MLR estimator. As shown in our numerical experiments,
in practical applications, the MLR estimator could have better performance than this worst-case
bound.

3 GREEN SIMULATION VIA STOCHASTIC KRIGING

The motivation to propose another kind of green simulation estimator, other than the LR estima-
tors in Section 2, is that the latter may be inapplicable or ineffective in some situations. The LR
estimators are intended to be used when Assumptions (A1)–(A6) hold. However, there are many
situations in which Assumption (A1) does not hold and the LR method is inapplicable, because
the current state affects the simulation model not only by affecting a parameter of a likelihood.
It may also be that the LR method is applicable, but the target-Xn-sample-Xn′ variances σ

2
Xn

(Xn′ )
are large, which makes the LR estimators ineffective. Therefore, we propose the green stochastic

kriging (GSK) estimator based on stochastic kriging (SK), a metamodeling technique for stochastic
simulation (Ankenman et al. 2010). The following assumption supports the GSK estimator.

(B1) Given the current state Xn , the SMC estimator μ̂SMC
r (Xn ) in the current experiment is

normally distributed with finite mean μ (Xn ) and finite variance σ 2
Xn

(Xn ).

The reason to make Assumption (B1) is that Ankenman et al. (2010) showed that the SK estimator
is an MSE-optimal linear predictor if the simulation output is normally distributed.
The GSK estimator μ̂GSKn,r (x ) is the estimate of μ (x ) generated by SK when it is supplied with the

output of the first n experiments of r replications each. Let μ̂SMC
n,r = [μ̂SMC

r (X1), . . . , μ̂
SMC
r (Xn )]

	

represent the vector of SMC estimators for the first n experiments. SK involves fitting a model
f (x )	β to the relationship between μ̂SMC

r (Xk ) and Xk by choosing the coefficient vector β . In
our experiments, we used a linear model, f (x ) = x ; we found that the results were markedly su-
perior to using a constant model, f (x ) = 1. SK also uses a Gaussian random field (GRF) model,
treating the response surface μ as though it were a realization of a GRF with a so-called extrin-

sic covariance function whose parameters are also chosen in a process of fitting. In our exper-
iments, we chose the GRF to be a generalized integrated Brownian field (Salemi et al. 2013); we
found that the results were markedly superior to the more common choice of GRF with a Gaussian
correlation function. Based on the GRF, it is possible to compute the 1 × n vector Σ(x ) of extrin-
sic covariances between μ (x ) and μ (X1), . . . , μ (Xn ), and the n × n matrix Σ of extrinsic covari-
ances among μ (X1), . . . , μ (Xn ). Finally, SK also uses estimates of the so-called intrinsic covari-
ances between simulation outputs. The intrinsic covariance matrix is denoted C = [Ci j ], where
Ci j = Cov[μ̂ (Xi ), μ̂ (X j )], where μ̂ (Xi ) and μ̂ (X j ) are the estimators used to calibrate the SK model.
In particular, if the SMC estimators are used and the simulation experiments launched at times
k = 1, . . . ,n are independent, then C is an n × n diagonal matrix whose kth diagonal element is
1
r
σ 2 (Xk ).
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With the above notations, the GSK estimator is given by

μ̂GSKn,r (x ) = f (x )	β + Σ(x ) (Σ +C )−1
(
μ̂SMC
n,r − [f (X1)

	β, . . . , f (Xn )
	β]	

)
. (19)

In our implementation, we performed the SK fitting process after every experiment, using all avail-
able information, including all outputs in previous and the current experiment.
Despite their mathematical similarities, the proposed GSK differs from the classical SK in the

calibration of the metamodel: In classical SK metamodeling, a fixed set of simulation outputs is
used to calibrate the model then the same model is used for possibly multiple predictions. The
proposed GSK estimator, however, changes over time as more simulation experiments are done. In
particular, it recalibrates after each simulation experiment to incorporate new simulation outputs,
in the hope to improve its prediction quality overtime. Numerically, the recalibration could be
done efficiently with a warm-starting algorithm discussed in Section 4.
By substituting Equation (2) into Equation (19), the GSK estimator can be seen as including a

weighted sum of the simulation outputs {F (Y (j )
k

) : k = 1, . . . ,n; j = 1, . . . , r }. The LR estimators
are also weighted sums of the simulation outputs. However, the GSK weights behave quite differ-
ently from the LR weights. The LR weights depend on the likelihoods associated with the states
X1, . . . ,Xn , and they cannot be negative. Like weights in kriging in general, the GSK weights de-
pend primarily on the locations of the states X1, . . . ,Xn , as related by the extrinsic covariance
function, and they can be negative.

4 GREEN ALGORITHMS FOR GREEN SIMULATION ESTIMATORS

This section addresses computationally efficient implementation of the green simulation estima-
tors we proposed.
First, we propose and analyze algorithms for the LR estimators in the setting of repeated experi-

ments. The algorithms are also green, in the sense that they store and reuse likelihood evaluations
as well as simulation output. Suppose that one simulation replication has computational cost CF ,
one evaluation of a likelihood has computational cost Ch , and the computational cost of basic
arithmetic operations such as addition, multiplication, and division is negligible in comparison to
these. We envision a situation in which CF is large, Ch is smaller but need not be negligible, stor-
age space is abundant, and memory access is fast. We consider a sequence of experiments, indexed
n = 1, 2, . . . , of r replications each. For each experiment in the sequence, the SMC, ILR, EWLR,
or MLR estimators of the current expected performance μ (Xn ) are computed, and the green sim-
ulation procedures store some information to be reused in the next experiment. We analyze the
storage requirement and computation cost of the nth experiment.
For benchmarking purposes, we first consider the SMC estimator. It has zero storage require-

ment in the sense that no information is stored from one experiment to the next. Its computation
cost is rCF .
Algorithm 1 applies to the ILR and EWLR estimators. Consider the ILR estimator μ̂ I LRn,r (Xn )

in Equation (6). The likelihood h(Y (j )
k

;Xk ) in the denominator does not change as n increases.
Therefore, we store and reuse likelihoods from one experiment to the next in Algorithm 1. The
storage requirements and non-negligible computation costs for the nth experiment are shown on
the right in Algorithm 1. Its storage requirement is 2nr and its computation cost is rCF + nrCh for
the nth experiment. The linear growth rate in n is reassuring; it suggests that it is affordable to
reuse the outputs of many experiments in the ILR and EWLR estimators. Compared to the ILR esti-
mator, the WLR estimator requires more basic arithmetic operations to estimate theWLR weights.
For the MLR estimator μ̂MLR

n,r (Xn ), a green algorithm is especially valuable. Inspection of Equa-

tions (14) and (15) suggests that the MLR estimator requires n2r likelihood evaluations: h(Y (j )
k

;x� ),
for all j = 1, . . . , r and k, � = 1, . . . ,n. A quadratic growth rate of computation cost in n could be
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ALGORITHM 1: Green Implementation of ILR or EWLR Estimator in the nth Experiment

Initialization: Observe Xn and initialize μ̂I LRn,r (Xn ) ← 0 or μ̂EW LR
n,r (Xn ) ← 0;

for j = 1, . . . , r do

Sample Y
(j )
n and evaluate F (Y

(j )
n ); /* rCF computation */

Append to output storage F (Y
(j )
n ); /* nr storage */

Calculate likelihood h(Y
(j )
n ;Xn ); /* rCh computation */

Append to likelihood storage h(Y
(n)
k

;Xn ) ; /* nr storage */

end

Set μ̂LR
r,Xk

(Xn ) ← 1
r

∑r
j=1 F (Y

(j )
n );

for k = 1, . . . ,n − 1 do
for j = 1, . . . , r do

Retrieve F (Y
(j )
k

) and h(Y
(j )
k

;Xk ) from storage;

Calculate likelihood h(Y
(j )
k

;Xn ); /* (n − 1)rCh computation */

end

Set μ̂LR
r,Xk

(Xn ) ← 1
r

∑r
j=1

h (Y
(j )
k

;Xn )

h (Y
(j )
k

;Xk )
F (Y

(j )
k

)

end

if ILR estimator then

Set μ̂I LRn,r (Xn ) ← 1
n

∑n
k=1

μ̂LR
r,Xk

(Xn ) and output ; /* End of algorithm for ILR */

end

if EWLR estimator then

Set σ̂ 2
Xn

(Xk ) ← 1
r

∑r
j=1

(
h (Y

(j )
k

;Xn )

h (Y
(j )
k

;Xk )
F (Y

(j )
k

) − μ̂LR
r,Xk

(Xn )

)2
, for k = 1, . . . ,n;

SetwEW LR
k

← σ̂−2
Xn

(Xk )/
∑n
i=1 σ̂

−2
Xn

(Xi ), for k = 1, . . . ,n;

Set μ̂EW LR
n,r (Xn ) ← 1

n

∑n
k=1

wEW LR
k

μ̂LR
r,Xk

(Xn ) and output; /* End of algorithm for EWLR */

end

an obstacle for using the MLR estimator when reusing the output of many experiments. By storing
and reusing likelihoods from one experiment to the next in Algorithm 2, we avoid this quadratic
growth and achieve linear growth of the computation cost in n, as was the case for the ILR esti-
mator. Algorithm 2 has storage requirement 2nr and computation cost rCF + (2n − 1)rCh for the
nth experiment. This result for MLR is similar to the result for ILR, but MLR requires almost twice
as many likelihood evaluations.
For the GSK estimator, we propose a green algorithm that re-uses parameters fitted after one

experiment to warm-start the fitting of parameters after the next experiment. After the nth ex-
periment, SK performs an optimization to find a vector of parameters that make the GRF fit best
to the inputs and outputs of the first n experiments. We set the initial value in this optimization
equal to the parameter vector chosen after the (n − 1)st experiment. In our numerical experiments,
we found that this warm-starting significantly improved the speed and numerical stability of SK
parameter-fitting.

5 CONVERGENCE OF GREEN SIMULATION ESTIMATORS

In this section, we analyze the convergence of the LR estimators as the number n of experiments
grows while the number r of replications per experiment is fixed. To this end, we make an assump-
tion on the stochastic process {Xn : n = 1, 2, . . .}, which determines the sampling distributions.
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ALGORITHM 2: Green Implementation of MLR Estimator in the nth Experiment

Initialization: Observe Xn and initialize μ̂MLR
n,r (Xn ) ← 0;

for j = 1, . . . , r do
for k = 1, . . . ,n do

if k < n then

Retrieve F (Y
(j )
k

) and h̄(Y
(j )
k

) from storage

else

Sample Y
(j )
n and evaluate F (Y

(j )
n ); /* rCF computation */

Append to output storage F (Y
(j )
n ); /* nr storage */

Set h̄(Y
(j )
n ) ← 0;

for � = 1, . . . ,n − 1 do
Calculate likelihood h(Y

(j )
n ;X� ); /* (n − 1)rCh computation */

Set h̄(Y
(j )
n ) ← h̄(Y

(j )
n ) + 1

n−1h(Y
(j )
n ;X� )

end

end

Calculate likelihood h(Y
(j )
k

;Xn ); /* nrCh computation */

Set h̄(Y
(j )
k

) ← n−1
n h̄(Y

(j )
k

) + 1
nh(Y

(j )
k

;Xn );

Update/Append to likelihood storage h̄(Y
(j )
n ) ; /* nr storage */

end

end

Set μ̂MLR
n,r (Xn ) ← 1

nr

∑n
k=1

∑r
j=1 h(Y

(j )
k

;Xn )F (Y
(j )
k

)/h̄(Y
(j )
k

) and output;

(C1) The stochastic process {Xn : n = 1, 2, . . .} is ergodic.

We adopt the following definition of ergodicity, which is consistent with the well-known Birkhoff
ergodic theorem (Birkhoff 1931). For the class of Markov chains, this definition of ergodicity is
standard; for a Markov chain to be ergodic, it is sufficient for it to be positive Harris recurrent and
aperiodic (Meyn and Tweedie 2009; Nummelin 2004).

Definition 5.1. A stochastic process {Xn : n = 1, 2, . . .} taking values in a Polish state space X is
ergodic if

(i) it has a stationary probability measure π on the Borel σ -algebra of X, and
(ii) for any random variable f (X ) that has a finite expectation under π , that is, f ∈

L1 (X,B (X),π ),

lim
n→∞

1

n

n∑
k=1

f (Xk ) =

∫
X
f (x )dπ (x ), a.s. and in L1. (20)

The reason to make Assumption (C1) is as follows. For any target state x ∈ X, we envision
that it has a neighborhood such that, for every x ′ in this neighborhood, the sampling distribution
associated with x ′ is a good sampling distribution for the target distribution associated with x . A
good sampling distributionwould be one for which the target-x-sample-x ′ varianceσ 2

x (x
′) defined

in Equation (5) is sufficiently small. An ergodic process returns to this neighborhood infinitely
often. The consequence is that, as n → ∞, the number of good samples to be used in estimating
μ (x ) also grows without bound.
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Theorem 5.2 shows that, under our assumptions, the conditional variance of the ILR estimator
evaluated at a fixed target state x , given the state historyX1, . . . ,Xn , goes to zero at the rateO (n−1).
Theorem 5.2 also provides a result about unconditional variance, which may be easier to interpret.

Theorem 5.2. Suppose that Assumptions (A1)–(A6) and (C1) hold, and π is the stationary probabil-

ity measure of {Xn : n = 1, 2, . . .}. For any target state x ∈ X, if the functionσ 2
x defined in Equation (5)

is in L1 (X,B (X),π ), then

lim
n→∞

nrVar
[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
=

∫
X
σ 2
x (x
′)dπ (x ′). (21)

If, furthermore, the target-x-sample-Xn variance process {σ 2
x (Xn ),n = 1, 2 . . .} is uniformly inte-

grable, then

lim
n→∞

nrVar
[
μ̂ I LRn,r (x )

]
=

∫
X
σ 2
x (x
′)dπ (x ′). (22)

Proof. By the conditional independence of the random vectors {Y (j )
k

: j = 1, . . . , r ,k =
1, . . . ,n} given X1, . . . ,Xn , we have

Var
[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
=

1

n2r 2

n∑
k=1

r∑
j=1

Var

⎡⎢⎢⎢⎢⎢⎣F
(
Y (j )
k

) h
(
Y (j )
k

;x
)

h
(
Y (j )
k

;Xk

) ⎤⎥⎥⎥⎥⎥⎦ =
1

n2r

n∑
k=1

σ 2
x (Xk ) . (23)

Therefore, by ergodicity of {Xn : n = 1, 2, . . .}, we obtain Equation (21):

lim
n→∞

nrVar
[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

]
= lim

n→∞

1

n

n∑
k=1

σ 2
x (Xk ) =

∫
X
σ 2
x (x
′)dπ (x ′), a.s. and in L1.

To establish Equation (22), consider that

Var
[
μ̂ I LRn,r (x )

]
= E

[
Var

[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

] ]
+ Var

[
E

[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

] ]
= E

[
Var

[
μ̂ I LRn,r (x )

���X1, . . . ,Xn

] ]
+ Var [μ (x )]

= E

⎡⎢⎢⎢⎢⎣ 1

n2r

n∑
k=1

σ 2
x (Xk )

⎤⎥⎥⎥⎥⎦ ,
using Equation (23). Therefore,

lim
nr→∞

nrVar
[
μ̂ I LRn,r (x )

]
= lim

n→∞
E

⎡⎢⎢⎢⎢⎣ 1n
n∑

k=1

σ 2
x (Xk )

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣ limn→∞

1

n

n∑
k=1

σ 2
x (Xk )

⎤⎥⎥⎥⎥⎦ =
∫
X
σ 2
x (x
′)dπ (x ′),

where the exchange of limit and expectation holds by uniform integrability, and ergodicity of
{Xn : n = 1, 2, . . .} justifies the last step. �

Corollary 5.3. If the corresponding conditions stated in Theorem 5.2 hold, then

lim
n→∞

nrVar
[
μ̂∗n,r (x )

���X1, . . . ,Xn

]
≤
∫
X
σ 2
x (x
′)dπ (x ′), and (24)

lim
n→∞

nrVar
[
μ̂∗n,r (x )

]
≤
∫
X
σ 2
x (x
′)dπ (x ′), (25)

where the asterisk may represent WLR or MLR.

Proof. Due to Propositions 2.3 and 2.5, under the appropriate conditions stated in Theorem 5.2,
the right sides of Equations (21) and (22) serve as upper bounds for nrVar[μ̂∗n,r (x ) |X1, . . . ,Xn] and
nrVar[μ̂∗n,r (x )], respectively. �
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By Theorem 5.2 and Corollary 5.3, the conditional variance of any of the three LR estimators,
evaluated at a fixed target state x , given the state historyX1, . . . ,Xn , goes to zero at the rateO (n−1).
Because all three LR estimators are unbiased, it follows that they are consistent as n → ∞.

Theorem 5.2 and Corollary 5.3 show the asymptotic superiority of the LR estimators to standard
Monte Carlo (SMC), as the number n of repeated experiments increases. Recall, from the discus-
sion of Equation (3), that the conditional variance of the SMC estimator for the current expected
performance μ (Xn ), given the state history, is σ 2 (Xn )/r . This does not converge to zero as n → ∞,
assuming that sampling variances are positive. Yet the LR estimators converge to the true value
μ (x ) asn → ∞. This means that we can obtain arbitarily high accuracywithout increasing the bud-
get r per experiment, merely by reusing output from experiments that are repeated at each time
step with budget r . Under the assumptions of Theorem 5.2, reusing old simulation output is highly
effective in the sense that the variance of the LR estimators converges as O ((nr )−1), which is the
standard rate of convergence for Monte Carlo in terms of the computational budget nr expended
on all experiments that were ever run.

6 NUMERICAL EXAMPLES

In this section, we use two numerical examples to illustrate green simulation, demonstrate its
value, and compare our four green simulation estimators with each other and with standard
Monte Carlo. First is a reinsurance example of pricing catastrophe bonds. For this example, we
verify the conditions of Theorem 5.2 in Appendix A, which shows that these conditions are
applicable to a realistic example. The experiment results conform to the theoretical predictions
in that the MLR estimator was superior to the ILR estimator, which was superior to the SMC
estimator. The EWLR estimator performed similarly to MLR when the number of experiments was
small, but it was not even as good as the ILR estimator when many experiments were run. The
GSK estimator succeeded in reducing mean squared error (MSE) as more experiments were run,
but its MSE was more than those of the LR estimators. The second example involves measuring
the credit risk of a loan portfolio. In this example, the conditions of Theorem 5.2 do not hold,
but the experiment results show that green simulation can still deliver valuable results in such a
situation. Although the ILR, EWLR, and GSK estimators were not successful in this example, the
MLR estimator was superior to the SMC estimator.

6.1 Catastrophe Bond Pricing with Compound Losses

A catastrophe bond (“CAT bond”) is an important reinsurance contract that helps insurance com-
panies to hedge against losses from catastrophic events (Munich Re Geo Risks Research 2015).
This example is relevant beyond insurance; for example, senior tranches of structured financial
instruments are essentially economic catastrophe bonds, because they suffer credit losses only in
the event of an economic catastrophe (Coval et al. 2009). Simulation of CAT bonds can be com-
putationally intensive, because it involves fairly rare events in a complex geophysical models.
Specifically, the example illustrates a simple simulation for pricing hurricane CAT bonds.
In practice, reinsurance contracts are subject to periodic renewals. This is the source of the

repeated experiments: the same CAT bond is priced every period, using the same hurricane sim-
ulation model, with parameters Xn updated to reflect the current climatological forecast. In this
example, the period is semi-annual. The state process {Xn : n = 1, 2, . . .} is modeled by an ergodic
Markov chain. Given the state Xn , we can simulate hurricanes that take place during the lifetime
of the CAT bond and the resulting total insured loss Yn underlying the CAT bond. Finally, we
compute the payoff of the CAT bond per dollar invested,

F (Yn ) = 1{Yn ≤K } + p1{Yn>K },
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where 1{ · } is the indicator function, K is the trigger level, and p ∈ [0, 1) is the fraction of face value
that is received if insured losses exceed the trigger level. The fair price of this CAT bond can be
obtained in terms of the expected payoff μ (Xn ) = E [F (Yn ) |Xn] . We consider a hurricane CAT
bond with lifetime 10 years, trigger level K = 25 million dollars, and recovery fraction p = 0.5.

In this example, we use a simplified version of the model of Dassios and Jang (2003). The insured

loss is modeled as a compound random variable: Yn =
∑Mn

i=1 Z
i
n , where Mn denotes the number of

claims and Z i
n denotes the ith claim size. In this model, Z (i )

n , i = 1, 2 . . . are i.i.d. and independent
ofMn . This is a popular loss model due to its flexibility and suitability for many practical applica-
tions (Klugman et al. 2012), yet it can provide mathematical tractability. Let the probability mass
function of Mn be p (m; λn ) and the probability density of Z i

n be f (z;θn ), where λn and θn are pa-
rameters determined by the state Xn . Specifically, we takeMn to be Poisson with mean λn and Z i

n

to be exponential with mean θn . In this model, the expected payoff is

μ (Xn ) = E [F (Yn ) |Xn] = E
[
p + (1 − p)1{Yn ≤K }

]
= p +

∞∑
m=1

p (m; λn )F (K ;θn ,m), (26)

where F (K ;θ ,m) is the Gamma cumulative distribution function with scale parameter θ and shape
parameterm. From 1981 to 2010, the average number of major hurricanes was 2.7 per decade and
the average cost per hurricane was about $5,000 million (Blake and Gibney 2011). Therefore, we
set up a stochastic model of the states {Xn : n = 1, 2, . . .} and a transformation (λ,θ ) = ψ (x ), so λn
is usually around 2.7 and θn is usually around 5 (measured in thousands of millions of dollars).
In this example, the ergodic Markov chain driving the parameters of the loss model is a station-

ary AR(1) process with state space X = R2, given by

Xn = μ∞ + φXn−1 + εn ,

where {εn : n = 1, 2, . . .} is an i.i.d. sequence of bivariate normal random vectors with mean zero
and variance diag(σ 2

ε ), and the parameters are

μ∞ =

[
0
0

]
, φ =

[
0.6
0.5

]
, and σ 2

ε =

[
0.82

0.52

]
.

The state space X = R2 is inappropriate for parameters that must be non-negative, because they
represent an expected number of hurricanes and an expected loss per hurricane. We introduce a
transformationψ : R2 �→ (λ, λ̄) × (θ , θ̄ ) so the parameters (λ,θ ) = ψ (x ) lie between plausible lower
and upper bounds. The transformation is sigmoidal and maps x = [x1,x2] to

(λ,θ ) = ψ (x ) =
[
λ +

λ̄−λ
1+e−x1

, θ +
θ̄−θ

1+e−x2

]
.

In particular, we took (λ, λ̄) = (2, 4) as the range for expected number of hurricanes per decade and

(θ , θ̄ ) = (4, 6) as the range for expected loss per hurricane. To give a picture of the variability of the
parameters for repeated experiments in this example, Figure 2 shows histograms of the parameters
λ and θ resulting from sampling from the stationary distribution of the AR(1) process.

To clarify the model, Algorithm 3 shows how the standard Monte Carlo simulation works. The
density function is an essential element for implementing the three LR methods in Algorithms 1
and 2. The density function for this example, h(y,x ), where y is the compound loss and x = (λ,θ ),
is shown in Equation (27) in the Appendix.
To investigate the effectiveness of green simulation, we performed a sequence of 100 repeated

simulation experiments (i.e., n = 1, 2, . . . , 100) with r = 100 replications each. Using the same

simulation output {Y (j )
n : n = 1, 2, . . . , 100, j = 1, 2, . . . , 100} from the same random sample paths

{Xn : n = 1, 2, . . . , 100}, we evaluated the SMC, ILR, EWLR, and MLR estimators at each period
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Fig. 2. Histograms of parameters sampled based on the stationary distribution of the AR(1) process.

ALGORITHM 3: Standard Monte Carlo Simulation for Catastrophe Bond Pricing

Initialization: Generate initial state X0 from the stationary distribution of the AR(1) process

for n = 1, 2, . . . , do

Generate state Xn from AR(1) process, conditional on Xn−1;
Set parameters (λn ,θn ) ← ψ (xn );

Set μ̂SMC
n,r (Xn ) ← 0;

for j = 1, . . . , r do

Simulate number of hurricanesM
(j )
n ∼ p (·; λn );

for i = 1, . . . ,M
(j )
n do

Simulate loss of the ith hurricane Z
(i, j )
n ∼ f (·;θn );

end

Set Y
(j )
n ←

Mn∑
i=1

Z
i, j
n ;

if Y
(j )
n ≤ K then

Set F (Y
(j )
n ) ← 1;

else

Set F (Y
(j )
n ) ← p;

end

Set μ̂SMC
xn (Xn ) ← μ̂SMC

xn (Xn ) + F (Y
(j )
n );

end

Set μ̂SMC
n,r (Xn ) ← μ̂SMC

n,r (Xn )/r and output;

end

n = 1, 2, . . . , 100, in each of three states: the current state Xn , the central state xmi = (0, 0) corre-
sponding to the moderate parameters λ = 3 and θ = 5, and an extreme state xhi = (∞,∞) corre-
sponding to extreme parameters λ = 4 and θ = 61. Starting from n = 5, we also evaluated the GSK
estimator in these three states.

1Strictly speaking, the extreme state xhi does not belong to the state space X = R2, but the parameter vector (λ, θ ) = (4, 6)
is a limit point of the range of the transformation ψ that maps states to parameters.
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Fig. 3. Log-log plots of estimated MSEs of fixed-state estimators for CAT bond pricing example.

For the purpose of accurately estimating the unconditional MSEs of the all these estimators, we
performed such a sequence of experiments 10,000 times. These 10,000 macro-replications of the se-
quence of experiments have independent sample paths and simulation output. The estimated MSE

of a fixed-state estimator μ̂ (x ) of μ (x ) was
∑10,000

k=1
(μ̂ (k ) (x ) − μ (x ))2/10,000, where μ̂ (k ) (x ) is the

value of the estimator on the kth macro-replication. Likewise, the estimatedMSE of a current-state

estimator μ̂ (Xn ) of μ (Xn ) was
∑10,000

k=1
(μ̂ (k ) (X (k )

n ) − μ (X (k )
n ))2/10,000. Due to using 10,000 macro-

replications, the standard errors of these estimated MSEs are less than 1% of the corresponding es-
timated MSE. Recall that MSE equals variance for the SMC and LR estimators, which are unbiased.
Figure 3 is a log-log plot of the estimators’ MSEs for two fixed states, xmi and xhi , for each ex-

periment n = 1, 2, . . . , 100. The fixed-state SMC estimators μ̂SMC
n,r (xmi ) and μ̂SMC

n,r (xhi ) were gen-
erated by sampling according to h (·;xmi ) and h (·;xmi ), respectively, in experiments distinct from
the experiments described in the preceding paragraph. The SMC variance forms a horizontal line,
because, for each experiment n, μ̂SMC

n,r (xmi ) and μ̂SMC
n,r (xhi ) use a fixed number r of replications

drawn from the sampling distribution associated with the fixed state xmi or xhi . In addition, a
black solid line with slope −1 and intercept equal to the SMC variance is plotted for reference.
This line shows the variance of an SMC estimator with nr replications, which is the cumulative
number of replications simulated up through the nth experiment. We compare the lines for green
simulation estimators against the solid lines. When they go below the horizontal line, they have
lower variance than a SMC simulation with r replications, the budget for a single experiment.
When they go near the line with slope −1, they have variance nearly as low as a SMC simula-
tion with nr replications, the cumulative budget for all experiments so far. That is a major success
for green simulation, because it shows that reusing old simulation output is nearly as effective as
generating new simulation output in the current experiment.
We see from Figure 3 that the MLR estimator has lower variance than the ILR estimator, which

is consistent with Equation (17). In this example, the gap between them grows to be substantial
as the number n of repeated experiments increases: for n = 100, the ratio between ILR and MLR
variances is about 1.7 for both xmi and xhi . Initially, for very small n, the LR estimators have higher
variances than an SMC estimator based on a simulation in the fixed state xmi or xhi . The cause
is the probability that none of the states visited so far, X1,X2, . . . ,Xn , were near xmi or xhi . This
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Fig. 4. Log-log plot of estimated MSEs for current-state estimators for CAT bond pricing example.

event is more likely for the extreme state xhi than for the center state xmi , which is why the higher
variances persist longer for the extreme state (for the first five experiments) than for the center
state (only for the first experiment). The variances of the green simulation soon become lower
than those of SMC and continue to decrease as the outputs of more experiments are reused. After
100 experiments, the MLR estimator’s variance is over 45 times smaller than the SMC estimator’s
variance for xhi and over 95 times smaller for xmi . In other words, by using 10,000 total replications
simulated in 100 simulation experiments, with simulation based on parameters corresponding to
X1,X2, . . . ,X100 and not xmi , the MLR estimator achieves higher accuracy in estimating μ (xmi )
than standard Monte Carlo with 9,500 replications simulated based on parameters corresponding
to xmi . Comparing to the black solid reference line, we see that the green simulation estimators’
variances eventually decrease approximately at a rate of n−1, as discussed in connection with The-
orem 5.2. For small n, the EWLR estimator has variance comparable to that of the MLR estimator,
but it is not competitive for large n. In the extreme state, the EWLR variance grows much larger
than the ILR variance for largen, and it does not appear to converge asO (n−1). TheMSE of the GSK
estimator is larger than that of the LR estimators. However, its MSE does decrease as n increases.
For the center state, after 10 experiments the GSK MSE is comparable to the ILR variance. Because
xhi is always outside the range of X1, . . . ,Xn , SK must extrapolate when it estimates μ (xhi ). Ex-
trapolation is challenging for SK, so it is a success for GSK that, for the extreme state, its MSE
becomes lower than the SMC variance after about 40 experiments, and continues to decrease.
Next, we consider the variance of the SMC and the green simulation estimators for the current-

state expected performance μ (Xn ). Figure 4 shows their variances. For the first experiment (n = 1),
there is no stored simulation output from a previous experiment, so the LR estimators are the same
as the SMC estimator. In this example, the green simulation estimators’ MSEs decrease from the
beginning and are always less than the SMC variance. Otherwise, the performance of the green
simulation estimators is similar to what was seen when the state was fixed. After 100 experiments,
the MLR estimator’s variance is over 61 times smaller than the SMC estimator’s variance.

6.2 Credit Risk Management

In simulation for financial risk management, experiments using the same simulation model are
performed periodically, as often as daily. Information observed in the markets is used to update
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parameters that affect risk, and the simulation model is run again with new parameters. In this ex-
ample, the risk management simulation measures the credit risk exposure of a portfolio containing
loans to companies with listed equity. The asset values of these debtor companies are observable
and serve as parameters in the risk model: the lower the asset value of a debtor company, the more
likely it is to default in the future. Thus, in our setting of repeated experiments, the current state
Xn contains the current asset values of all debtor companies.

In this example, we work with a structural model of default based on the influential work
of Merton (1974); for an exposition, see McNeil et al. (2005), for example. At any period n, the
asset value of a company equals the sum of its equity and debt values. The equity value can be
observed in the stock market and the debt value can be observed from public records, so the asset
value can be computed. For simplicity of exposition, we assume that debt remains constant. In
this model, the asset value follows geometric Brownian motion, and a company defaults when its
asset value falls below its debt. Because geometric Brownian motion is not an ergodic process,
Theorem 5.2 and Corollary 5.3 do not apply. As n increases, the current state Xn tends to drift
further away from an earlier state, such as X1. Therefore, intuition suggests that the benefit of
reusing old simulation output would diminish over time. We consider this example to show that
green simulation nonetheless delivers valuable results.
We consider a loan portfolio whose composition remains constant over time. Many loan portfo-

lios are dynamic: as outstanding loans are being repaid, new loans are being initiated. Despite the
dynamic nature of such portfolios, there are lending businesses in which portfolios retain a similar
composition over time. For example, in the business of accounts receivable, customers may place
regular, periodic orders of the same size, each resulting in payment due in 90 days. An investment
fund may target a loan portfolio with fixed characteristics such as maturity and portfolio weights
on different types of loans.
In our simplified example, we consider risk management of the value at time horizon t = 0.5

years of a portfolio in which there are two loans, both having maturity T = 5 years. Simulation
experiments are repeated weekly, that is, with a period of Δt = 1/52 years. In the nth experiment,
the quantity μ (Xn ) being estimated is the conditional probability, given the current asset values
Xn , that the cost of defaults and anticipated defaults after t years will exceed a threshold κ = 6.
The random vector Yn that we simulate in the nth experiment is the asset values St = [St,1, St,2] at
time t , given the current asset values S0 = [S0,1, S0,2] = Xn . For each company i = 1, 2, the marginal
distribution of the asset return St,i/S0,i is lognormal, determined by the drift ηi and volatility ςi
of the geometric Brownian motion for asset value. Specifically, η1 = 15%, η2 = 10%, ς1 = 30%, and
ς2 = 20%. The joint distribution of the asset returns St,1/S0,1 and St,2/S0,2 is specified by a Student t
copula with 3 degrees of freedom and correlation 0.5. The initial asset values of the two companies
are X0,1 = 100 and X0,2 = 90, and their debt is D1 = D2 = 85. The loss if company i defaults is
denoted ai , and a1 = 5 and a2 = 4. The discount rate is r = 5%. The cost of a default or anticipated
default by company i , as of time t , is

Li = �i (St,i ) =
⎧⎪⎨⎪⎩

ai if St,i < Di

aie
−r (T−t )Φ

(
ln(St,i /Di )+(r−ς 2i /2)(T−t )

ςi
√
T−t

)
if St,i ≥ Di

.

The first line of the formula represents the loss if company i defaults at time t . The second line of
the formula represents a risk-neutral conditional expectation, as of time t , of the discounted loss at
timeT if company i defaults then. The portfolio’s loss is L1 + L2, the sum of losses over the debtor
companies. The simulation output F (Yn ) is 1 if L1 + L2 > κ, and 0 otherwise. To clarify the model,
Algorithm 4 shows how the standard Monte Carlo simulation works.
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ALGORITHM 4: Standard Monte Carlo Simulation for Credit Risk Management

for n = 1, 2, . . . , do
Sample state Xn from bivariate lognormal distribution with Student-t copula, based on time increment

Δt , conditional on Xn−1;
Set μ̂SMC

n,r (Xn ) ← 0;

for j = 1, . . . , r do

Sample state Y
(j )
n from bivariate lognormal distribution with Student t copula, based on time

increment t , conditional on Xn ;

Set L
(j )
n ← �1 (Y

(j )
n,1) + �2 (Y

(j )
n,2);

if L
(j )
n ≤ κ then

Set F (Y
(j )
n ) ← 1;

else

Set F (Y
(j )
n ) ← 0

end

Set μ̂SMC
xn (Xn ) ← μ̂SMC

xn (Xn ) + F (Y
(j )
n );

end

Set μ̂SMC
n,r (Xn ) ← μ̂SMC

n,r (Xn )/r and output;

end

To investigate the effectiveness of green simulation, we performed a sequence of 52 simula-
tion experiments repeated weekly (i.e., n = 1, 2, . . . , 52) with r = 1,000 replications each. Using

the same simulation output {Y (j )
n : n = 1, 2, . . . , 52, j = 1, 2, . . . , 100} from the same random sam-

ple path {Xn : n = 1, 2, . . . , 52}, we evaluated the SMC and green simulation estimators at each
period n = 1, 2, . . . , 100, in the current state Xn . For the purpose of accurately estimating the un-
conditional variances of the all these estimators, we performed such a sequence of experiments
10,000 times. These 10,000 macro-replications of the sequence of experiments have independent
sample paths and simulation output. The estimated variance of a current-state estimator μ̂ (Xn )

of μ (Xn ) was
∑10,000

k=1
(μ̂ (k ) (X (k )

n ) − μ (X (k )
n ))2/10,000. These estimated variances appear in a log-log

plot in Figure 5, along with vertical error bars representing their 95% approximate-normal confi-
dence intervals.
Figure 5 shows behavior for the MLR estimator similar to what was seen for the previous ex-

ample in Figure 4. The MLR estimator’s variance is less than the SMC estimator’s variance, and it
decreases as the number n of repeated experiments increases. By n = 52, it is over 17 times smaller
than the SMC estimator’s variance. However, in Figure 5, we see effects of the non-ergodic nature
of the state process {Xn : n = 1, 2, . . .}. Due to the positive drifts of the asset prices, debtor compa-
nies tend to become less likely to default, so the SMC variance decreases slightly as the number of
periods n increases, instead of forming a straight line as in Figure 4. The dramatic effect is on the
behavior of the ILR and EWLR estimators. Their variances decrease over the first 6 experiments,
but after about 20 experiments, their variances increase again. Eventually, their variances exceed
the SMC estimator’s variance. Apparently, the difference between sampling distributions for state
X1 and X52 is likely to become so large that the use of likelihood ratios in the ILR estimator Equa-
tion (6) inflates variance. In such a situation, Proposition 2.3 states that the WLR estimator is no
worse than the SMC estimator. However, Proposition 2.3 does not apply to the EWLR estimator,
whose weights involve variance estimates. When a large variance is underestimated, the associ-
ated weight is too large, leading to inflated variance. The failure of the ILR and EWLR estimators
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Fig. 5. Log-log plot with error bars for estimated MSEs for current state estimators for credit risk example.

and the success of the MLR estimator in this example demonstrate the practical importance of
the MLR estimator. The evident disutility of some of the old simulation output in this example
also raises a future research question in green simulation: how to determine which old simulation
output is worthwhile to reuse in estimating the expected performance in the current state.
The GSK estimator performed poorly in this example, so we omitted it from Figure 5. The reason

for the poor performance of GSK in this example is as follows. In this example, there is a strong cor-
relation between the conditional expectation μ (Xn ) and conditional variance σ

2 (Xn ) of the simula-
tion output. Furthermore, σ 2 (Xn ) can be very small and difficult to estimate, so the estimated con-
ditional variance σ̂ 2 (Xn ) can even be zero. In SK, simulation output with lower estimated variance
receives higher weight; if lower estimated variance is correlated with lower estimated mean, bias
can result (Staum 2009). This SK bias is large in this example, causing the poor performance of GSK.

7 CONCLUSIONS AND FUTURE RESEARCH

In Section 5, we established theorems about the convergence of green simulation estimators as
the number of repeated experiments increases. We tested their practical performance for small
and moderate numbers of repeated experiments in two examples in Section 6. In the example of
Section 6.1, the conditions of Theorem 5.2 held. Our ILR, EWLR, MLR, and GSK estimators were
successful in significantly reducing variance compared to standard Monte Carlo, but MLR was
best. In the example of Section 6.2, the conditions of Theorem 5.2 did not hold. The MLR estimator
was successful in significantly reducing variance, whereas the ILR, EWLR, and GSK estimators had
problems. The GSK estimator is more widely applicable than the LR estimators. However, in the
examples we investigated, it was not competitive with the LR estimators. Among the LR estima-
tors, we recommend theMLR estimator for doing green simulation in the setting where simulation
experiments are repeated with changes to parameters of distributions of random variables gener-
ated in the simulation. The variance reduction achieved by the LR estimators depends on several
aspects of the particular example: the stochastic process that describes changing parameters, the
particular distributions whose parameters change, and the number of repeated experiments. Under
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the conditions of Theorem 5.2, as the number of repeated experiments increases, the LR estima-
tors eventually become greatly superior to standard Monte Carlo. Our experiment results suggest
that green simulation is extremely promising: in the only two examples that we investigated, the
MLR estimator achieved variance lower than standard Monte Carlo by factors of 17 and 61 after a
moderate number of repeated experiments.
Because green simulation is a new paradigm, there are several good directions for future re-

search. Here, we call attention to a few that are most relevant to this article.
Some future research topics are relevant to the specific methods proposed in this article. We

found the MLR estimator to be satisfactory for our purposes. However, further enhancements
have been considered in the literature on importance sampling. For example, Hesterberg (1995)
investigated different ways to normalize weights, and Owen and Zhou (2000) proposed to use
likelihoods that appear in the MLR estimator as control variates. At the end of Section 6.2, the
experiment results raised the question of which old simulation output to reuse in green simulation.
This question is worthy of investigation in connection with the methods proposed in this article
and also with other methods. In general, there are two possible drawbacks to using all of the old
simulation output. One is that if the amount of old simulation output is extremely large, reusing
more of it generates diminishing returns in terms of improved estimator quality compared to the
computational cost of reusing it. To limit the computational cost of reuse, one could employ hard
thresholding: reusing only that subset of the old simulation output that is deemed to be sufficiently
relevant for estimating the expected performance for the target state. The selection criterion could
be, for example, the similarity of the sampling density h (·;Xk ) to the target density h (·;x ) for LR
estimators, or the distance from the previous state Xk to the target state x . The other drawback to
using all of the old simulation output is that some of the old simulation output makes an estimator
worse if it is reused than if it is not reused, as seen in Section 6.2. To cope with this problem,
one may employ hard thresholding or soft thresholding, meaning assigning weight to simulation
output in proportion to its perceived relevance. For example, the WLR estimator can be viewed
as a soft thresholding method, which gives smaller weights to outputs that are associated with
high variances. The theoretical and practical benefit of various green simulation methods could be
enhanced by good rules for selecting the subset of old simulation output to reuse.
We focused on showing that when old simulation output is reused well, it provides greater accu-

racy when combined with a new simulation experiment than would be achieved by the same new
simulation alone. We analyzed how the accuracy of an answer to the current question improves as
the number of repeated experiments increases. However, it might be possible to answer the current
question sufficiently accurately with no further experiment. If a new simulation experiment was
indeed required, then one could design it in light of the current question and the currently avail-
able information. This leads to future research in experiment design not from a blank slate. Also,
one might consider possible future questions when designing the current experiment, in light of
knowledge of the state process.

APPENDIX

A VERIFYING THE CONDITIONS OF THEOREM 5.2 FOR THE

CATASTROPHE BOND PRICING EXAMPLE

In this appendix, we verify the conditions of Theorem 5.2 and for the catastrophe bond (CAT
bond) pricing example. In this example, the underlying state process {Xn : n = 1, 2, . . .} is AR(1),
so it is ergodic. Recall that the loss in the CAT bond pricing example is given by Yn =

∑Mn

i=1 Z
i
n .

Conditional onXn = x , and denoting ϕ (x ) = (λ,θ ), the numberMn of claims is Poisson distributed
with mean λ and independent of {Z i

n : i = 1, . . . ,Mn }, which are independent random variables,
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exponentially distributed with mean θ . The conditional distribution of Yn given Xn places
probability mass h(0;x ) = e−λ on y = 0 and has probability density

h(y;x ) =
∞∑

m=1

λm

m!
e−λ

ym−1e−y/θ

Γ(m)θm
=

√
λ

θy
e−λ−y/θ I1 ��2

√
λy

θ
�
 (27)

for y > 0, where Γ is the Gamma function and I1 is the modified Bessel function of the first kind
of order 1.
We will first establish two lemmas that are useful for verifying the conditions of Theorem 5.2

for the CAT bond pricing example. Define the domain K = (0,∞) × (0,∞) × R and the functions
A : K �→ R and a : K × (0,∞) �→ R by

A(k ) =

∫ ∞

0

a(k,y)dy, where a(k,y) =
e−k1y+k3

√
y

√
y

I1 (k2
√
y) ≥ 0. (28)

Lemma A.1. The function A is continuous on K .

Proof. For any k,k ′ ∈ K , we have

|A(k ) −A(k ′) | ≤
∫ ∞
N

a(k,y)dy +
∫ ∞
N

a(k ′,y)dy +
∫ N

0
��a(k,y) − a(k ′,y)��dy.

For any k ∈ K and ϵ > 0, we will show that there exist N > 0 and δ > 0 such that the right side is
bounded above by ϵ if ‖k − k ′‖2 < δ . First, we will show that, for any k ∈ K and ϵ > 0, there exists

N1 > 0 such that
∫ ∞
N1

a(k,y)dy ≤ ϵ/3. Applying the same argument to k ′ ∈ K , there exists N2 such

that
∫ ∞
N2

a(k ′,y)dy ≤ ϵ/3. We then let N = max {N1,N2}. Finally, we show that for any k ∈ K , ϵ >

0, and N > 0, there exists some δ > 0 such that
∫ N

0
��a(k,y) − a(k ′,y)��dy ≤ ϵ/3 if ‖k − k ′‖2 ≤ δ .

First, it is proved by Luke (1972) that Γ(ν + 1) (2/y)ν Iν (y) < cosh(y) for y > 0 and ν > −1/2.
Taking ν = 1 in this inequality, and observing that cosh(y) < ey , we have I1 (y) < (y/2)ey . Let k̃1 =
k1/2 > 0. Then,

a(k,y) = e−k1y+k3
√
y

√
y

I1 (k2
√
y)

< e−k1y+k3
√
y

√
y

(
k2
√
y

2 ek2
√
y
)

≤ k2e
(k2+k3 )

2/(4k̃1 )

2 e−k̃1y =: Ce−k̃1y ,

where the second inequality holds, because (k2 + k3)
√
y − k̃1y ≤ (k2 + k3)

2/(4k̃1), and the constant

C > 0 is defined for ease of notation. Therefore,
∫ ∞
N

a(K ,y)dy ≤ C
∫ ∞
N

e−k̃1ydy = C (e−N k̃1/k̃1).
Take

N1 = −
ln[ϵk̃1/3C]

k̃1
= −2 ln[(ϵk1)/(6C )]

k1
.

Then,
∫ ∞
N1

a(K ,y)dy ≤ ϵ/3.

The function I1 is a solution of Bessel’s differential equation, so it is continuous on (0,∞). Con-
sequently, the function ã : K × (0,∞) �→ R defined as ã(k,y) := e−k1y+k3

√
y I1 (k2

√
y) = a(k,y)

√
y

is continuous on K × [0,∞). Choose any δ0 > 0 and define the compact neighborhood Nk (δ0) :=
{k ′ ∈ K : ‖k − k ′‖2 ≤ δ0}. The function ã is continuous on the compact setNk (δ0) × [0,N ]. There-
fore, it is uniformly continuous on Nk (δ0) × [0,N ]. Consequently, there exists δ ∈ (0,δ0] such
that, for all (k,y), (k ′,y ′) ∈ Nk (δ0) × [0,N ] that satisfy ‖ (k,y) − (k ′,y ′)‖2 ≤ δ , we have |ã(k,y) −
ã(k ′,y ′) | ≤ ϵ/(6

√
N ). Therefore, for any k ′ ∈ K such that ‖k − k ′‖2 ≤ δ , we have∫ N

0

��a(k,y) − a(k ′,y)��dy = ∫ N

0

1
√
y
��ã(k,y) − ã(k ′,y)��dy ≤ ϵ

6
√
N

∫ N

0

1
√
y
dy =

ϵ

3
. �
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Define the domain K B = (0,∞) × (0,∞) × (0,∞) and the functions B : K B �→ R and b : K B ×
(0,∞) �→ R by

B (k ) =

∫ ∞

0

b (k,y)dy, where b (k,y) =
e−k1y
√
y

[I1 (k2
√
y)]2

I1 (k3
√
y)
≥ 0.

Lemma A.2. If K̄ ⊂ K is compact, then sup{A(K ) |K ∈ K̄ } < ∞. If K̄ B ⊂ K B is compact, then

sup{B (K ) |K ∈ K̄ B } < ∞.

Proof. Because A is continuous in K , by Lemma A.1, and K̄ ⊂ K is compact, it follows that
sup{A(K ) |K ∈ K̄ } = max{A(K ) |K ∈ K̄ } < ∞.
For any k ∈ K B , let k∗ = max {k2,k3} and k∗ = min {k2,k3}. Then it follows from Theorem 2.1

of Laforgia (1991) that

b (k1,k2,k3,y) <
e−k1y
√
y

[
e2(k

∗−k∗ )
√
y k
∗

k∗

]
I1 (k2
√
y) = a(k1,k2, 2(k

∗ − k∗),y).

Therefore, B (k1,k2,k3) ≤ A(k1,k2, 2(k
∗ − k∗)) for any k ∈ K B . Moreover, the compactness of K̄ B

implies the compactness of the set

K∗ :=
{
(k1,k2, 2(k

∗ − k∗)) |(k1,k2,k3) ∈ K̄ B ,k∗ = max {k2,k3} ,k∗ = min {k2,k3}
}
,

which is a subset of K . Therefore, sup{B (K ) |K ∈ K̄ B } ≤ sup{A(K ) |K ∈ K ∗} < ∞. �

Proposition A.3. In the catastrophe bond example, if λ̄ ≥ λ > 0 and 2θ > θ̄ ≥ θ > 0, then for

any target state x ∈ R2,
∫
R2
σ 2
x (x
′)dπ (x ′) < ∞ and the sequence {σ 2

x (Xn ),n = 1, 2 . . .} is uniformly

integrable.

Proof. Consider any target state x ∈ R2 and any sampling state x ′ ∈ R2. The likelihood ratio is
�x (y;x

′) = h(y;x )/h(y;x ′). Because the simulation output F (Yn ) is between 0 and 1, for all n, the
target-x-sample-x ′ variance σ 2

x (x
′) defined in Equation (5) satisfies

0 ≤ σ 2
x (x

′) ≤ E
[
(F (Yn ) �x (Yn ;x

′))2 |Xn = x ′
]
≤ E

[
(�x (Yn ;x

′))2 |Xn = x ′
]
.

To establish the desired conclusions, it suffices to show that this conditional second moment has a
finite upper bound over x ′ ∈ R2, for any fixed x ∈ R2. Denote (λ,θ ) = φ (x ) > 0 and (λ′,θ ′) = φ (x ′).
We have

E

[
(�x (Yn ;x

′))2 |Xn = x ′
]
=

(
e−λ

e−λ′

)2
e−λ

′
+

∞∫
0

(
h(y;x )

h(y;x ′)

)2
h(y;x ′)dy.

The first term is bounded above by e λ̄−2λ . For the second term, we have

∞∫
0

(
h (y ;x )
h (y ;x ′)

)2
h(y;x ′)dy =

∞∫
0

[√
λ
θy

e
−λ− y

θ I1

(
2

√
λy
θ

)] 2
√

λ′
θ ′y e

−λ′− y
θ ′ I1

(
2

√
λ′y
θ ′

) dy
=

√
λ2θ ′

λ′θ 2 e
λ′−2λ

∞∫
0

1√
y
e−
(
2θ ′−θ
θθ ′
)
y

[
I1

(
2

√
λy
θ

)] 2
I1

(
2

√
λ′y
θ ′

) dy

=

√
λ2θ ′

λ′θ 2 e
λ′−2λB

(
2θ ′−θ
θθ ′ , 2

√
λ
θ
, 2
√

λ′
θ ′

)
.

(29)

For all x ′ ∈ R2, we have that (λ′,θ ′) = φ (x ′) is in a compact set [λ, λ̄] × [θ , θ̄] that does not contain
zero. On this set, the arguments of B are all bounded, therefore⎧⎪⎨⎪⎩��2θ

′ − θ
θθ ′

, 2

√
λ

θ
, 2

√
λ′

θ ′
�
 |(λ′,θ ′) ∈ [λ, λ̄] × [θ , θ̄]

⎫⎪⎬⎪⎭ = K̄ B
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is compact. Thus, it follows from the second claim of Lemma A.2 that Equation (29) has a finite
upper bound over x ′ ∈ R2. �
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