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Abstract—Recent years have seen rapid growth in data-driven distributed

systems such as Hadoop MapReduce, Spark, and Dryad. However, the

counterparts for high-performance or compute-intensive applications including

large-scale optimizations, modeling, and simulations are still nascent. In this
paper, we introduce DtCraft, a modern C++17-based distributed execution

engine that efficiently supports a new powerful programming model for

building high-performance parallel applications. Users need no understanding
of distributed computing and can focus on high-level developments, leaving

difficult details such as concurrency controls, workload distribution, and fault

tolerance handled by our system transparently. We have evaluated DtCraft

on both micro-benchmarks and large-scale optimization problems, and shown
promising performance on computer clusters. In a particular semicondictor

design problem, we achieved 30× speedup with 40 nodes and 15× less

development efforts over hand-crafted implementation.

I. INTRODUCTION

Recently, cluster computing frameworks such as MapReduce, Spark, and

Dryad have been widely used for big data processing [1], [2], [3]. The

availability of allowing users without any experience of distributed systems to

develop applications that access large cluster resources has demonstrated great

success in many big data analytics. Existing platforms, however, mainly focus

on big data processing. Research for high-performance or compute-driven

counterparts such as large-scale optimizations and engineering simulations has

failed to garner the same attention. As horizontal scaling has proven to be the

most cost-efficient way to increase compute capacity, the need to efficiently

leverage numerous computations is quickly becoming the next challenge [4],

[5].

Compute-intensive applications have many different characteristics from big

data. First, developers are obsessed about performance. Striving for high per-

formance typically requires intensive CPU computations and efficient memory

managements, while big data computing is more data-intensive and I/O-bound.

Second, performance-critical data are more connected and structured than that

of big data. Design files cannot be easily partitioned into independent pieces,

making it difficult to fit into MapReduce paradigm [1]. Also, it is fair to claim

most compute-driven data are medium-size as they must be kept in memory

for performance purpose [4]. The benefit of MapReduce may not be fully

utilized in this domain. Third, performance-optimized programs are normally

hard-coded in C/C++, whereas the mainstream big data languages are Java,

Scala, and Python. Rewriting these ad-hoc programs that have been robustly

present in the tool chain for decades is not a practical solution.

To prove the concept, a recent research study has reported an experiment

comparing the performance of running VLSI timing analysis under different

languages and system frameworks [7]. As shown in Figure 1, the hand-

crafted C/C++ program is much faster than many of mainstream big data

languages such as Python, Java, and Scala. It can even outperform one of the

best big data cluster computing frameworks, the distributed Spark/GraphX-

based implementation, by 45× faster. Many industry experts have realized

that big data is not an easy fit to their domains, for example, semiconductor

design optimizations and engineering simulations. Unfortunately, the ever-

increasing design complexity will far exceed what many old ad-hoc methods

have been able to accomplish. In addition to having researchers and practi-

tioners acquire new domain knowledge, we must rethink the approaches of

developing software to enable the proliferation of new algorithms combined

with readily reusable toolboxes. To this end, the key challenge is to discover

an elastic programming paradigm that lets developers place computations at

customizable granularity wherever the data is – which is believed to deliver
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Fig. 1. An example of VLSI timing analysis and the comparison between compute-
intensive applications and big data [6], [7].

the next leap of engineering productivity and unleash new business model

opportunities [4].

One of the main challenges to achieve this goal is to define a suitable

programming model that abstracts the data computation and process commu-

nication effectively. The success of big data analytics in allowing users without

any experience of distributed computing to easily deploy jobs that access large

cluster resources is a key inspiration to our system design [1], [2], [3]. We

are also motivated by the fact that existing big data systems such as Hadoop

and Spark are facing the bottleneck in support for compute-optimized codes

and general dataflow programming [5]. For many compute-driven or resource-

intensive problems, the most effective way to achieve scalable performance

is to force developers to exploit the parallelism. Prior efforts have been made

to either breaking data dependencies based on domain-specific knowledge

of physical traits or discovering independent components across multiple

application hierarchies [7]. Our primary focus is instead on the generality

of a programming model and, more importantly, the simplicity and efficiency

of building distributed applications on top of our system.

While this project was initially launched to address a question from our

industry partners, “How can we leverage the numerous computations of

semiconductor designs to improve the engineering productivity?”, our design

philosophy is a general system that is useful for compute-intensive applications

such as graph algorithms and machine learning. As a consequence, we propose

in this paper DtCraft, a general-purpose distributed execution engine for

building high-performance parallel applications. DtCraft is built on Linux

machines with modern C++17, enabling end users to utilize the robust C++

standard library along with our parallel framework. A DtCraft application is

described in the form of a stream graph, in which vertices and edges are

associated with each other to represent generic computations and real-time

data streams. Given an application in this framework, the DtCraft runtime

automatically takes care of all concurrency controls including partitioning,

scheduling, and work distribution over the cluster. Users do not need to



worry about system details and can focus on high-level development toward

appropriate granularity. We summarize three major contributions of DtCraft

as follows:

• New programming paradigm. We introduce a powerful and flexible new

programming model for building distributed applications from sequential

stream graphs. Our programming model is very simple yet general enough

to support generic dataflow including feedback loops, persistent jobs, and

real-time streaming. Stream graph components are highly customizable with

meta-programming. Data can exist in arbitrary forms, and computations are

autonomously invoked wherever data is available. Compared to existing

cluster computing systems, our framework is more elastic in gaining

scalable performance.

• Software-defined infrastructure. Our system enables fine-grained resource

controls by leveraging modern OS container technologies. Applications live

inside secure and robust Linux containers as work units which aggregate the

application code with runtime dependencies on different OS distributions.

With a container layer of resource management, users can tailor their

application runtime toward tremendous performance gain.

• Unified framework. We introduce the first integration of user-space

dataflow programming with resource container. For this purpose, many

network programming components are re-devised to fuse with our system

architecture. The unified framework empowers users to utilize rich APIs of

our system to build highly optimized applications.

We believe DtCraft stands out as a unique system considering the ensemble

of software tradeoffs and architecture decisions we have made. With these

features, DtCraft is suited for various applications both on systems that search

for transparent concurrency to run compute-optimized codes, and on those

that prefer distributed integration of existing developments with vast expanse

of legacy codes in order to bridge the performance gap. We have evaluated

DtCraft on micro-benchmarks including machine learning, graph algorithms,

and large-scale semiconductor engineering problems. We have shown DtCraft

outperforms one of the best cluster computing systems in big data community

by more than an order of magnitude. Also, we have demonstrated DtCraft can

be applied to wider domains that are known difficult to fit into existing big

data ecosystems.

II. THE DTCRAFT SYSTEM

The overview of the DtCraft system architecture is shown in Figure 2. The

system kernel contains a master daemon that manages agent daemons running

on each cluster node. Each job is coordinated by an executor process that is

either invoked upon job submission or launched on an agent node to run the

tasks. A job or an application is described in a stream graph formulation. Users

can specify resource requirements (e.g. CPU, memory, disk usage) and define

computation callbacks for each vertex and edge, while the whole detailed

concurrency controls and data transfers are automatically operated by the

system kernel. A job is submitted to the cluster via a script that sets up

the environment variables and the executable path with arguments passed to

its main method. When a new job is submitted to the master, the scheduler

partitions the graph into several topologies depending on current hardware

resources and CPU loads. Each topology is then sent to the corresponding

agent and is executed in an executor process forked by the agent. For those

edges within the same topology, data is exchanged via efficient shared memory.

Edges between different topologies are communicated through TCP sockets.

Stream overflow is resolved by per-process key-value store, and users are

perceived with virtually infinite data sets without deadlock.

A. Stream Graph Programming Model

DtCraft is strongly tight to modern C++ features, in particular the con-

currency libraries, lambda functions, and templates. We have struck a balance

between the ease of the programmability at user level and the modularity of the

underlying system that needs to be extensible with the advance of software

technology. The main programming interface including gateway classes is

sketched as follows:

class Vertex {

function<void()> on;

once_flag flag;

Adjacency<DeviceWriter> writers; // weak pointers

Adjacency<DeviceReader> readers; // weak pointers

};

class Stream {

weak_ptr<DeviceWriter> writer;

weak_ptr<DeviceReader> reader;

function<Signal(Vertex&, DeviceWriter&)> on_os();

function<Signal(Vertex&, DeviceReader&)> on_is();

};

class Graph {

template <typename C> // vertex

auto insert(C&&...);

template <typename O, typename I> // stream

auto insert(const auto&, O&&, const auto&, I&&)

template <typename... U>

auto containerize(U&&...);

};

class Executor : Reactor {

Executor(Graph&);

void dispatch();

};

Programmers formulate an application into a stream graph and define

computation callbacks in the format of standard function object for each

vertex and edge (stream). Vertices and edges are highly customizable subject

to the inheritance from classes Vertex and Stream that interact with our

back-end. The vertex callback is a constructor-like call-once barrier that is

used to synchronize all adjacent edge streams at the beginning. Each edge

is associated with two callbacks, one for output stream at the tail vertex

and another one for input stream at the head vertex. Our stream interface

follows the structure of standard C++ iostream library. We have developed

specialized stream buffer classes in charge of performing reading and writing

operations on stream objects. The stream buffer class hides from users a

great deal of work such as non-blocking communication, stream overflow

and synchronization, and error handling. Vertices and edges are explicitly

connected together through the Graph and its method insert. Users can

configure the resource requirements for different portions of the graph using

our container method containerize. Finally, an executor class forms the

graph along with application-specific parameters into a simple closure and

dispatches it to the remote master for execution.

B. A Concurrent Ping-pong Example

To understand our programming interface, we describe a concrete example

of a DtCraft application. The example we have chosen is a representative

class in many software libraries – concurrent ping-pong, as it represents a

fundamental building block of many iterative or incremental algorithms. The

flow diagram of a concurrent ping-pong and its runtime on our system are

illustrated in Figure 3. The ping-pong consists of two vertices, called “Ball”,

which asynchronously sends a random binary character to each other, and

two edges that are used to capture the data streams. Iteration stops when the

internal counter of a vertex reaches a given threshold.

auto Ball(Vertex& v, auto& k) {

v.writers.at(k).lock->ostream((rand()%2));

return Stream::DEFAULT;

};

auto PingPong(auto& v, auto& r, auto& k, auto& c) {

int data;

reader.istream(data);

if((c+=data) >= 100) return Stream::REMOVE_THIS;

return Ball(v, k)

}

Graph G;

key_type AB, BA;

auto count_A {0}, count_B {0};

auto A = G.insert([&](auto& v){ Ball(v, AB); })
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Fig. 3. Flow diagram of the concurrent ping-pong example. Computation

callbacks on streams are simultaneously invoked by multiple threads.

auto B = G.insert([&](auto& v){ Ball(v, BA); })

AB = G.insert(

A, [&](auto& v, auto& writer) {}, // ostream

B, [&](auto& v, auto& reader) { // istream

return PingPong(v, reader, BA, count_B);

}

);

BA = G.insert(

B, [&](auto& v, auto& writer) {}, // ostream

A, [&](auto& v, auto& reader) { // istream

return PingPong(v, reader, AB, count_A)

}

);

G.containerize(A, "memory=1KB", "num_cpus=1");

G.containerize(B, "memory=1KB", "num_cpus=1");

Executor(G).dispatch();

As presented in the above code snippet, we define a function Ball that

writes a binary data through the stream k on vertex v. We define another

function PingPong to retrieve the data arriving in vertex v followed by

Ball if the counter hasn’t reached the threshold. We next define vertices

and streams using the class method insert from the graph, as well as

their callbacks based on Ball and PingPong. The vertex first reaching

the threshold will close the underlying stream channels via a return of

Stream::REMOVE_THIS. This is a handy feature of our system. Users do

not need to invoke extra function call to signal our stream back-end. Closing

one end of a stream will subsequently force the other end to be closed, which

in turn updates the stream ownership on corresponding vertices. We configure

each vertex with 1KB memory and 1 CPU. Finally, an executor instance is

created to wrap the graph into a closure and dispatch it to the remote master

for execution.

C. Advantages of the Proposed Model

DtCraft provides a programming interface similar to those found in C++

standard libraries. Users can learn how to develop a DtCraft application at a

faster pace. The same code that executes distributively can be also deployed

on a local machine for debugging purpose. No programming changes are

necessary except the options passed to the submission script. Note that our

framework needs only a single entity of executable from users. The system

kernel is not intrusive to any user-defined entries, for instance, the arguments

passed to the main method. We encourage users to describe stream graphs

with C++ lambda and function objects. This functional programming style

provides a very powerful abstraction that allows the runtime to bind callable

objects and captures different runtime states.

Although conventional dataflow thinks applications as “computation ver-

tices” and “dependency edges” [2], [8], [9], [10], our system model does

not impose explicit boundary (e.g., DAG restriction). As shown in previous

code snippets, vertices and edges are logically associated with each other and

are combined to represent generic stream computations including feedback

controls, state machines, and asynchronous streaming. Stream computations

are by default long-lived and persist in memory until the end-of-file state is

lifted. In other words, our programming interface enables straightforward in-

memory computing, which is an important factor for iterative and incremental

algorithms. This feature is different from existing data-driven cluster comput-

ing frameworks such as Dryad, Hadoop, and Spark that rely on either frequent

disk access or expensive extra caching for data reuse [1], [2], [3]. In addition,

our system model facilitates the design of real-time streaming engines. A

powerful streaming engine has the potential to bridge the performance gap

caused by application boundaries or design hierarchies. It is worth noting

that many engineering applications and companies existed “pre-cloud”, and

the most techniques they applied were ad-hoc C/C++ [4]. To improve the

engineering turnaround, our system can be explored as a distributed integration

of existing developments with legacy codes.

Another powerful feature of our system over existing frameworks is guided

scheduling using Linux containers. Users can specify hard or soft constraints

configuring the set of Linux containers on which application pieces would

3



like to run. The scheduler can preferentially select the set of computers to

launch application containers for better resource sharing and data locality.

While transparent resource control is successful in many data-driven cluster

computing systems, we have shown that compute-intensive applications has

distinctive computation patterns and resource management models. With this

feature, users can implement diverse approaches to various problems in the

cluster at any granularity. In fact, we are convinced by our industry partners

that the capability of explicit resource controls is extremely beneficial for

domain experts to optimize the runtime of performance-critical routines. Our

container interface also offers users secure and robust runtime, in which

different application pieces are isolated in independent Linux instances. To

our best knowledge, DtCraft is the first districuted execution engine that

incorporates the Linux container into dataflow programming.

In summary, each system has its own merits in certain application domain,

and it is impossible to provide thorough comparison with prior works due

to the page limit. However, we believe DtCraft stands out as a unique

system given the following attributes: (1) A compute-driven distributed system

completely designed from modern C++17. (2) A new asynchronous stream-

based programming model in support for general dataflow. (3) A container

layer integrated with user-space programming to enable fine-grained resource

controls and performance tunning. Developers are encouraged to investigate

the structure of their applications and the properties of proprietary systems.

Careful graph construction and refinement can improve the performance

substantially.

III. SYSTEM IMPLEMENTATION

DtCraft aims to provide a unified framework that works seamlessly with the

C++ standard library. Like many distributed systems, network programming is

an integral part of our system kernel. While our initial plan was to adopt third-

party libraries, we have found considerable incompatibility with our system

architecture (discussed in later sections). Fixing them would require extensive

rewrites of library core components. Thus, we decided to re-design these

network programming components from ground-up, in particular the event

library and serialization interface that are fundamental to DtCraft. We shall

also discuss how we achieve distributed execution of a given graph, including

scheduling and transparent communication.

A. Event-driven Environment

DtCraft supports event-based programming style to gain benefits from

asynchronous computations. Writing an event reactor has traditionally been

the domain of experts and the language they obsessed about is C [11].

The biggest issue we found in widely-used event libraries is the inefficient

support for object-oriented design and modern concurrency. Our goal is thus to

incorporate the power of C++ libraries with low-level system controls such as

non-blocking mechanism and I/O polling. Due to the space limit, we present

only the key design principles of our event reactor as follows:

class Event : enable_shared_from_this <Event> {

enum Type {TIMEOUT, PERIODIC, READ, WRITE};

const function<Signal(Event&)> on;

};

class Reactor {

Threadpool threadpool;

unordered_set<shared_ptr<Event>> eventset;

template <typename T, typename... U>

future<shared_ptr<T>> make(U&&... u) {

auto e = make_shared<T>(forward<U>(u)...);

return promise([&, e=move(e)](){

_insert(e); // insert an event into reactor

return e;

});

}

};

Unlike existing libraries, our event is a flattened unit of operations including

timeout and I/O. Events can be customized given the inheritance from class

Event. The event callback is defined in a function object that can work closely

with lambda and polymorphic function wrapper. Each event instance is created

by the reactor and is only accessible through C++ smart pointer with shared

ownership among those inside the callback scope. This gives us a number of

benefits such as precise polymorphic memory managements and avoidance of

ABA problems that are typically hard to achieve with raw pointers. We have

implemented the reactor using task-based parallelism. A significant problem

of existing libraries is the condition handling in multi-threaded environment.

For example, a thread calling to insert or remove an event can get a nonsense

return if the main thread is too busy to handle the request [11]. To enable

proper concurrency controls, we have adopted C++ future and promise objects

to separate the acts between the provider (reactor) and consumers (threads).

Multiple threads can thus safely create or remove events in arbitrary orders. In

fact, our unit test has shown 4–12× improvements in throughput and latencies

over existing libraries [11].

B. Serialization and Deserialization

We have built a dedicated serialization and deserialization layer called

archiver on top of our stream interface. The archiver has been intensively used

in our system kernel communication. Users are strongly encouraged, though

not necessary, to wrap their data with our archiver as it is highly optimized

to our stream interface. Our archiver is similar to the modern template-based

library Cereal, where data types can be reversibly transformed into different

representations such as binary encodings, JSON, and XML [12]. However, the

problem we discovered in Cereal is the lack of proper size controls during

serialization and deserialization. This can easily cause exception or crash

when non-blocking stream resources become partially unavailable. While

extracting the size information in advance requires twofold processing, we

have found such burden can be effectively leveraged using modern C++

template techniques. A code example of our binary archiver is given as

follows:

class BinaryOutputArchiver {

ostream& os;

template <typename... U>

constexpr streamsize operator()(U&&... u) {

return archive(forward<U>(u)...);

}

};

We developed our archiver based on extensive templates to enable a

unified API. Many operations on stack-based objects and constant values are

prescribed at compile time using constant expression and forwarding reference

techniques. The archiver is a light-weight layer that performs serialization and

deserialization of user-specified data members directly on the stream object

passed to the callback. We also offer a packager interface that wraps data with

a size tag for complete message processing. Both archiver and packager are

defined as callable objects to facilitate dynamic scoping in our multi-threaded

environment.

C. Input and Output Streams

One of the challenges in designing our system is choosing an abstraction

for data processing. We have examined various options and concluded that

developing a dedicated stream interface is necessary to provide users a simple

but robust layer of I/O services. To facilitate the integration of safe and portable

streaming execution, our stream interface follows the idea of C++ istream

and ostream. Users are perceived with the API similar to those found in C++

standard library, while our stream buffer back-end implements the entire details

such as device synchronization and low-level non-blocking data transfers.

Figure 4 illustrates the structure of a stream buffer object in our system

kernel. A stream buffer object is a class similar to C++ basic_streambuf

and consists of three components, character sequence, device, and database

pointer. The character sequence is an in-memory linear buffer storing a

particular window of the data stream. The device is an OS-level entity (e.g.

TCP socket, shared memory) that derives reading and writing methods from

an interface class with static polymorphism. Our stream buffer is thread safe

and is directly integrated with our serialization and deserialization methods.

To properly handle the buffer overflow, each stream buffer object is associated

with a raw pointer to a database owned by the process. The database is initiated

when a master, an agent, or an executor is created, and is shared among all

stream buffer objects involved in that process. Unless the ultimate disk usage

4
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is full, users are virtually perceived with unbounded stream capacity in no

worry about the deadlock.

D. Kernel: Master, Agent, and Executor

Master, agent, and executor are the three major components in the system

kernel. There are many factors that have led to the design of our system

kernel. Overall regard is the reliability and efficiency in response to different

message types. We have defined a reliable and extensible message structure

of type variant to manipulate a heterogeneous set of message types in a

uniform manner. Each message type has data members to be serialized and

deserialized by our archiver. The top-level class can inherit from a visitor

base with dynamic polymorphism and derive dedicated handlers for certain

message types.

To efficiently react to each message, we have adopted the event-based

programming style. Master, agent, and executor are persistent objects derived

from our reactor with specialized events binding to each. While it is expectedly

difficult to write non-sequential codes, we have found a number of benefits

of adopting event-driven interface, for instance, asynchronous computations,

natural task flow controls, and concurrency. We have defined several master

events in charge of graph scheduling and status report. For agent, most

events are designated as a proxy to monitor current machine status and

fork an executor to launch tasks. Executor events are responsible for the

communication with the master and agents as well as the encapsulation of

asynchronous vertex and edge events. Multiple events are executed efficiently

on a shared thread pool in our reactor.

1) Communication Channels: The communication channels between

different components in DtCraft are listed in Table I. By default, DtCraft

supports three types of communication channels, TCP socket for network com-

munication between remote hosts, domain socket for process communication

on a local machine, and shared memory for in-process data exchange. For

each of these three channels, we have implemented a unique device class that

effectively supports non-blocking I/O and error handling. Individual device

classes are pluggable to our stream buffer object and can be extended to

incorporate device-specific attributes for further I/O optimizations.

TABLE I
COMMUNICATION CHANNELS IN DTCRAFT.

Target Protocol Channel Latency

Master–User TCP socket Network High

Master–Agent TCP socket Network High

Agent–Executor Domain socket Local processes Medium

Intra-edge Shared memory Within a process Low

Inter-edge TCP socket Network High

Since master and agents are coordinated with each other in distributed

environment, the communication channels run through reliable TCP socket

streams. We enable two types of communication channels for graphs, shared

memory and TCP socket. As we shall see in the next section, the scheduler

might partition a given graph into multiple topologies running on different

agent nodes. Edges crossing the partition boundary are communicated through

TCP sockets, while data within a topology is exchanged through shared

memory with extremely low latency cost. To prevent our system kernel from

being bottlenecked by data transfers, master and agents are only responsible for

control decisions. All data is sent between vertices managed by the executor.

Nevertheless, achieving point-to-point communication is non-trivial for inter-

edges. The main reason is that the graph structure is offline unknown and

our system has to be general to different communication patterns deployed

by the scheduler. We have managed to solve this by means of file descriptor

passing through environment variables. The agent exports a list of open file

descriptors to an environment variable which will be in turn inherited by the

corresponding executor under fork.

2) Application Container: DtCraft leverages existing OS container tech-

nologies to enable isolation of application resources from one another. Because

these technologies are platform-dependent, we implemented a pluggable

isolation module to support multiple isolation mechanisms. An isolation

module containerizes a process based on user-specified attributes. By default,

we apply the Linux control groups (cgroups) kernel feature to impose per-

resource limits (CPU, memory, block I/O, and network) on user applications.

With cgroups, we are able to consolidate many workloads on a single

node while guaranteeing the quota assigned to each application. In order to

achieve secure and robust runtime, our system runs applications in isolated

namespaces. We currently support IPC, network, mount, PID, UTS, and user

namespaces. By essentially separating processes into independent namespaces,

user applications are ensured to be invisible from others and will be unable

to make connections outside of the namespaces. External connections such as

inter-edge streaming are managed by agents through device descriptor passing

techniques. Our container implementation also supports process snapshots,

which is beneficial for checkpointing and live migration.

3) Graph Scheduling: Scheduler is an asynchronous master event that is

invoked when a new graph arrives. Given a user-submitted graph, the goal of

the scheduler is to find a deployment of each vertex and each edge considering

the machine loads and resource constraints. A graph might be partitioned

into a set of topologies that can be accommodated by the present resources.

A topology is the basic unit of a task (container) that is launched by an

executor process on an agent node. A topology is not a graph because it

may contain dangling edges along the partition boundary. Once the scheduler

has decided the deployment, each topology is marshaled along with graph

parameters including the UUID, resource requirements, and input arguments

to form a closure that can be sent to the corresponding agent for execution.

An example of the scheduling process is shown in Figure 5. At present, two

schedulers persist in our system, a global scheduler invoked by the master and

a local scheduler managed by the agent. Given user-configured containers, the

global scheduler performs resource-aware partition based on the assumption

that the graph must be completely deployed at one time. The global scheduling

problem is formulated into a bin packing optimization where we additionally

take into account the number of edge cuts to reduce the latency. An application

is rejected by the global scheduler if its mandatory resources (must acquire

in order to run) exceed the maximum capability of machines. As a graph can

be partitioned into different topologies, the goal of the local scheduler is to

synchronize all inter-edge connections of a topology and dispatch it to an

executor. The local scheduler is also responsible for various container setups

including resource update, namespace isolation, and fault recovery.

Although our scheduler does not force users to explicitly containerize

applications (resort to our default heuristics), empowering users fine-grained

controls over resources can guide the scheduler toward tremendous perfor-

mance gain. Due to the space limitation, we are unable to discuss the entire

details of our schedulers. We believe developing a scheduler for distributed

dataflow under multiple resource constraints deserves independent research

effort. As a result, DtCraft delegates the scheduler implementation to a

pluggable module that can be customized by organizations for their purposes.

4) Topology Execution: When the agent accepts a new topology, a special

asynchronous event, topology manager, is created to take over the task. The

topology manager spawns (fork-exec) a new executor process based on the

parameters extracted from the topology, and coordinates with the executor

until the task is finished. Because our kernel requires only a single entity

of executable, the executor is notified by which execution mode to run via
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Fig. 5. An application is partitioned into a set of topologies by the global

scheduler, which are in turn sent to remote agents (local scheduler) for

execution.

environment variables. In our case, the topology manager exports a variable

to “distributed”, as opposed to aforementioned “submit” where the executor

submits the graph to the master. Once the process controls are finished, the

topology manager delivers the topology to the executor. A set of executor

events is subsequently triggered to launch asynchronous vertex and edge

events.

Fig. 6. A snapshot of the executor runtime in distributed mode.

A snapshot of the executor runtime upon receiving a topology is shown

in Figure 6. Roughly speaking, the executor performs two tasks. First, the

executor initializes the graph from the given topology which contains a key

set to describe the graph fragment. Since every executor resides in the same

executable, an intuitive method is to initialize the whole graph as a parent

reference to the topology. However, this can be cost-inefficient especially

when vertices and edges have expensive constructors. To achieve a generally

effective solution, we have applied lazy lambda technique to suspend the

initialization (see the code below). The suspended lambda captures all required

parameters to construct a vertex or an edge, and is lazily invoked by the

executor runtime. By referring to a topology passed from the “future”, only

necessary vertices and edges will be constructed.

template <typename V, typename... U>

VertexDescriptor Graph::insert_vertex(U&&... u) {

auto key = generate_key(); // deterministic key

tasks.emplace_back( // lazy initialization

[u..., key](Topology* t) {

// local mode and distributed mode

if(t == nullptr || t->has_key(key)) {

auto v = make_shared<V>(u...);

pm.set_value(move(v));

}

else t->insert(key); // submit mode

}

);

return key;

}

The second task is to initiate a set of events for vertex and edge callbacks.

We have implemented an I/O event for each device based on our stream

buffer object. Because each vertex callback is invoked only once, it can be

absorbed into any adjacent edge events coordinated by modern C++ threading

once_flag and call_once. Given an initialized graph, the executor

iterates over every edge and creates shared memory I/O events and TCP socket

I/O events for intra-edges and inter-edges, respectively. Notice that the device

descriptor for inter-edges are fetched from the environment variables inherited

from the agent.

IV. FAULT TOLERANCE POLICY

Our system architecture facilitates the design of fault tolerance on two

fronts. First, master maintains a centralized mapping between active applica-

tions and agents. Every single error, which could be either heartbeat timeout

on the executor or unexpected I/O behaviors on the communication channels,

can be properly propagated. In case of a failure, the scheduler performs a

linear search to terminate and re-deploy the application. Second, our container

implementation can be easily extended to support periodic checkpointing.

Executors are freezed to a stable state and are thawed after the checkpointing.

The solution might not be perfect, but adding this functionality is already an

advantage over our system framework, where all data transfers are exposed

to our stream buffer interface and can be dumped without lost.

V. EXPERIMENTAL RESULTS

We have implemented DtCraft in C++17 on a Linux machine with GCC

7. Given the huge amount of existing cluster computing frameworks, we

are unable to conduct comprehensive comparison subject to the space limit.

Instead, we compare with one of the best cluster computing engines, Apache

Spark 2.0 [3], that has been extensively studied by other research works

as baseline. To further investigate the benefit of DtCraft, we compared

with an application hand-crafted with domain-specific optimizations [7]. The

performance of DtCraft is evaluated on three sets of experiments. The first

two experiments took classic algorithms from machine learning and graph

applications and compared the performance of DtCraft with Spark. We have

analyzed the runtime performance over different numbers of machines on

an academic cluster [13]. The third experiment applied DtCraft to solve a

large-scale semiconductor design problem. Our goal is to explore DtCraft as

a distributed solution to mitigate the end-to-end engineering efforts along the

design flow. The evaluation has been undertaken on a large cluster in Amazon

EC2 cloud [14]. Overall, we have shown the performance and scalability of

DtCraft on both standalone applications and cross-domain applications that

have been coupled together in a distributed manner.

A. Machine Learning

We implemented two iterative machine learning algorithms, logistic regres-

sion and k-means clustering, and compared our performance with Spark. One

key difference between the two applications is the amount of computation they

performed per byte of data. The iteration time of k-means is dominated by

computations, whereas logistic regression is less compute-intensive [3]. The

source codes we used to run on Spark are cloned from the official repository

of Spark. For the sake of fairness, the DtCraft counterparts are implemented

based on the algorithms of these Spark codes.
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Fig. 7. Runtimes of DtCraft versus Spark on logistic regression and k-means.

Figure 7 shows the runtime performance of DtCraft versus Spark. Unless

otherwise noted, the value pair enclosed by the parenthesis (CPUs/GB) denotes

the number of cores and the memory size per machine in our cluster. We ran
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both logistic regression and k-means for 10 iterations on 40M sample points. It

can be observed that DtCraft outperformed Spark by 4–11× and 5–14× faster

on logistic regression and k-means, respectively. Although Spark can mitigate

the long runtime by increasing the cluster size, the performance gap to DtCraft

is still remarkable (up to 8× on 10 machines). In terms of communication

cost, we have found hundreds of Spark RDD partitions shuffling over the

network. In order to avoid disk I/O overhead, Spark imposed a significant

burden on the first iteration to cache data for reusing RDDs in the subsequent

iterations. In contrast, our system architecture enables straightforward in-

memory computing, incurring no extra overhead of caching data on any

iterations. Also, our scheduler can effectively leverage the machine overloads

along with network overhead for higher performance gain.

B. Graph Algorithm

We next examine the effectiveness of DtCraft by running a graph algorithm.

Graph problems are challenging in concurrent programming due to the

iterative, incremental, and irregular computing patterns. We considered the

classic shortest path problem on a circuit graph with 10M nodes and 14M

edges released by [7]. We implemented the Pregel-style shortest path finding

algorithm in DtCraft, and compared it with Spark-based Pregel variation

downloaded from the official GraphX repository [10].

Fig. 8. Visualization of our graph benchmark.

Figure 9 shows the runtime comparison across different machine counts. In

general, DtCraft reached the goal by 10–20× faster than Spark. Our program

can finish all tests within a minute regardless of the machine usage. We have

observed intensive network traffic among Spark RDD partitions whereas in

our system most data transfers were effectively scheduled to shared memory.

To further examine the runtime scalability, we duplicated the circuit graph and

created random links to form larger graphs, and compared the runtimes of both

systems on different graph sizes. As shown in Figure 10, the runtime curve of

DtCraft is far scalable against Spark. The highest speedup is observed at the

graph of size 240M, in which DtCraft is 17× faster than Spark. To summarize

this micro-benchmarking, we believe the performance gap between Spark and

DtCraft is due to the system architecture and language features we have

chosen. While we compromise with users on explicit dataflow description,

the performance gain in exchange can scale up to more than an order of

magnitude over one of the best cluster computing systems.

C. Electronic Design Automation (EDA)

The recent semiconductor industry is driving the need of massively-parallel

integration to leverage the technology scaling [4]. We applied DtCraft to

solve a large-scale EDA optimization problem, physical design, a pivotal

stage that encompasses several steps from circuit partition to timing closure

(see Figure 11). Each step has domain-specific solutions and engages with

others through different internal databases. We used open-source tools and

our internal developments for each step of the physical design [15], [6].

Individual tools have been developed based on C++ with default I/O on files,

which can fit into DtCraft without significant rewrites of codes. Altering the

I/O channels is unsurprisingly straightforward because our stream interface

is compatible with C++ file streams. We applied DtCraft to handle a typical

physical design cycle under multiple timing scenarios. As shown in Figure

12, our implementation ran through each physical design step and coupled

them together in a distributed manner. Generating the timing report is the

most time-consuming step. We captured each independent timing scenario by

one vertex and connected it to a synchronization barrier to derive the final

result. Users can interactively access the system via a service vertex.
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We derived a benchmark with two billion transistors from ICCAD15 and

TAU15 contests [15]. The DtCraft-based solution is evaluated on 40 Amazon

EC2 m4.xlarge machines [14]. The baseline we considered is a batch run

over all steps on a single machine that mimicked the normal design flow. The

overall performance is shown in Figure 13. The first benefit of our solution

is the saving of disk I/O (65 GB vs 11 GB). Most data is exchanged on

the fly including those that would otherwise come with redundant auxiliaries

through disk (50 GB parasitics in the timing step). Another benefit we have

observed is the asynchrony of DtCraft. Computations are placed wherever

stream fragments are available rather than blocking for the entire object to be

present. These advantages have translated to effective engineering turnaround

– 13 hours saving over the baseline. From designers’ perspective, this value

convinces not only a faster path to the design closure but also the chance

for breaking cumbersome design hierarchies, which has the potential to

tremendously improve the overall solution quality [7], [4].
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Fig. 11. Electronic design automation of VLSI circuits and optimization flow

of the physical design stage.
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We next demonstrate the speedup relative to the baseline on different cluster

sizes. In addition, we included the experiment in presence of a failure to

demonstrate the fault tolerance of DtCraft. One machine is killed at a random

time step, resulting in partial re-execution of the stream graph. As shown in

Figure 14, the speedup of DtCraft scales up as the cluster size increases. The

highest speedup is achieved at 40 machines (160 cores and 640 GB memory

in total), where DtCraft is 8.1× and 6.4× faster than the baseline. On the

other hand, we have observed approximately 10–20% runtime overhead on

fault recovery. We did not see pronounced difference from our checkpoint-

based fault recovery mechanism. This should be in general true for most EDA

applications since existing optimization algorithms are designed for “medium-

size data” (million gates per partition) to run in main memory [7], [4]. In

terms of runtime breakdown, computation takes the majority while about 15%

is occupied by system transparency.

Fig. 14. Runtime scalability in terms of speedup relative to the baseline on

different cluster sizes.

Since timing analysis exhibits the most parallelism, we investigate into

the performance gain by using DtCraft. To discover the system capability,

we compare with the distributed timing analysis algorithm (ad-hoc approach)

proposed by [7]. To further demonstrate the programmability of DtCraft, we

compared the code complexity in terms of the number of lines of codes

between our implementation and the ad-hoc approach. The overall comparison

is shown in Figure 15. Because of the problem nature, the runtime scalability

is even remarkable as the compute power scales out. It is expected the ad-

hoc approach is faster than our DtCraft-based solution. Nevertheless, the ad-

hoc approach embedded many hard codes and supports neither transparent

concurrency nor fault tolerance, which is difficult for scalable and robust

maintenance. In terms of programmability, our programming interface can

significantly reduce the amount of the codes by 15×. The corresponding

engineering efforts can be far beyond this number. Although this comparison

might not be fair, it indeed reflected the potential engineering productivity that

can be improved by DtCraft.

To conclude this experiment, we have introduced a platform innovation to

solve a large-scale semiconductor optimization problem with low integration

cost. To our best knowledge, this is the first work in the literature that achieves

a distributed EDA flow integration. In addition, DtCraft also opens new
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opportunities for improving commercial tools, for example, distributed EDA

algorithms and tool-to-tool integration. While this experiment demonstrates

merely a successful prototype, we believe DtCraft can be extended to consider

more general and complex design flows.

VI. CONCLUSION

We have presented DtCraft, a distributed execution engine for high-

performance parallel applications. DtCraft is developed based on modern

C++17 on Linux machines. Developers can fully utilize rich features of C++

standard libraries along with our parallel framework to build highly-optimized

applications. Experiments on classic machine learning and graph applications

have shown DtCraft outperforms the state-of-the-art cluster computing system

by more than an order of magnitude. We have also successfully applied

DtCraft to solve large-scale semiconductor optimization problems that are

known difficult to fit into existing big data ecosystems. For many similar

industry applications, DtCraft can be employed to explore integration and

optimization issues, thereby offering new revenue opportunities for existing

company assets. We plan to open the source of DtCraft as a vehicle for system

research.
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