
A Distributed Power Grid Analysis Framework from Sequential
Stream Graph

Chun-Xun Lin
Dept. of ECE, UIUC

IL, USA
clin99@illinois.edu

Tsung-Wei Huang
Dept. of ECE, UIUC

IL, USA
twh760812@gmail.com

Ting Yu
Austin, TX, USA

yuting20031918@gmail.
com

Martin D. F. Wong
Dept. of ECE, UIUC

IL, USA
mdfwong@illinois.edu

ABSTRACT
The ever-increasing design complexities have overwhelmed what is
offered by existing EDA tools. As a result, the recent EDA industry
is driving the need for distributed computing to leverage large-scale
compute-intensive problems, in particular, power grid analysis. In
this paper, we introduce a distributed power grid analysis frame-
work based on the stream graph model. We show that the stream
graph model has better programmability over the MPI and enables
flexible domain decomposition without limited by hardware re-
source. In addition, we design an efficient scheduling policy for
this particular workload to maximize the cluster utilization to im-
prove the performance. The experimental results demonstrated the
promising performance of our framework that scales from single
multi-core machines to a distributed computer cluster.

ACM Reference Format:
Chun-Xun Lin, Tsung-Wei Huang, Ting Yu, and Martin D. F. Wong. 2018.
A Distributed Power Grid Analysis Framework from Sequential Stream
Graph. In GLSVLSI ’18: 2018 Great Lakes Symposium on VLSI, May 23–25,
2018, Chicago, IL, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3194554.3194560

1 INTRODUCTION
As the technology continues to advance, analyzing a power dis-
tributed network that corporates billions of transistors becomes
a critical challenge. Traditionally, power analysis engineers parti-
tioned the problem into smaller and manageable pieces, and ran
each on a single multi-threading machine. However, according
to [1], analyzing a power grid with 136 million nodes on a single
multi-core machine can take hundreds of GBs of memory and sev-
eral hours to finish. Building such a high-end computer is expensive
and unscalable to the ever-increasing design complexities. As a re-
sult, EDA vendors are driving the need of distributed power grid
analysis.

Researchers have proposed parallel computing methods for
power grid analysis [2] [3] [4] [5] [6]. Existing works are based on
either multi-threading in a shared memory storage or distributed
computations across different nodes. The work by [2] [3] developed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’18, May 23–25, 2018, Chicago, IL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05. . . $15.00
https://doi.org/10.1145/3194554.3194560

parallel power grid simulators by taking the advantage of multi-
cores with shared memory to speed up the computing. Although
the shared memory model is advantageous in data communication,
it relies on expensive hardware resources to gain more scalabil-
ity. The work by [4] [5] designed parallel computing schemes by
partitioning data and distributing the computations across multi-
ple machines using the low-level massage passing interface (MPI)
library [7]. While MPI provides a layer of abstraction over the net-
work communication, it suffers from many distinct notations to
express the parallelism. The bottom-up design principle of MPI
is analogous to assembly languages in terms of writing parallel
code. For example, users have to manually name the machines for
process mapping and hard-code message passing for serialization
and deserialization. It also requires a significant amount of coding
efforts when the software changes to the next generation. Putting
these issues together discourages developers from being productive
and innovative. Nevertheless, building a distributed power grid
analysis beyond MPI remains an open problem.

While existing big-data tools offer many promises in distributed
computing [8], EDA researchers remain skeptical about the appli-
cability for many reasons [9]. First, power grid analysis is compute-
intensive whereas the big data computing focuses on I/O processing.
Second, MapReduce paradigm assumes data can be split into inde-
pendent chunks while the power grid data are not easily separable.
Third, the mainstream programming languages of the big data are
JVM languages that do not appeal to the language need of power
grid (C/C++). As a consequence, we need a specialized distributed
framework for power grid analysis.

In this paper, we introduce a distributed power grid analysis
framework based on the stream graph model. The goal of this paper
is, instead of solving the power grid analysis with domain-specific
techniques, to investigate into the programmability, extensibility,
and scalability of distributed power grid analysis at framework
level. We summarize our contributions as follows:

• We show that with the use of the stream graph programming
paradigm, programming distributed power grid analysis can
be greatly simplified. Unlike MPI which is based on low-
level message passing API, the stream graph is a higher-level
abstraction to express parallelism. Users can focus on devel-
oping the framework based on the algorithmic specification,
without wrestling with system-specific implementation de-
tails.
• We show that with a customized scheduler, we are able to
maximize the resource utilization in a cluster. Our scheduler
is tailored for the compute-intensive power grid analysis.
We demonstrate our scheduler can effectively leverage the
CPU usage for this particular workload.

https://doi.org/10.1145/3194554.3194560
https://doi.org/10.1145/3194554.3194560
https://doi.org/10.1145/3194554.3194560

• We show that our framework is a more flexible and scalable

alternative to MPI-based solutions. We can flexibly partition

the power grid to different subdomains regardless of the

number of cores, which is instead impossible in MPI due to

its architectural limitation.

We implement our framework on DtCraft1 [10], a distributed

execution engine for high-performance applications, for our exper-

iment. The experimental results show that our distributed power

grid framework achieves comparable performance to MPI-based

solutions. We also demonstrated the effectiveness of our scheduler

over the default scheduler of DtCraft in an emulated production

environment.

2 DISTRIBUTED POWER GRID ANALYSIS

The goal of power grid analysis is to solve following system of

equations extracted from the associated circuit:

GV = I ,

G : A matrix formed by the conductance of components

V : A vector consists the voltage of nodes (unknown)

I : A vector consists the independent current sources

By solving above linear system, the voltage drop at each node can be

derived by comparing the node voltage V with the supply voltage.

One feasible way to solve the system is the domain decomposi-

tion [3] [11] [12] which partitions the problem into subsets and

solves them in parallel. The Additive Schwarz Method (ASM), one

type of the domain decomposition methods, is especially suitable

for large sparse system [4]. In this paper, we adopt the geometric

ASM method with 2D partitioning proposed by [4] for distributed

direct current (DC) analysis, which is proved to have minimum

data communication. The geometric ASM method for DC analysis

can be summarized as four steps:

(1) Partition the circuit into subdomains.

(2) Solve each subdomain independently.

(3) Synchronize and exchange the boundary values of subdo-

mains.

(4) Go to (2) if any of the subdomains does not converge.

The geometric ASM method is a natural fit for distributed com-

puting as it can be directly parallelized by assigning the subdomains

to different processors.

2.1 Existing Works and Limitations

Based on the geometric ASM method, researchers developed

a number of distributed power grid analysis systems using

MPI [4] [11] [12]. TheMPI programming model is processor-centric.

A MPI program consists of several processes with each process at-

tached to a processor, and a typical MPI program can have number

of processes less than or equal to the number of available processors.

Even though oversubscription is possible in MPI, it’s discouraged

by the official due to performance degradation. The processes form

a communication group and each process has a unique number

called rank for identification. Processes can send or receive data

1We use DtCraft version 0.0.1 for the implementation.

Algorithm 1:MPI-based Distributed DC analysis

Input: C : circuit,W : width, H : height

1 MPI_Init();

2 rank ←MPI_Rank();

3 subdomains ← ∅;
4 if rank == 0 then

5 PartitionGrid(C ,W , H);

6 end

7 MPI_Sync();

8 subdomains[rank]←ReadGrid(rank);
9 bd_value_num ← CountBD (subdomains[rank]);

10 MPI_Gather(0, bd_nums , bd_value_num);

11 if rank == 0 then

12 bd_array ← CreateBoundaryArray(bd_nums)

13 end

14 converдe ← False ;

15 while !converдe do

16 solution ← Solve(subdomains[rank]);

17 bd_value ← ExtractBoundary(solution);

18 converдe ← Check(solution);

19 MPI_Gather(0, bd_array , bd_value);

20 MPI_Gather(0, r esult , converдe);

21 if rank == 0 then

22 converдe ← IsConverge(r esult);

23 Reorder(bd_array);

24 end

25 MPI_Scatter(0, bd_array , bd_value);

26 UpdateBD(bd_value , solution);

27 MPI_broadcast(0, converдe);

28 end

through using the rank in a set of APIs. Based on the message pass-

ing model, a distributed DC analysis program with MPI is shown

in Algorithm 1

In Algorithm 1, the power grid is partitioned intoW × H sub-

domains and the MPI program launchesW × H processes with

each process assigned a subdomain. Notice that in line 8, a process

handles the subdomain based on the rank automatically assigned by

MPI and the rank is limited by the number of available CPU cores.

Although users can implement a distributed computing program by

directly including the MPI library and utilizing the low-level APIs,

there are several disadvantages of the MPI-based implementation:

• The number of subdomains is limited by the available pro-
cessors. Also, this is a constraint to launching the program

(mpirun -n [number of cores]). This fundamentally re-
stricts our problem-solving logic to deliver an effective and

scalable solution.

• To manage all processes running concurrently in the MPI
model, an MPI program needs to explicitly use conditional

instructions or branch predicate to separate the execution

flows of different processes. This complicates the program

structure and also makes the MPI program difficult to be

extended to incremental analysis [13], where some processes

might change the values in subdomains.

As a result, it’s desirable to have a novel distributed computing

framework that does not suffer from the above issues.

3 DISTRIBUTED POWER GRID ANALYSIS
BASED ON STREAM GRAPH

3.1 Stream Graph Model

Stream graph [10] is a new programming model that aims for dis-

tributed computing, especially for high performance (compute-

intensive) applications. A stream graph is a high-level abstraction

that describes the program as a directed graph, where vertices and

edges encapsulate the data flow and a sequence of computations.

The computations are asynchronous, i.e. computations are only

executed when the associated data arrive. This makes the stream

graph a competitive solution for performance-driven applications.

3.2 DC Analysis in Stream Graph

Based on the stream graph programming paradigm, we formulate

the DC analysis as a stream graph with two types of vertices: syn-

chronization vertex and worker vertex. The stream graph of DC

analysis consists of one synchronization vertex and N worker ver-

tices where N is the number of subdomains, and there are two

directed edges connecting the synchronization vertex and each

worker vertex. In general, the synchronization vertex serves as a

hub that exchanges data between worker vertices and determines

whether the solution converges or not, while the worker vertex

is responsible for solving a subdomain and reporting the result to

the synchronization vertex. Algorithm 2 presents the stream graph

for DC analysis. A synchronization vertex is first inserted into the

graph in line 5. Then we insert a worker vertex and two directed

edges to the graph (line 7 - 11) and execute the graph in line 12.

Algorithm 2: DC analysis using stream graph

Input: C : circuit,W : width, H : height

1 Graph G ;

2 workers ← {} ;
3 to_worker ← {} ;
4 to_sync ← {} ;
5 sync ← InsertV(G , sync_cb(C ,W ,H ,to_worker));

6 N ←W ∗ H ;

7 for i = 1 to N do

8 workers[i]← InsertV(G , worker_cb());

9 to_worker [i]← InsertE(G , sync, workers[i], worker_edge_cb(

)) ;

10 to_sync[i]← InsertE(G , workers[i], sync, sync_edge_cb()) ;

11 end

12 dispatch(G);

The program initializes required data from invoking the syn-

chronization vertex’s callback once to prepare subdomains. Then

the synchronization vertex notifies the worker vertices of the cor-

responding subdomains by sending a signal through edges. Algo-

rithm 3 presents the callback of the synchronization vertex. In line

1, the power grid is first partitioned into W×H subdomains and

then each subdomain index is passed to a worker vertex along the

directed edge (line 2 - 7).

Algorithm 3: Callback of a synchronization vertex

Input: C : circuit,W : width, H : height, edдes : edges to worker

vertices

1 PartitionGrid(C ,W , H);

2 for i = 1 toW do

3 for j = 1 to H do

4 id ← SubdomainId(i , j);

5 send(edдes[i][j], id);

6 end

7 end

For the input edge callbacks of both types of vertices, we use

finite state machines to establish a communication protocol to react

to different types of input data. Algorithm 4 shows the details in the

callback of a synchronization vertex at input side. The callback has

two states: CHECK and RECV. In line 3, the CHECK state gathers

the results from worker vertices and informs all worker vertices the

global status once all results are received (line 4 - 11). The callback

is removed when reaching convergence (line 10). From line 13 to

23, in the RECV state the synchronization vertex collects and sends

the new boundary values to the worker vertices.

Algorithm 5 presents the callback of a worker vertex at input side.

The callback has three states: INIT, COMPUTE andWAIT_RESULT.

In the INIT state, each worker vertex first receives a subdomain

index from the synchronization vertex (line 2 - 6). Then a worker

vertex solves its own subdomain and replies the result and transits

to the WAIT_RESULT state (line 22 - 27). In the WAIT_RESULT

state, the worker vertex waits for the global result. The callback is

removed if the whole solution converges (line 9 - 11); otherwise the

worker vertex sends the boundary values to the synchronization

vertex and transits to the COMPUTE state (line 12 - 14). In the

COMPUTE state (line 17 - 19), when a worker vertex receives the

updated boundary values, it proceeds to solve the subdomain with

the new values and send the result back.

Our proposed distributed framework has several benefits over

the MPI model:

• In contrast to the static (manual) mapping of processes to
processors in MPI, the callbacks in the stream graph can be

executed on any core in an asynchronous manner, allowing

users to create more partitions than the available processors.

• By packaging the callbacks (sequential block) into a paral-
lel program, the stream graph formulation has better code

readability and makes debugging easier, whereas the MPI

program is more complex as processes with different execu-

tion trajectories are put in the same block.

• The stream graph formulation lets users to assign the re-

source requirements for individual subgraph, which allows

the scheduler to make a more effective cluster resource uti-

lization.

Combining above benefits, our framework has better programma-

bility and scalability than theMPI.We believe our framework stands

out as a unique solution to distributed power grid analysis, consid-

ering the software design and the architectural decision we made.

Algorithm 4: Input edge callback of a synchronization vertex

Input: id : edge id, N : number of worker vertices, edдes : edges to

worker vertices

1 switch state do

2 case CHECK do

3 recv(r esults[id]);

4 if all workers are recv then

5 done ← AllConverge(r esults) ? True : False;

6 for i = 1 to N do

7 send(edдes[i], done);

8 end

9 state = RECV;

10 return done ? REMOVE_THIS_CB:DEFAULT ;

11 end

12 end

13 case RECV do

14 recv(bd_vectors[id]);

15 if all workers are recv then

16 Reorder(bd_vectors);

17 for i = 1 to N do

18 send(edдes[i], bd_vectors[i]);

19 end

20 state = CHECK;

21 return DEFAULT ;

22 end

23 end

24 end

4 APPLICATION-SPECIFIC RESOURCE
CONTROL PLUG-IN

Job scheduling is an important issue in distributed computing as

the scheduling has a huge impact on overall system performance. In

this section, we first outline the default scheduler in DtCraft, then

we introduce a scheduler that is tailored for CPU bound applications

such as the power grid analysis to enhance the system performance.

4.1 Default Scheduler

The default scheduler in DtCraft adopts a best-fit method to match

a job’s tasks to machines based on their resource (CPU + mem-

ory) requirements. Unlike CPUs that are shared among processes,

memory claimed by a process will not be available to others during

execution. As a result, memory is regarded as a hard constraint

and any process violates the memory constraint will be terminated.

The policy of the default scheduler is first-come-first-serve and

non-preemptive. Whenever the scheduler receives a job from users,

it seeks to find a feasible scheduling for the job if no jobs are waiting

ahead. The scheduler first takes a snapshot of the current status

of machines, then for each task in the job, the scheduler collects

the machines that have enough memory to accommodate the task,

and among those candidates the best-fit machine, the one with the

least amount of memory, is matched to the task. A job cannot be

scheduled if any of its task fails to be matched to a machine. A

failed job will be stored in a queue for future processing. Whenever

a job finishes execution and releases the memory, the scheduler

will examine the queue to process the waiting jobs. The idea of

Algorithm 5: Input edge callback of worker vertex

Input: id : edge id, edдe : edge to synchronization vertex

1 switch state do

2 case INIT do

3 recv(subdomain_id);

4 my_subdomain ← ReadGrid(subdomain_id);

5 go to 22;

6 end

7 case WAIT_RESULT do

8 recv(r esult);

9 if r esult then

10 return REMOVE_THIS_CB;

11 end

12 state ← COMPUTE;

13 send(edдe , bd_value);

14 return DEFAULT ;

15 end

16 case COMPUTE do

17 recv(bd_value);

18 UpdateBD(bd_value , solution);

19 go to 22;

20 end

21 end

22 solution ← Solve(my_subdomain) ;

23 bd_value ← ExtractBoundary(solution) ;

24 converдe ← Check(solution);

25 state ←WAIT_RESULT;

26 send(edдe , converдe);

27 return DEFAULT ;

this method is to reduce memory fragmentation which could spare

more room to have more jobs scheduled.

4.2 Proposed Scheduler

One deficiency of the default scheduling policy is the underutiliza-

tion of CPUs since the default scheduler tends to assign jobs to

the machines that are partially loaded while there still exists idle

machines. To have better utilization of the cluster resource, we

propose a scheduler for balancing the workload of cluster machines.

In order to evenly distribute the workload we integrate the CPU

usage and average CPU load in the past one minute into scheduling

to decide the deployment. We record the CPU demands of tasks al-

located on each machine and define the ratio of total CPU demands

to the number of CPUs on the machine as load index. During the

job scheduling, we first collect the machines that satisfy the mem-

ory requirement. Then, rather than selecting the machine with the

least available memory, a task is matched to the machine with the

smallest load index and in case of a tie, the machine with smaller

average CPU load in the past one minute is preferred. The goal of

using load index to determine the task placement is to proportion-

ally distribute the workload. Algorithm 6 presents the algorithm

of the proposed scheduler. In Line 8 - 15, the scheduler finds the

machines with enough memory and then deploys the task on the

least utilized machine by comparing their load indices and average

load over past one minute for tie-breaking.

Algorithm 6: Load-aware scheduling algorithm

Input: M : machines, J :a job

Output: P :packings

1 snapshot ← {};
2 foreachm ∈ M do

3 snapshot ← snapshot
⋃
m;

4 end

5 foreach t ∈ J do
6 best ← null ;

7 foreach s ∈ snapshot do
8 if s .memory >= t .memory then

9 if s .load < best .load or best == null then

10 best ← s ;

11 end

12 else if s .load == best .load and

s .loadavд < best .loadavд then

13 best ← s ;

14 end

15 end

16 end

17 if best == null then

18 P ← ∅;
19 break;

20 end

21 else

22 P ← P
⋃

(t, best);

23 best .memory− = t .memory ;

24 best .load+ = t .cpu/best .cpu ;

25 end

26 end

5 EXPERIMENTAL RESULTS

We first compare two implementations of distributed DC analysis:

the stream graph and the MPI model on both the single machine

and the distributed environment. Next we compare the proposed

scheduler with the default scheduler in an emulated production

environment.

5.1 Stream Graph versus MPI

We conduct experiments on a set of power grid benchmarks released

by IBM [14]. We use the network file system (NFS) to allow file

sharing across the machines. In the single machine experiment, the

machine is equipped with a 2.4 GHz quad-core CPU and 35 GB

memory. Due to the available number of cores, we partition the

circuit into four (2×2) subdomains to evaluate the MPI program.
Since the stream graph does not have the processor binding issue,

we further test the stream graph model with the 3×3 and 4×4
partitions to investigate possible performance improvement.

Table 1 lists the results of the single machine experiment. We

record the total execution time (including the generation of par-

titioned files) and the matrix solving time. For the 2×2 partitions,
the runtime of stream graph is only moderately higher than the

MPI’s and both exhibit a similar performance scale. Considering

the 3×3 and 4×4 partitions, the performance is further improved
by partitioning the circuit into smaller subdomains to reduce the

matrix solving time.

Figure 1: The runtime (sec) distribution for the three sizes

of benchmarks in all runs. The number on the top of each

box is the median value, and the top and bottom whiskers

represent the maximum and minimum values.

Next we evaluate their performance in a cluster consisting of

9 machines with each has a 3.2 GHz quad-core CPU and 24 GB

memory. We experiment four partition sizes: 3×3, 4×4, 5×5 and
6×6. For the sake of fairness, in the stream graphmodel a subdomain

is assigned one CPU core. Table 2 shows the matrix solving and

total runtime (including the latency of transferring partitioned files

on NFS). In all types of partitions, the matrix solving time of stream

graph is close to the MPI model’s and the difference does not scale

with the circuit size, indicating the performance of stream graph is

comparable to the MPI model.

5.2 Production-Mode Evaluation

The scheduler experiments are undertaken on Amazon’s Elastic

Compute Cloud and we use 10 EC2 instances where each instance

has 4 CPUs and 16 GB memory. The first experiment is to evaluate

the schedulers on handling workload composed of jobs in different

scales. We select three types of circuits whose power grids have

0.95, 3.7 and 10 million nodes respectively to represent jobs with

small, medium and large scale. The stream graph each has 4 (small),

8 (medium) and 16 (large) worker vertices respectively. There are

one hundred jobs in total and the number of jobs for each types

are 27, 68 and 5, which is distributed normally to simulate the job

composition in realistic situations. The jobs are randomly permuted

and we submit a job every 10 seconds.

We run three times for both the default scheduler and the pro-

posed scheduler and record all results. Table 3 shows the total time

from submitting the first job to the finish of the last job. Compared

with the baseline scheduler, the proposed scheduler effectively re-

duces the total time by an average of 10%.

To understand the impact of schedulers on the runtime of each

job, Figure 1 records the distribution of completion time on jobswith

different sizes. With the proposed scheduler, the average runtime

of the small, medium and large-sized jobs is reduced by 24%, 22%

and 14% respectively.

Lastly, we evaluate the schedulers with jobs arriving in Poisson

distribution manner. We set the average arrival rate to 0.1 (i.e. the

Table 1: Runtime (sec) of MPI versus Stream graph on single machine

Testcase Size Solve Time (2x2) Total Time (2x2) Solve time
(stream graph)

Total Time
(stream graph)

MPI Stream graph MPI Stream graph 3x3 4x4 3x3 4x4
y200 10513442 1,061.45 1,246.63 1,133.46 1,302.94 544.44 749.20 592.30 795.65
y250 6727562 628.15 717.60 676.21 754.30 262.03 266.03 294.22 296.09
y300 4688899 251.82 294.99 284.67 320.52 156.08 154.70 178.36 176.37
y400 2627442 48.72 68.38 66.82 82.49 45.96 49.61 58.14 61.25
y500 1680602 25.77 36.31 37.94 45.43 25.76 25.29 33.69 32.95
y600 1171822 12.50 18.41 20.77 24.74 18.25 15.50 23.96 20.99
y800 655896 6.44 10.71 11.07 14.51 7.82 7.49 10.97 10.68
y1000 419522 2.85 5.27 5.79 7.61 4.21 4.17 6.27 6.18

Table 2: Runtime (sec) of MPI versus Stream graph (ours) on
a cluster with 9 machines

Testcase Decomposition Solve Time Total Time
MPI Ours MPI Ours

y200 6 x 6 90.60 109.12 149.42 163.40
y250 6 x 6 34.40 45.36 70.583 82.29
y300 5 x 5 22.52 28.06 43.95 52.59
y400 5 x 5 7.52 10.04 19.35 22.75
y500 4 x 4 5.21 6.77 14.79 16.87
y600 4 x 4 3.26 5.03 9.96 12.54
y800 3 x 3 2.25 3.65 7.54 7.97
y1000 3 x 3 1.10 2.58 4.41 5.63

Table 3: The execution time (minutes) for the three runs.

1st 2nd 3rd
Base Ours Base Ours Base Ours

Runtime 25.32 23.05 26.0 22.58 25.42 22.77

average arrival time of a job is 10 seconds) and submit 100 medium-
sized jobs. Table 4 shows that the proposed scheduler’s average
completion time of a job is around 20% smaller than the default
scheduler’s. We observe that the number of vertices deployed on
each machine can vary greatly in the default scheduler, resulting
in a low resource utilization and slower performance.

6 CONCLUSION
This paper introduces a distributed power grid analysis framework
based on the stream graph programming model. The framework en-
ables flexible power grid decomposition regardless of the available
CPU cores. Moreover, a load aware scheduler is proposed to balance
the machine workloads and effectively promote the overall system

Table 4: The average runtime (sec) of a benchmark for the
three runs.

1st 2nd 3rd
Base Ours Base Ours Base Ours

Runtime 62.53 48.44 63.51 42.95 62.47 42.89

resource utilization. The experimental results show that the frame-
work has comparable performance as the MPI-based framework
and the effectiveness of the load aware scheduler. We believe we
open a new direction for the distributed power grid analysis. Our
idea can inspire EDA engineers to rethink the way to parallelize
EDA algorithms.

7 ACKNOWLEDGMENT
This work is partially supported by the National Science Foundation
under Grant CCF-1421563 and CCF-171883.

REFERENCES
[1] C. J. Wei, H. Chen, and S. J. Chen. Design and Implementation of Block-Based

Partitioning for Parallel Flip-Chip Power-Grid Analysis. TCAD, 31(3):370–379,
March 2012.

[2] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An Asynchronous Parallel
Supernodal Algorithm for Sparse Gaussian Elimination. SIAM J. Matrix Anal.
Appl., 20(4):915–952, July 1999.

[3] V. Y. Voronov and N. N. Popova. Parallel power grid simulation on platforms with
multi core processors. In 2009 International Conference on Computing, Engineering
and Information, pages 144–148, April 2009.

[4] T. Yu, Z. Xiao, and M. D. F. Wong. Efficient parallel power grid analysis via
Additive Schwarz Method. In IEEE/ACM ICCAD, pages 399–406, Nov 2012.

[5] Laura Grigori, James W. Demmel, and Xiaoye S. Li. Parallel Symbolic Factoriza-
tion for Sparse LU with Static Pivoting. SIAM Journal on Scientific Computing,
29(3):1289–1314, 2007.

[6] Q. He, W. Au, A. Korobkov, and S. Venkateswaran. Parallel power grid analysis
using distributed direct linear solver. In 2014 IEEE International Symposium on
Electromagnetic Compatibility (EMC), pages 866–871, Aug 2014.

[7] MPICH. https://www.mpich.org/.
[8] M. Zaharia, M. Chowdhury, A. Dave T. Das, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, pages 2–2. USENIX Association, 2012.

[9] T. W. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and N. Venkateswaran. A
distributed timing analysis framework for large designs. In ACM/IEEE DAC,
pages 1–6, June 2016.

[10] T.-W. Huang, C.-X. Lin, and Martin D. F. Wong. DtCraft: A Distributed Execution
Engine for Compute-intensive Applications. In IEEE/ACM ICCAD, pages 757–765,
Nov 2017.

[11] Kai Sun, Quming Zhou, Kartik Mohanram, and D. C. Sorensen. Parallel domain
decomposition for simulation of large-scale power grids. In IEEE/ACM ICCAD,
pages 54–59, Nov 2007.

[12] PETSC. http://www.mcs.anl.gov/petsc/.
[13] P. Sun, X. Li, and M. Y. Ting. Efficient incremental analysis of on-chip power

grid via sparse approximation. In ACM/IEEE DAC, pages 676–681, June 2011.
[14] Sani R. Nassif. Power grid analysis benchmarks. In IEEE/ACM ASP-DAC, pages

376–381, 2008.

https://www.mpich.org/
http://www.mcs.anl.gov/petsc/

	Abstract
	1 Introduction
	2 Distributed Power Grid Analysis
	2.1 Existing Works and Limitations

	3 Distributed power grid Analysis based on stream graph
	3.1 Stream Graph Model
	3.2 DC Analysis in Stream Graph

	4 Application-specific resource control Plug-in
	4.1 Default Scheduler
	4.2 Proposed Scheduler

	5 Experimental Results
	5.1 Stream Graph versus MPI
	5.2 Production-Mode Evaluation

	6 Conclusion
	7 ACKNOWLEDGMENT
	References

