
Grand Challenge: MtDetector: A High-performance Marine
Tra�ic Detector at Stream Scale

Chun-Xun Lin∗

ECE Dept, UIUC, IL
clin99@illinois.edu

Tsung-Wei Huang∗

ECE Dept, UIUC, IL
twh760812@gmail.com

Guannan Guo
ECE Dept, UIUC, IL

guannan4@gmail.com

Martin D. F. Wong
ECE Dept, UIUC, IL

mdfwong@illinois.edu

ABSTRACT

In this paper, we present MtDetector, a high performance marine

tra�c detector that can predict the destination and the arrival time

of travelling vessels. MtDetector accepts streaming data reported

by the moving vessels and generates continuous predictions of the

arrival port and arrival time for those vessels. To predict the des-

tination for a ship, MtDetector builds a neural network for every

port and infers the arrival port for vessels based on their departure

port. For the arrival time prediction, we derive informative features

from training data and apply Deep Neural Network (DNN) to esti-

mate the traveling time. MtDetector is built on top ofDtCraft [1, 2],

a high-performance distributed execution engine for stream pro-

gramming. By utilizing the task-based parallelism in DtCraft, Mt-

Detector can process multiple predictions concurrently to achieve

high throughput and low latency.

CCS CONCEPTS

• Theory of computation → Distributed computing models;

• Computing methodologies→Neural networks; • Software

and its engineering→ Cloud computing;

KEYWORDS

Distributed System, Marine Tra�c,Machine Learning, Stream Pro-

cessing

ACM Reference Format:

Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin D. F.

Wong. 2018. Grand Challenge: MtDetector: A High-performance Ma-

rine Tra�c Detector at Stream Scale. In DEBS ’18: The 12th ACM In-

ternational Conference on Distributed and Event-based Systems, June 25–

29, 2018, Hamilton, New Zealand. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3210284.3220504

1 DEBS18 GC PROBLEM FORMULATION

In the 2018 DEBS Grand Challenge [3], the task is to predict the

destination and arrival time given the spatio-temporal streaming

data from vessels. The data is a sequence of tuples where each tu-

ple contains the ship ID, ship type, speed, longitude, latitude, course,

heading, time stamp, departure port and draught. A list of ports and

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5782-1/18/06. . . $15.00
https://doi.org/10.1145/3210284.3220504

a set of training data are provided for building machine learning

models. The evaluation takes both the prediction accuracy (75%)

and the system performance (25%) into account. The formula to

calculate the accuracy of arrival port prediction for a trip is:

Accuracy =
The length of the last correctly predicted sequence

The total number of tuples in a trip

The formula to calculate the accuracy of arrival time:

Accuracy =

∑
|Predicted arrival time - real arrival time|

The total number of tuples

Here is an example demonstrating the accuracy calculation

of port prediction: Assume a trip’s destination is port A and

there are 10 tuples in this trip. If the predicted sequence is

{B,A,A,A,A,C,B,A,A,A}, the accuracy of the prediction is 3
10 =

0.3, even though the total number of correct labels is seven. There-

fore, the evaluation metric is the key that makes the contest chal-

lenging. The accuracy value of arrival port prediction is only com-

puted from the earliest correct point. One may generate 99% cor-

rect label prediction while making a wrong label near the end of

the sequence can cause the �nal accuracy to drop to 0%.

2 ARRIVAL PORT PREDICTION

2.1 Arrival Port Neural Network Classi�er

To predict the destinations of vessels, our idea is to build a neural

network classi�er to predict the arrival port. Because the port list

is known, MtDetector builds a neural network classi�er per port to

predict the destinations of ships departing from the port. The idea

comes from the observation that ships departing from the same

port only arrive at a speci�c subset of ports. Thus, separating the

models for ports can e�ectively reduce the solution space and im-

prove the prediction accuracy. Next we select features that are use-

ful for port prediction, including ship type, ship position (longitude

and latitude), speed, course, and o�set of longitude and latitude from

the ship’s positions to all the ports. The ship type is useful in the

sense that ships with same type might follow the same route. The

ship’s position and o�sets convey meaningful spatial information

such as how long the ship has travelled and the distance between

the ship and other ports. Speed is selected because a ship will grad-

ually slow down when approaching its destination and course re-

�ects the ship’s intended route direction.

2.2 Incremental Majority Filter

A stable prediction result is critical for the accuracy of arrival port

prediction. To prevent the prediction from changing frequently

due to the noise such as ship drifting or wandering, we design an

https://doi.org/10.1145/3210284.3220504
https://doi.org/10.1145/3210284.3220504

incremental majority �lter algorithm to reduce the variation in pre-

dictions. For each trip, we record the predictions made by the neu-

ral network up to the current time stamp. Then we select the most

frequently predicted port in the record as the new prediction. Con-

sider the previous example whose predicted sequence from neural

network is:

Predicted sequence = {B,A,A,A,A,C,B,A,A,A}

Then the sequence after applying the incremental majority �lter

becomes:

Predicted sequence = {B,A,A,A,A,A,A,A,A,A}

And the accuracy is increased from 30% to 90% in this case. The

rationale behind this is we only accept the prediction change

when there exists su�cient observations supporting the change.

In above example, the occurrence of B and C are both less than

A up to the current time stamp. Hence, they are treated as noise

and being rejected by the �lter. Although the algorithm does not

guarantee to derive better accuracy after �ltering, we �nd this al-

gorithm does improve the accuracy notably in our experiments.

3 ARRIVAL TIME PREDICTION

Several research [4] [5] have shown the e�ectiveness of machine

learning onmaritime tra�c arrival time prediction. MtDetector ap-

plies a Deep Neural Network (DNN)-based approach to estimate

the relationships among variables and �nd a network that pro-

duces the best prediction accuracy.

3.1 Feature Selection

Feature selection plays the most important role in the solution

quality of a DNN. Prior works assume data independence and hope

the DNN to dig out important information from the data. However,

we have found this insu�cient for generating a descent result, pri-

marily due to the large dependencies among data. For example, the

position (latitude, longitude), speed, and heading of a moving ship

all connect to each other between successive reports. Therefore, we

consider the following ten features in our DNN: time stamp, ship

type, speed, longitude, latitude, course, cumulative distance, cumula-

tive time, heading, and bearing. Figure 1 shows the DNN structure

of our default arrival time predictor.

Figure 1: MtDtector’s default arrival time predictor.

In addition to the features provided by the contest, we add three

more features to our model, bearing, cumulative distance, and cu-

mulative time. Bearing is de�ned as the angle between a ship’s

current position and the magnetic North. Cumulative distance is

the total moving distance from a ship’s departure to its current

time stamp, measured over the earth’s surface. Cumulative time

is the total traveling time of a ship from departure to its current

time stamp, measured in minutes. In fact, cumulative distance and

cumulative time contribute a lot to the �nal accuracy value. Intu-

itively speaking, the larger the two values, the sooner a ship will

arrive in its destination. These features are calculated on a per trip

basis. A trip is de�ned as a single travel between two ports.

3.2 Model Selection

As ships belong to multiple types, it is di�cult to have a universal

model estimating ships’ arrival times under distinct conditions, for

example, vessel size, speed, draught, and shapes. To mitigate this

problem,we apply di�erent DNNs for di�erent ship types. For each

ship type, we conduct grid search in terms of number of layers,

number of neurons, mini-batch size, and learning rate to obtain the

best DNN structure. In fact, we also tried other machine learning

techniques such as Recurrent Neural Network (RNN) and Logistic

Regression. DNN turns out to outperform others. The data is split

to two sets, 95% for training and 5% for testing/validation. Since

the training set contains only a limited number of ship types, we

generate a default DNN across all ship types. If during the online

benchmarking one ship type is not found, the default DNN is used

to predict its arrival time.

4 MTDECTOR ON THE HOBBIT PLATFORM

The MtDetector contains three parts: an adaptor, a command com-

ponent and a task component. Figure 2 shows the system archi-

tecture of MtDtector. The Hobbit Platform uses RabbitMQ to cre-

ate message queues for communication between systems and the

adaptor is used to set up connections to the queueswhen theMtDe-

tector activates. Once the queues are successfully connected, Mt-

Detector launches a command component and a task component

to handle the incoming messages from the command queue and

task queue respectively.

MtDetector is highly parallel as every component is executed

by an individual thread. The command component listens to the

command queue and reacts on di�erent system control commands

such as notifying the task component when receiving a task gen-

erator �nish signal. The task component listens to the task queue

and makes predictions for incoming tasks. A task can be either

predicting the arrival port or the arrival time of a ship and MtDe-

tector identi�es the type of task through examining the environ-

ment variables. Task components utilizes a thread pool to simulta-

neously handle multiple tasks to increase the throughput. When

a message arrives, the task component extracts the task from the

message and inserts the task into a work queue. The thread pool

has several threads monitoring the work queue and a thread will

be dispatched to process an awaiting task in the �rst-come-�rst-

serve manner. The work thread forwards the prediction result to

Figure 2: The system architecture ofMtDetector.MtDetector consists of three components: an adaptor, a command component

and a task component.Hobbit platform relies on queues to exchange data between systems, and the adaptor builds connections

to those queues (task, command, result). Once the connections are set up, the command component and task component will

be launched to handle the incoming messages. Both components are executed by individual threads to increase e�ciency.

When receiving a task message (i.e., ship data tuple), the task component extracts the task from the message and inserts the

task into a work queue. A thread pool then dispatches a thread to process an awaiting task in work queue and send the result

to the evaluation storage.

the task component after processing the task, and the task compo-

nent sends both the task ID and the prediction to the evaluation

module.

5 EXPERIMENTAL RESULTS

We discuss in this section the experimental results of MtDe-

tector on two data sets, debs18_training_fixed_3.csv and

debs18_training_labeled.csv, released by the o�cial contest.

The total number of ports is 40 in the Mediterranean sea.

5.1 Arrival Port Predictor

We �rst evaluate the port predictor on the given training data. The

experiment is conducted on a single machine with 4 CPUs and 24

GB memory. We split the training data into trips based on the time

stamp and departure/arrival ports and then categorize the trips

based on their departure ports. For each port, we use the corre-

sponding trips to build a neural network classi�er with a hidden

layer containing 90 neurons. The parameters of each neural net-

work: batch size is 32, learning rate is 0.0003 and the number of

epoch is 300. We take 95% of the tuples as training data set and 5%

trips as the testing data set and report the average of total correct

predictions made by neural network, the average prediction accuracy

without incremental majority �lter and the average prediction accu-

racy with incremental majority �lter.

Table 1 shows the results of our port predictor. For most of the

ports, our neural network classi�er obtains high accuracy consid-

ering the number of total correct prediction. However, the accu-

racy drops signi�cantly when being evaluated by the last correctly

predicted sequence, for example, for port GEMLIK the accuracy de-

creases to 0.001 even 90% of the tuples are correctly predicted. This

is expected as a wrong prediction zeros out the accuracy regardless

of the past predictions. This issue is substantially mitigated after

applying the incremental majority �lter. It is shown that in most

Table 1: Results of Arrival Port Prediction

Port
Ratio of

correct labels

Accuracy

(w.o. IMF)

Accuracy

(w. IMF)

ALEXANDRIA 0.5 0.5 0.5

AUGUSTA 0.8165 0.5768 0.7462

BARCELONA 0.9665 0.5764 0.9574

CARTAGENA 0.9931 0.9931 0.9882

CEUTA 0.7907 0.6713 0.6667

DAMIETTA 0.9327 0.0 0.8969

DILISKELESI 0.2442 0.0 0.0

FOS SUR MER 0.6991 0.006579 0.4458

GEMLIK 0.9296 0.001675 1.0

GENOVA 0.9579 0.6634 0.9449

GIBRALTAR 0.8598 0.3675 0.7877

HAIFA 0.9099 0.8049 0.866

ISKENDERUN 0.8304 0.8164 0.6954

LIVORNO 0.8636 0.4577 0.7744

MARSAXLOKK 0.975 0.7543 0.9574

MONACO 0.9724 0.7793 1.0

NEMRUT 0.959 0.808 0.9702

PALMA DE

MALLORCA
0.8921 0.471 0.8832

PIRAEUS 0.9636 0.9178 0.9751

PORT SAID 0.9967 0.02455 1.0

TARRAGONA 0.8851 0.4215 0.844

TUZLA 1.0 1.0 1.0

VALENCIA 0.9451 0.9169 0.8934

VALLETTA 0.9921 0.9107 0.9862

YALOVA 1.0 1.0 1.0

cases the incremental majority �lter can keep the accuracy more

closer to the number of total correct predictions, preventing the

accuracy drop caused by the wrong prediction. We believe this is

due to the e�ective reduction of varying prediction.

5.2 Arrival Time Predictor

The second experiment is to evaluate the arrival time prediction

of MtDetector. Table 2 lists our DNN model parameters for ar-

rival time prediction. In each column, “Type" denotes the ship type,

“Layer" denotes the network structure, “Lrate" denotes the learning

rate, “Decay" denotes the rate we reduce the learning rate for every

10000 epochs, “B" denotes themini-batch size used during training,

“Epoch" denotes the number of training epochs, and “MAE" repre-

sents the Mean Absolute Error (MAE) in minutes across the whole

data set. We evaluated our model on an emulated environment of

two nodes using the DtCraft system [1], where one node sends the

ship data and another node performs the prediction. Each node has

4 CPUs and 28 GB RAM

Table 2: Results of Arrival Time Prediction

Type Layer Lrate Decay B Epoch MAE (m)

0 10x20x1 0.01 0.95 32 7000 353.217

20 10x10x1 0.01 0.95 16 5000 3.58732

30 10x8x1 0.01 0.95 32 7000 664.314

32 10x14x1 0.01 0.95 32 8000 4.38734

34 10x20x1 0.01 0.95 64 9000 4.70913

36 10x30x1 0.01 0.95 32 9000 743.465

37 10x18x1 0.01 0.95 16 8000 762.548

51 10x32x1 0.01 0.95 32 10000 50.7819

52 10x30x1 0.01 0.95 16 7000 718.968

60 10x32x1 0.01 0.95 64 7000 253.808

66 10x12x1 0.01 0.95 64 4000 1.19157

69 10x30x1 0.01 0.95 32 9000 286.643

70 10x24x1 0.01 0.95 32 50000 827.382

71 10x22x1 0.01 0.95 64 50000 392.387

72 10x30x1 0.01 0.95 64 50000 83.3375

73 10x12x1 0.01 0.95 16 50000 38.6481

74 10x26x1 0.01 0.95 32 50000 113.232

76 10x30x1 0.01 0.95 64 8000 19.4973

79 10x30x1 0.01 0.95 64 8000 278.228

80 10x22x1 0.01 0.95 32 50000 443.919

81 10x16x1 0.01 0.95 16 50000 543.749

82 10x32x1 0.01 0.95 64 50000 13.1808

83 10x20x1 0.01 0.95 32 50000 35.3363

84 10x20x1 0.01 0.95 16 10000 26.4493

85 10x20x1 0.01 0.95 32 7000 24.7699

89 10x22x1 0.01 0.95 64 9000 189.787

90 10x24x1 0.01 0.95 16 10000 137.897

99 10x8x1 0.01 0.95 16 10000 51.2497

The results indicate two strengths of MtDetector: (1) Having

di�erent models for ship types can e�ectively estimate the arrival

time with MAE less than one day. In many cases, the MAE can

be less than 1 hour. (2) Our feature selection method e�ciently

reduces the DNN size. One layer is su�cient for all cases, which

would otherwise take more than three layers to generate similar

results by using only the raw features.

In addition to DNN, we have tried Recurrent Neural Network

(RNN)-based regression to estimate the arrival time. RNN is a pop-

ular method that has shown great promise in many Natural Lan-

guage Processing (NLP) tasks. The idea is to extract trips from each

ship and use a trip as the basic unit during the training. A trip is a

route ordered by time stamp between two ports.

Table 3: Comparison between DNN and RNN

Method Layer Lrate Train MAE (m)

DNN 10x32x1 0.01 >10 hr 234.217

RNN 10x32x1 0.01 1 hr 767.044

Unfortunately, RNN cannot generate a good quality result as

DNN. As presented in Table 3, the solution quality of RNN in terms

of MAE is much worse than DNN in an example data set. Also, the

complexity to train a RNN is much higher than a DNN (>10 hr

vs 1 hr). With the information provided in the contest dataset, it

is very di�cult to correctly identify trips out of each ship. Even

though there are heuristics to mitigate this problem, most of them

compromise on accuracy. Besides, RNN faces the problem of van-

ishing gradient and exploding gradient problem in training a long

trip. These issues make it critical to apply RNN to solve this prob-

lem.

6 CONCLUSION

In this paper, we introduce MtDetector, a high-performance ma-

rine tra�c detector to predict the arrival port and arrival time of

vessels. For arrival port prediction, we build a neural network clas-

si�er for each port which e�ectively reduces the solution space.

Furthermore, considering the evaluation method, we develop an

incremental majority �lter to enhance the prediction accuracy. For

arrival time prediction, we propose to build deep neural network

regressors based on the ship type as ships with the same type have

more similar characteristics. The experimental results demonstrate

the high prediction accuracy of MtDetector in both the port and

time prediction.

7 ACKNOWLEDGMENT

We appreciate all reviewers’ e�orts on reviewing this work. Special

thanks go to contest organizers (Zbigniew Jerzak, Pavel Smirnov,

Martin Strohbach, Holger Ziekow, and Dimitris Zissis) for their

hard work on helping contestants resolve various technical issues

throughout the contest.

REFERENCES
[1] DtCraft. http://dtcraft.web.engr.illinois.edu/.
[2] T.-W. Huang, C.-X. Lin, and Martin D. F. Wong. DtCraft: A High-performance

Distributed Execution Engine at Scale. In IEEE TCAD, 2018.
[3] Vincenzo Gulisano, Zbigniew Jerzak, Pavel Smirnov, Martin Strohbach, and Hol-

ger Ziekow. The DEBS 2018 grand challenge. In Proceedings of the 12th ACM Inter-
national Conference on Distributed and Event-based Systems, DEBS 2018, Hamilton,
New Zealand, June 25-29, 2018, 2018.

[4] Andrius Daranda. A neural network approach to predict marine tra�c. Techni-
cal Report MII-DS-07T-16-9-16, Vilnius University, Institute of mathematics and
informatics, Lithuania, Oct 2016.

[5] Ioannis Parolas. ETA prediction for containerships at the Port of Rotterdam using
Machine Learning Techniques. Master’s thesis, Delft University of Technology,
the Netherlands, 2016.

http://dtcraft.web.engr.illinois.edu/

	Abstract
	1 DEBS18 GC Problem Formulation
	2 Arrival Port Prediction
	2.1 Arrival Port Neural Network Classifier
	2.2 Incremental Majority Filter

	3 Arrival Time Prediction
	3.1 Feature Selection
	3.2 Model Selection

	4 MtDector on the Hobbit Platform
	5 Experimental Results
	5.1 Arrival Port Predictor
	5.2 Arrival Time Predictor

	6 Conclusion
	7 Acknowledgment
	References

